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The study investigated amelioration effects of coconut oil (CO) on growth performance,

nutrient digestibility, ruminal fermentation, and blood metabolites in Hainan Black goat

kids. Twenty-four Hainan Black goat kids (10 days of age) were assigned randomly to

four treatments for 90 days, including pre-weaning (10–70 d of age) and post-weaning

(70-100 d of age) days. The treatment regimens were control (CON), low CO (LCO),

medium CO (MCO), and high CO (HCO) with 0, 4, 6, 8 g CO per goat per day,

respectively. During the pre-weaning period, the average daily gain (ADG) linearly

and quadratically increased (P < 0.05), whereas the average daily feed intake (ADFI)

linearly decreased, and the feed conversion ratio (FCR) also decreased linearly and

quadratically by increasing CO supplementation (P < 0.05). During the post-weaning

period, increasing CO supplementation linearly and quadratically increased the BW at

100 days and ADG (P < 0.05), but quadratically decreased the ADFI and FCR (P< 0.05).

The digestibility of ether extract (EE) linearly and quadratically increased with increasing

CO supplementation (P < 0.05). Supplementation of CO linearly increased ruminal pH

(P<0.05), but linearly decreased (P < 0.05) ammonia-N, total VFAs, molar proportions

of acetate, ruminal microbial enzyme activity of carboxymethyl-cellulase, cellobiase,

xylanase, pectinase and α-amylase, and number of total protozoa, the abundance

of Ruminococcus albus, Ruminococcus flavefaciens, Fibrobacter succinogenes,

Butyrivibrio fibrisolvens, Prevotella ruminicola, and Ruminobacter amylophilus. The

estimated methane emission decreased linearly and quadratically with increasing CO

addition (P < 0.05). The serum concentration of triglycerides (TG), non-esterified fatty

acids (NEFA) and growth hormone (GH) linearly (P < 0.05) increased by raising the

CO supplementation. The present results indicate that CO supplementation at 6 g/day

per goats is optimum due to improved growth performance and decreased estimated

methane emission. Supplementation CO up to 8 g/day depressed growth and feed

conversion due to its suppression of growth performance, rumen protozoa, cellulolytic

bacteria and microbial enzyme activity, and reduced ADF and ADF digestibility.
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INTRODUCTION

Goats are important meat-producing animals and goat meat
is well-appreciated by consumers worldwide, especially in
developing countries (1). Hainan Black goats are the main goat
breed in South China, characterized by a good adaptability to the
local hot and wet weather (2). Hainan Black goat meat is also very
popular in South China because of its delicious flavors. However,
Hainan Black goats exhibit slow growth rates and small body
sizes, resulting in poor carcass characteristics (3).

Manipulation of the rumen microbial ecosystem to enhance
fiber digestion, reduce the excretion of methane and urea, in
order to improve the production performance of ruminants
is one of the most important goals for animal nutritionists
(4, 5). Dietary fats have been used to improve ruminant
growth performance and modify meat characteristics with
human health benefits (6). Moreover, fat supplementation
in the diet of newborn lambs would be considered an
effective mechanism to modify the rumen microbiome (7,
8). Therefore, further understanding of the effects of fat on
rumen fermentation may help to offer a nutritional strategy to
reduce rumen methane emissions and improve the quality of
ruminant products.

Among all the lipid feedstocks, vegetable oils, oilseed, and
calcium salts of fatty acids are the most appropriate for
application in ruminant diets (9). Coconut oil is a cheaper,
tastier, and readily available feed resource for ruminants (10).
Coconut oil is a highly saturated oil (About 90% saturation),
which is rich in medium chain fatty acids (MCFAs) (11).
MCFA have been reported to reduce fat deposition due to
their faster metabolism and reduced storage in adipocytes (12).
Furthermore, coconut oil has been proven to exert positive
environmental effects by enhancing rumen fermentation via
limiting the production of methane and modifying microbial
populations (13–15). There have been discrepancies in the
results obtained by studies conducted to evaluate the effects of
coconut oil supplementation on nutrient digestibility, growth
performance and body composition of ruminants. The studies
reported by Ding et al. (16) found that supplementing 12 g CO
or 0.48 g/kg BW daily, showed a strong methane reduction as
well as a decrease in the number of methanogen and Fibrobacter
succinogenes in Tibetan sheep. Similar effects were also observed
by Liu et al. (17) who reported that supplementation with 0.52
g/kg BW CO in sheep decreased methane emissions by reducing
the methanogen and protozoa populations without negatively
affecting the growth performance or reduction of rumen total
VFA. Besides, the anti-methane effects of CO were also observed
in swamp buffalo (18) and dairy cows (19), and neither study
identified negative effects of CO on DMI, nutrient digestibility
or ruminal fermentation. However, a study on beef heifers with
different levels of CO demonstrated a linear decrease in CH4

