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A B S T R A C T   

SARS-CoV-2 is the causal agent of COVID-19 disease. Currently, infection with SARS-CoV-2 has been the cause of 
death of over 2.5 million people globally, and there is still no effective curative treatment. Clinically, the severe 
symptoms caused by COVID-19, in addition to pneumonia, are associated with the development of hyper-
inflammatory syndrome and thrombosis. It is urgent to expand our understanding of the molecular mechanisms 
involved in the pathophysiology of COVID-19. This article discusses the potential role that the chemokine 
CX3CL1 could have in the development of COVID-19-associated thrombosis. CX3CL1 is abundantly expressed by 
activated endothelium and is an important regulator of many aspects of endothelial function and dysfunction, 
including thrombosis. The generation of hypotheses about molecules that could be relevant in well-defined as-
pects of the pathophysiology of COVID-19 encourages the development of basic and clinical studies, that could 
help find effective and much needed treatments.   

Introduction 

The World Health Organization declared a pandemic derived from 
the health contingency due to the SARS-CoV-2 coronavirus on March 11, 
2020. SARS-CoV-2 is the causal agent of coronavirus disease-2019 
(COVID-19), which causes severe symptoms of pneumonia. Patients 
with co-morbidities such as systemic arterial hypertension, obesity and 
type 2 diabetes mellitus, have the highest risk of death from COVID-19 
[1]. 

Lung tissue from deceased COVID-19 patients presents diffuse alve-
olar damage, infiltration of T cells in the perivascular area, severe 
endothelial damage, thrombosis, and generalized microangiopathy in 
the pulmonary vessels [2]. In addition to the damage at the lung level, 
SARS-CoV-2 is able to produce various systemic effects. Clinically, se-
vere COVID-19 cases are frequently associated with the development of 
serious cardiovascular conditions such as arterial and venous throm