Abbreviations: ADF, acid detergent fiber; ADG, average daily gain; BW, body

weight; CO, coconut oil; CP, crude protein; DM, dry matter; DMI, dry matter

intake; average daily feed intake, ADFI; EE, ether extract; FCR, Feed conversion

ratio; GH, growth hormone; NDF, neutral detergent fiber; NEFA, non-esterified

fatty acid; OM, organic matter; RT-PCR, real time polymerase chain reaction; TG,

triglyceride; VFA, volatile fatty acids.

production without affecting the DMI or giving rise to negative
effects on DMI and digestibility at lower doses, with only the
highest dose of 375 g/d yielding undesirable effects on the DMI
and digestibility (20). Another study in lambs revealed that CO
supplementation at 50 g/kg in the concentrate improved the
feed conversion ratio and carcass traits of lambs, but its higher
inclusion in ruminant diets has negative effects on growth and
feed conversion due to its depressing impact on rumen protozoa
which results in lower fiber digestibility (10). We hypothesized
that in ruminant species, the level of fat, and the nature of
the basal diet may determine the variable effects of CO on
ruminal microbes.

Considering the inconsistent results regarding the impact
of CO supplementation on growth performance, nutrient
digestibility, and ruminal fermentation, as well as the limited
research performed in goat kids, this study was undertaken to
investigate the effects of coconut oil on growth performance,
nutrient digestion, ruminal fermentation, and blood metabolites
in Hainan Black goat kids.

MATERIALS AND METHODS

Animals and Experimental Design
The animal and experiment protocols were approved by the
Animal Care and Use Committee of Chinese Academy of
Tropical Agricultural Sciences (ACUCC), Hainan, PR China.
Twenty-four Hainan Black goat kids averaging 10 days of age
and 2.05± 0.16 kg of body weight (BW) were randomly assigned
to four treatment regimens. The treatments consisted of control
(CON), lowCO (LCO),mediumCO (MCO) and high CO (HCO)
dosages containing 0, 4, 6, 8 g of CO per goat daily, respectively.
The CO supplement was purchased commercially and sprayed
into the back of the kids’ mouth using a small syringe, twice a day
at 0700 and 1700 h throughout the experimental period. From
10 to 70 days of age (weaning), the goat kids were fed with a
milk replacer (2% of BW) twice a day at 0800 h and 1800 h for
30 days, after which the daily milk portion was decreased by
half until weaning. The goats were weighed weekly to calculate
the amount of milk replacer to be administered. The goats were
also offered an ad libitum concentrate and dried king grass
in a cafeteria system during the whole experimental period,
and the dietary concentrate to forage ratio was maintained at
50:50 based on an air-dry matter. All goats were fed the same
concentrate mixture. The post-weaning feeding management for
all goats was kept identical that of the pre-weaning phase, except
for the fact that administration of the milk replacer stopped
at 70 days of age. The ingredients and chemical composition
of the experimental diets were illustrated in Table 1. Fresh
water was available to the goats for drinking throughout the
experimental period. The animals were weighed at 10, 70, and
100 days of age before feeding, and the average daily gain (ADG)
was recorded.

Data Collection and Sampling Procedures
The milk intake of individual goats was measured during the
pre-weaning period. Feed offered and refusals for each goat
were also recorded on a daily basis throughout the experimental
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TABLE 1 | Ingredient and chemical composition of basal diets (Air-dry matter

basis).

Item Content

Ingredients of diet (%)

Dried king grass 50.00

Corn 34.00

Soybean meal 9.00

Wheat bran 4.90

Shell powder 0.70

Sodium bicarbonate 0.30

Salt 0.70

Calcium carbonate 0.40

Chemical composition of diet

Organic matter (%) 93.34

Crude protein (%) 16.55

Ether extract (%) 2.64

Neutral detergent fiber (%) 39.63

Acid detergent fiber (%) 26.45

Calcium (%) 0.32

Phosphorus (%) 0.22

Gross energy (MJ/kg) 18.12

period so as to calculate the daily DM intake (DMI). The goats
were dosed via the esophagus with 1 g of chromic oxide in a
paper capsule twice daily (07:00 and 19:00 h) from 78–87 days
of age. The chromic oxide powder was used as a digestion
marker to estimate the fecal excretion. From 83–87 days of age,
Fecal pellets were collected from the rectum at 7:00, 15:00, and
24:00, then representative samples of the feces were pooled.
The samples of feeds, refusals and feces were pooled for each
goat, dried at 60◦C for 48 h, ground to pass a 1mm sieve,
and preserved for chemical composition analysis. The apparent
nutrient digestibility was calculated according to our prior
studies (21).

Samples of rumen fluid were collected using an oral stomach
tube at 07:00 by 70 days of age. The initial 100mL ruminal
fluid extracted was discarded, and the next 100mL was retained.
The fluid’s pH values were immediately measured using a pH
meter (PHS-3C, Shanghai Leijun experimental instrument Co.,
Ltd., Shanghai, China). After pH measurement, the rumen fluid
was filtered through four layers of cheesecloth and subsampled
for various determinations. A 5ml filtrate was preserved by
adding 1mL of 250 g/L meta-phosphoric acid or 1mL of 20
g/L H2SO4 to determine the VFA and NH3 concentrations,
respectively. These samples were then frozen at −20◦C until
further analysis. About 50mL of filtrate was collected and frozen
at −80◦C for DNA extraction, and another 40mL of filtrate was
used to determine the activity of ruminal enzymes according to
the method described by Agarwal (22).

At 70 and 100 days of age, about 5ml of blood was
collected from the jugular vein and harvested into tubes without
anticoagulant before the morning feeding at 100 days of age.
Serum samples were then centrifuged at 3,000 × g for 15min at
4◦C and stored at−20◦C until the assay.

Chemical Analyses
Oven-dried samples were analyzed for DM method 934.01),
OM (method 942.05), nitrogen (method 976.05), ether extract
(method 973.18) and acid detergent fiber (ADF; method 973.18)
according to AOAC methods (23). The neutral detergent fiber
(aNDF) was analyzed using methods described by Van Soest et al.
(24) with heat stable alpha amylase and sodium sulfite utilized
in the NDF procedure, and results were expressed inclusive
of residual ash. Ruminal VFA concentration was measured
by gas chromatography (HP Agilent 6890N, Santa Clara, CA,
USA) with a flame ionization detector equipped with an HP-
INNOWAX (19091N-133) capillary column (30m × 0.25mm
× 0.25µm). Two microliter of fluid samples were injected
with a syringe, and the injector and detector temperature were
programmed at 200 and 220◦C, respectively. Nitrogen was used
as a carrier flowing at 5.5 mL/min. A program altered oven
temperature from 80 to 170◦C at 15◦C/min and then held it
at 170◦C for 1.5min. Ruminal VFA were expressed on the
basis of absolute concentrations (mM) and molar proportions
(mol/100mol total VFA). Ruminal ammonia-N concentration
was determined by a colorimetric spectrophotometer (UV2100,
Shanghai Younike instrument Co., Ltd., Shanghai, China)
according to AOAC methods (2000). Subsequently ruminal fluid
samples were sonicated at 4◦C in an ice bath with a 30 s pulsation
rate for 10min, then centrifuged at 3,000 × g at 4◦C for
20min. The resulting supernatant was used for estimation of the
enzyme activity (carboxymethyle cellulase, cellobiase, xylanase,
pectinase, α-amylase and protease) as described by Agarwal
et al. (22). Serum parameters including glucose, cholesterol,
and triglycerides were determined by using the BH13 MD
1600 (America) automatic biochemical analyzer. Serum level
of non-esterified fatty acids (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China) and growth hormone (Shanghai
Fankel Industrial Co., Ltd, Shanghai, China) were determined
by using enzyme-linked immunosorbent assay (ELISA) kits
according to the manufacturer’s instructions.

DNA Extraction and Quantitative
Real-Time PCR
Microbial DNA was extracted from 0.5 g of rumen fluid by using
a Fastpure Bacteria DNA Isolation Mini Kit (Vazyme, Version
8.1). Subsequently, agarose gel electrophoresis and theNanoDrop
2000 Spectrophotometer (NanoDrop Technologies, USA), were
used to evaluate the quality and quantity of DNA, respectively.
The extracted DNA was then kept frozen at −20◦C for real time
PCR analysis. Populations of Ruminococcus albus, Ruminococcus
flavefaciens, F. succinogenes, Butyrivibrio fibrisolvens, Prevotella
ruminicola, and Ruminobacter amylophilus were estimated using
real time PCR as a proportion of the total number of bacteria.
The sequences of all primers were synthesized by Tianyi Huiyuan
Biotechnology Co., Ltd and displayed in Table 2. All real-time
PCR reactions were carried out in triplicate and run on Applied
Biosystems 7500 Fast real-time quantitative PCR systems. The
reaction mixture (20 µL) contained 10 µL SYBR Color qPCR
Master Mix (Vazyme Biotechnology Co., Ltd., Nanjing, China),
0.4 µL 10 µmol/L PCR Forward Primer, 0.4 µL 10 µmol/L
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TABLE 2 | The primer of ruminal bacteria and 16s rRNA genes.

Target species Primer sequence GeneBank accession no. Size (bp)

Total bacteria F: CGGCAACGAGCGCAACCC AY548787.1 147

R: CCATTGTAGCACGTGTGTAGCC

Total protozoa F: GCTTTCGWTGGTAGT GTATT HM212038.1 234

R: CTTGCCCTCYAATCGTWCT

R. albus F: CCCTAAAAGCAGTCTTAGTTC G CP002403.1 175

R: CCTCCTTGCGGTTAGAACA

R. flavefaciens F: ATTGTCCCAGTTCAGATTGC AB849343.1 132

R: GGCGTCCTCATTGCTGTTAG

F. succinogenes F: GTTCGGAATTACTGGGCGTAA A AB275512.1 121

R: CGCCTGCCCCTGAACTATC

B. fibrisolvens F: ACCGCATAAGCGCACGGA HQ404372.1 65

R: CGGGTCCATCTTGTACCGATA AAT

R. amylophilus F: CTGGGGAGCTGCCTGAATG MH708240.1 102

R: GCATCTGAATGCGACTGGTTG

P. ruminicola F: GAAAGTCGGATTAATGCTCTATGTTG LT975683.1 74

R: CATCCTATAGCGGTAAACCTTTGG

PCR Reverse Primer, 0.4 µL ROX Reference Dye (50×), 6.8 µL
ddH2O and 2 µL of the template DNA. The quantity of DNA
was measured in triplicate for each sample using the ND-1000
UV spectrophotometer (NanoDrop Technologies, USA), and the
mean values were estimated. PCR was implemented according
to the following conditions: Degeneration at 95◦C for 60 s; PCR
reaction at 95◦C for 15 s and 60◦C for 30 s, with 40 cycles;
dissociation stage.

Statistical Analyses
Data analysis was conducted using the SAS mixed model
procedure (Proc Mixed; SAS, 2002). Analysis of variance
(ANOVA) was performed to examine the effects of the
respective treatment regimens on growth performance, nutrient
digestibility, ruminal fermentation, and blood metabolites.
Linear and quadratic effects were tested using the CONTRAST
statement of SAS with coefficients estimated based on the CON
application rates. Differences between the treatment regimens
were detected by the Duncan’s multiple range test. The P-
value for statistical significance was set at P ≤ 0.05, unless
otherwise noted P ≤ 0.10 was considered as a tendency
approaching significance.

RESULTS

Dry Matter Intake, Average Daily Gain, and
Feed Conversion Ratio
Dry matter intake, average daily gain and feed conversion
ratio were delineated in Table 3. The dry matter intake (DMI)
exhibited a linear decline (P < 0.05) with increasing CO
supplementation for pre-weaned and post-weaned goats, and was
lower for HCO than for control, LCO, and MCO (P < 0.05).
Meanwhile the average daily gain (ADG) for pre-weaned and
post-weaned goats increased linearly (P< 0.05) and quadratically
(P < 0.05) with increasing CO supplementation and was higher
for MCO than that for control, LCO, and HCO (P < 0.05). The

feed conversion ratio (FCR) for pre-weaned and post-weaned
goats decreased linearly (P < 0.05) and quadratically (P < 0.05)
with increasing CO supplementation, and was lower for MCO
group than control and HCO (P < 0.05).

Nutrient Digestibility and Ruminal
Fermentation Parameters
As presented in Table 4, the digestibility of crude protein (CP)
was not affected by CO addition. The digestibility of DM, OM,
aNDF and ADF decreased linearly (P < 0.05) with increasing CO
supplementation, and was lower for MCO than that of control,
LCO and HCO groups (P < 0.05). However, the digestibility of
EE increased linearly (P < 0.05) and quadratically (P < 0.05)
with increasing CO supplementation, and was higher for MCO
and HCO than control and LCO (P < 0.05).

Furthermore, ruminal pH increased linearly (P < 0.05) with
increasing CO supplementation and was higher for HCO and
LCO than control (P < 0.05). Total ruminal VFA concentration
linearly decreased (P < 0.05) and was lower for HCO group
than other three groups (P < 0.05). The molar proportions of
propionate, valerate, and the ratio of acetate to propionate were
not affected (P > 0.05), but the molar proportions of acetate,
butyrate, isobutyrate and isovalerate linearly (P< 0.05) decreased
with increasing CO supplementation, and was lower for the HCO
than for control, LCO and MCO (P < 0.05). Ruminal ammonia
N content linearly reduced by increasing CO supplementation
(P < 0.05). The estimated methane emission decreased linearly
(P < 0.05) and quadratically (P < 0.05) with increasing CO
supplementation and was lower for the LCO, MCO, and HCO
than control (P < 0.05).

Ruminal Microbial Enzyme Activity and
Populations of Ruminal Cellulolytic
Bacteria
The enzymatic activities of caboxymethyl-cellulase,
cellobiase, xylanase, pectinase and α-amylase
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TABLE 3 | Effects of coconut oil on dry matter intake, average daily gain and feed conversion ratio in goat kids.

Treatmente P-valuef

Itemf CON LCO MCO HCO SEMg Treatment Linear Quadratic

Pre-weaning (10∼70 days of age)

Body weight (kg)

Birth weight 1.82 1.91 1.93 1.87 0.157 0.982 0.921 0.775

10 days 2.05 2.13 2.17 2.03 0.086 0.994 0.956 0.786

70 days 5.57b 6.23ab 7.57a 6.10ab 0.249 0.020 0.134 0.020

ADG (g/d) 60.15b 69.47b 91.12a 68.30b 2.808 0.001 0.004 0.001

DMI (g/d) 325.17a 325.50a 323.17a 309.33b 2.184 0.014 0.006 0.152

FCR (kg/kg) 5.47a 4.70b 3.56c 4.62b 0.176 0.001 0.001 0.001

Post-weaning (70∼100 days of age)

Body weight (kg)

100 days 7.90d 8.83b 10.22a 8.18c 0.190 0.001 0.001 0.001

ADG (g/d) 77.67b 86.45a 88.52a 68.78c 1.982 0.001 0.034 0.001

DMI (g/d) 436.17a 434.50a 435.00a 423.17b 1.350 0.001 0.001 0.033

FCR (kg/kg) 5.67a 4.88b 4.95b 6.22a 0.151 0.001 0.086 0.001

a,b,c,dMeans with different superscripts in each row differ significantly (P < 0.05).
eControl (without CO), LCO, MCO and HCO with 4, 6, and 8 g CO per goat per day, respectively.
fADG, average daily bodyweight gain; DMI, dry matter intake; FCR, feed conversion ratio.
gSEM, standard error of the mean (n = 6).

TABLE 4 | Effects of coconut oil on nutrient digestibility and ruminal fermentation in goat kids.

Treatmente P-value

Item CON LCO MCO HCO SEMf Treatment Linear Quadratic

Nutrient digestibility (%)

Dry matter 0.63a 0.62a 0.62a 0.60b 0.003 0.001 0.001 0.121

Organic matter 0.62a 0.61ab 0.61a 0.59b 0.004 0.014 0.005 0.461

Crude protein 0.74 0.73 0.73 0.73 0.005 0.875 0.456 0.835

Ether extract 0.61d 0.66c 0.72b 0.79a 0.014 0.001 0.001 0.042

Neutral detergent fiber 0.57a 0.52c 0.54b 0.51d 0.005 0.001 0.001 0.301

Acid detergent fiber 0.43a 0.41b 0.41b 0.39c 0.005 0.001 0.001 0.775

Ruminal fermentation pH 6.35b 6.46a 6.44ab 6.48a 0.018 0.033 0.013 0.276

Total volatile fatty acid (mmol/L) 91.15a 90.16a 90.53a 88.01b 0.423 0.016 0.006 0.192

Mol/100 mol

Acetate (A) 72.41a 70.74a 70.09ab 68.79b 0.491 0.011 0.002 0.464

Propionate (P) 20.94 20.31 20.00 20.34 0.188 0.385 0.234 0.221

Butyrate 13.84a 13.18ab 13.02b 11.77c 0.236 0.001 0.001 0.107

Valerate 1.74 1.72 1.72 1.70 0.008 0.547 0.221 0.789

Isobutyrate 1.12a 1.05b 1.07b 0.96c 0.021 0.020 0.005 0.527

Isovalerate 1.53a 1.46ab 1.50a 1.41b 0.017 0.032 0.016 0.833

Acetate/Propionate 3.47 3.46 3.50 3.38 0.024 0.457 0.349 0.320

Ammonia-N (mg/100ml) 12.71a 12.50ab 12.39ab 12.13b 0.092 0.158 0.032 0.886

Methane (mol/mol TVFA) 32.04a 31.52b 31.29b 30.07c 0.224 0.001 0.001 0.012

a,b,c,dMeans with different superscripts in each row differ significantly (P < 0.05).
eControl (without CO), LCO, MCO and HCO with 4, 6, and 8 g CO per goat per day, respectively.
fSEM, standard error of the mean (n = 6).

linearly (P < 0.05) decreased with increasing CO
supplementation, and were lower for HCO than the control
(P < 0.05) (Table 5).

Total bacterial and F. succinogenes populations linearly (P <

0.05) and quadratically (P < 0.05) decreased, and the populations
of R. albus, R. flavefaciens, B. fibrisolvens, P. ruminicola, and
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TABLE 5 | Effects of coconut oil on rumen microbial enzyme activity and ruminal microflora in goat kids.

Treatmente P-value

Item CON LCO MCO HCO SEMh Treatment Linear Quadratic

Microbial enzyme activityf

Caboxymethyl-cellulase 0.32a 0.28b 0.28b 0.23c 0.010 0.001 0.001 0.658

Cellobiase 0.14a 0.13ab 0.13ab 0.11b 0.004 0.129 0.041 0.420

Xylanase 0.45a 0.39b 0.39b 0.35b 0.012 0.011 0.002 0.559

Pectinase 0.33a 0.29b 0.24c 0.21d 0.014 0.001 0.001 0.688

α-amylase 1.56a 1.46b 1.46b 1.40c 0.019 0.001 0.001 0.343

Protease 0.47a 0.46a 0.43b 0.42b 0.007 0.001 0.001 0.706

Microbiota (copies/ml)g

Total bacteria × 1011 1.77a 1.46b 1.44b 1.40b 0.046 0.001 0.001 0.001

protozoa × 105 5.42a 4.69b 4.12c 2.71d 0.308 0.001 0.001 0.076

R. albus × 108 0.71a 0.36b 0.35b 0.04c 0.079 0.002 0.001 0.816

R. flavefaciens × 108 0.74a 0.32b 0.35b 0.09c 0.077 0.001 0.001 0.291

F. succinogenes × 108 0.51a 0.49a 0.48a 0.15b 0.046 0.001 0.001 0.001

B. fibrisolvens × 108 1.75a 1.58b 1.54b 1.39c 0.039 0.001 0.001 0.524

P. ruminicola × 108 0.82a 0.41bc 0.37bc 0.20c 0.072 0.001 0.001 0.052

R. amylophilus × 109 0.74a 0.38b 0.17c 0.03d 0.087 0.001 0.001 0.195

a,b,c,dMeans with different superscripts in each row differ significantly (P < 0.05).
eControl (without CO), LCO, MCO and HCO with4, 6and 8 g CO per goat per day, respectively.
fUnits of enzyme activity are: carboxymethyl cellulase (µmol glucose/min/ml), cellobiase (µmol glucose/min/ml), xylanase (µmol xylose/min/ml), pectinase (µmol D-galactouronic acid

/min/ml), α-amylase (µmol glucose/min/ml) and protease (µg hydrolysed protein/min/ml).
gR. albus, Ruminococcus albus; R. flavefaciens, Ruminococcus flacefaciens; B. fibrisolvens, Butyrivibrio fibrisolvens; F. succinogenes, Fibrobacter succinogenes; R. amylophilus,

Ruminobacter amylophilus; P. ruminicola, Prevotella ruminicola.
hSEM, standard error of the mean (n = 6).

R. amylophilus decreased linearly (P < 0.05) with increasing CO
supplementation (Table 5).

Blood Metabolites

The serum concentration of TGs, NEFAs, and GH linearly (P
< 0.05) increased with increasing CO supplementation and
was higher for HCO group than for the control (P < 0.05).
Nevertheless, serum glucose and TC were not affected by CO
supplementation (P > 0.05) for pre-weaning and post-weaning
goats (Table 6).

DISCUSSION

Growth Performance of Goat Kids
An appropriate amount of energy supply is the key to ensure
and promote the healthy and rapid growth and development
of young ruminants. Dietary MCFA (medium chain fatty acid)
can effectively reduce body fat deposition and improve lipid
concentration. However, there have been discrepancies in the
results of coconut oil supplementation on nutrient digestibility,
growth performance, etc. The decrease in DM intake with
increasing CO supplementation was consistent with the findings
of other studies, in which DM intake was decreased by CO
supplementation (25, 50, and 75 g/kg of concentrate) in the
diet of lambs (10). This reduced DM intake was not surprising,
since the negative effects of CO on DMI may be a consequence
of higher energy density in the diet (25, 26). Moreover, higher
CO inclusion have been shown to be related to decreased NDF

digestion (27) and palatability (28). Hollmann and Beede (29)
also reported that CO replacement of ground corn in the diets
of lactating dairy cows with CO lead to a significant reduction
in the DMI. Linear and quadratic increments in the ADG with
higher CO supplementation were observed in our experiment.
Meanwhile, FCR in this study quadratically decreased with
CO supplementation during the pre-weaning and post-weaning
periods. This could be attributed to the improvement in the
energy intake level and EE digestibility by CO supplementation,
essentially due to the higher EE levels of CO-supplemented diets.
Similarly, Dutta et al. (30) reported a gradual increase in ADG up
to 50 g/kg fat supplementation, but above this level it declined.
Unlike our finding, Bhatt et al. (10) reported that increasing CO
supplementation had no effect on ADG of lambs during the pre-
weaning and post-weaning periods, which might be due to the
heat stress in their study.

Nutrient Digestibility
Adding appropriate fat or fatty acid into ruminates can
promote nutrient digestibility (8). The linear EE digestibility
increments with higher CO supplementation observed in this
study were also reported by Bhatt et al. (10). No change was
observed in CP digestibility, but DM, OM, ADF, and NDF
digestibility linearly decreased when increasing CO feeding
portions. Similar results have been reported after CO addition
(29, 31). This phenomenon could be the result of several factors.
For instance, CO supplementation could markedly reduce the
number of rumen protozoa (10). Rumen protozoa exhibited

Frontiers in Veterinary Science | www.frontiersin.org 6 December 2020 | Volume 7 | Article 622259

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Shi et al. Functional Additives for Yeanling

TABLE 6 | Effects of coconut oil on serum biochemical indices and hormone secretion in goat kids.

Treatmentc P-value

Itemd CON LCO MCO HCO SEMe Treatment Linear Quadratic

70 days of age

TC (mmol/L) 3.69 3.49 3.86 4.20 0.174 0.571 0.261 0.468

TG (mmol/L) 0.58b 0.67ab 0.75ab 0.82a 0.045 0.136 0.024 0.830

Glucose (mmol/L) 4.50 3.85 3.99 4.08 0.113 0.155 0.226 0.077

NEFA (mmol/L) 0.19b 0.21b 0.27ab 0.32a 0.020 0.037 0.007 0.560

GH (ug/L) 5.60b 6.59ab 7.47a 6.82ab 0.267 0.067 0.040 0.086

100 days of age

TC (mmol/L) 3.77 3.72 3.94 4.31 0.162 0.217 0.070 0.316

TG (mmol/L) 0.65b 0.72b 0.79ab 0.90a 0.034 0.027 0.004 0.679

Glucose (mmol/L) 4.62 4.43 4.28 4.23 0.087 0.285 0.089 0.485

NEFA (mmol/L) 0.25b 0.29ab 0.32ab 0.38a 0.019 0.081 0.015 0.751

GH (ug/L) 6.41b 6.94b 7.68a 7.04ab 0.161 0.014 0.019 0.028

a,bMeans with different superscripts in each row differ significantly (P < 0.05).
cControl (without CO), LCO, MCO and HCO with4, 6, and 8 g CO per goat per day, respectively.
dTC, Total-cholestero; NEFA, non-esterified fatty acid; TG, triacylglycerols; GH, Growth hormone.
eSEM, standard error of the mean (n = 6).

cellulase, hemicellulase, and pectinase activities (32–34), which
may explain their role in NDF digestion. Additionally, rumen
protozoa may also alter the number of cellulolytic bacteria,
and thus affect the extent of ruminal fiber fermentation (35).
In the present study, the reduction in NDF digestibility was
consistent with a reduction in protozoal numbers by increasing
CO supplementation, and this maybe a reason for reduced NDF
and ADF digestibility by increasing CO feeding portions.

Ruminal Fermentation, Microorganism
Population and Enzyme Activities
Fat can be used as carrier of fat-soluble vitamins and promote the
absorption and utilization of fat-soluble vitamins, negative effects
on rumen microbes, fiber digestion, and fermentation (10, 14).
The pH in rumen fluid linearly increased with increasing CO
supplementation and was higher for LCO and HCO than MCO
and control group, which was similar with the observation of
Pilajun et al. (36), who reported that ruminal pH was directly
proportional to the dosage of CO replacing sunflower oil from
250 to 750 g/kg in steers. Ruminal microbes can utilize ruminal
ammonia-N derived from protein degradation for microbial
protein synthesis (37). The lower ammonia-N levels produced
by goats receiving CO supplementation were likely due to
decreased protease activity, and reduced rumen bacterial and
protozoal populations.

CO supplementation linearly decreased the total VFA
concentration in the rumen. The results of this study were
consistent with those obtained by Machmüller et al. (38), who
found that CO supplementation tended to decrease the total
VFA concentration. This finding could be due to the inhibitory
effect of fatty acids on fiber digestion (39) and toxicity of fats to
microorganisms (40). Moreover, no differences were observed in
the molar proportion of propionate, but the molar proportions
of acetate and butyrate were decreased with higher levels of CO

supplementation. The possible explanation for this phenomenon
was that CO inhibited bacteria and protozoa that are not related
to Selenomonas ruminantium, which is essential to propionate
production (41). Ruminal cellulolytic bacteria and protozoa
produce cellulolytic enzymes and degrade dietary fiber to acetate
(42). Thus, the lower acetate molar proportion resulted from
the decrease in activity of carboxymethyl-cellulase, cellobiase and
xylanase as well as the total population of bacteria, protozoa,
and cellulolytic bacteria (R. albus, R. flavefaciens, B. fibrisolvens,
and F. succinogenes) following CO addition. Being a by-product
of carbohydrate fermentation, butyrate is produced by ruminal
protozoa (43). Similarly, Hristov et al. (41) reported that CO
supplementation inhibited both protozoa and important butyrate
producers in the rumen, such as B. fibrisolvens. Hence, the
decrease in the population of protozoa with CO supplementation
observed in the present study also provides evidence for the
reduction in the molar proportion of butyrate. In agreement
with this study, similar findings in total VFA concentration (38),
proportion of acetate (17), propionate (17), and A:P ratio (17)
were reported in other previous studies. In contrast, Bozzolo
et al. (44) found that dietary supplementation of 50 g/kg of CO
had no significant effect on the concentration of VFA in the
rumen of lambs for a period of 2 weeks directly after weaning.
The inconsistency in these results could be due to that in their
experiment, the lambs among the treatment fed the same level of
fatty acids included in the diet, whereas in our experiment, goat
kids in each treatment were fed a diet with different levels of total
energy intake.

Calculation of ruminal methane production using VFAs based
on this study’s procedure demonstrated that CO supplementation
elicited a significantly linear and quadratic decline in methane
production. The protozoa populations were also linearly reduced
by CO addition. These results were consistent with those of in
vitro (45) and in vivo studies (15, 28), which have confirmed
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the methane-suppressing effect of CO supplementation
in ruminants.

The linear decrease in the total population of bacteria,
protozoa, R. amylophilus, and predominant cellulolytic bacteria
(R. albus, R. flavefaciens, B. fibrisolvens, and F. succinogenes) with
increasing CO supplementation suggested that CO modulates
the ruminal microorganisms in a dose-dependent manner.
The toxicity of Medium-chain saturated FAs to the ruminal
microbiota has been well-documented. Work by Hristov
et al. (41) has confirmed that CO supplementation results in
statistically significant suppression of microbial flow. Inhibition
of total bacterial counts, cellulolytic and amylolytic species
secondary to CO administration was reported by Dong et al.
(45). In vitro study carried out by Patra and Yu (8) also reported
that CO exerted inhibitory effects on protozoa and cellulolytic
bacteria (F. succinogenes and R. flavefaciens). This decrease might
be explained by the inhibitory effect of CO on protozoa or certain
bacteria species that suppress the growth of cellulolytic bacteria
in the rumen. The linear decrease in NDF digestibility with
CO supplementation also provides evidence for the potential
inhibitory effects of CO on rumen cellulolytic bacteria.

Rumen enzyme activity is closely related to the growth status
of ruminal bacteria and then affects the degradation ability
to nutrient (46). In the present study, the linear decrease in
the enzymatic activities of caboxymethyl-cellulase, cellobiase,
xylanase, pectinase, α-amylase, and protease with increasing CO
supplementation confirmed themodulation of ruminal microbial
activity by CO. Additionally, the decreased enzymatic activities
of caboxymethyl-cellulase, cellobiase, xylanase, and pectinase
were primarily attributed to the suppression of cellulolytic
bacteria growth, hence resulting in a decreased NDF and ADF
digestibility. P. ruminicola and R. amylophilus are able to secrete
large amounts of α-amylase (47). The linear decrease in the
enzymatic activities of α-amylase noticed in this study coincided
with the decrease in the total number of P. ruminicola and R.
amylophilus with increasing CO supplementation. In addition,
the linear decrease in protease enzymatic activities was related
to the inhibitory effect of CO on proteolytic bacteria. This
finding was supported by the decreased ruminal ammonia-N
concentration and CP digestibility.

Serum Biochemical Parameters
The serum concentration of glucose and TC were not affected by
the treatments. In contrast, studies conducted in finishing heifers
(48) and lambs (10) found an increase in serum cholesterol levels
following CO supplementation. The discrepancy is attributed
to the difference in animals in these studies. However, the
serum concentration of TGs and NEFAs linearly increased
with augmentation of CO supplementation. Circulating NEFAs
derived from digestive tract absorption and adipose tissue release
could be used to reflect the mobilization of body fat and
metabolism of fatty acids (49, 50). In the present study, the
higher blood concentrations of NEFA in HCO supplementation
reflected the promoting of body fat mobilization as indicated
by negative BW changes compared with the goats in MCO

group. Furthermore, serum concentrations of GH are affected
by the nutrient level and growth performance (51). In this
present study, serum concentrations of GH exhibited a linear
increase with increments in CO supplementation. This supports
the hypothesis that optimumCO supplementation could result in
positive responses of serum GH concentration and improvement
of the goat kids’ growth performance.

CONCLUSION

In summary, CO supplementation at 6 g/day per goats
is optimum in goat kids due to improved ADG and feed
conversion efficiency and decreased estimated methane
emission. Supplementation CO up to 8 g/day depressed
growth and feed conversion due to its suppression of growth
performance, rumen protozoa, cellulolytic bacteria (R. albus, R.
flavefaciens, B. fibrisolvens, and F. succinogenes) and microbial
enzyme activity (caboxymethyl-cellulase, cellobiase, xylanase,
pectinase, α-amylase, and protease), and reduced ADF and
ADF digestibility.
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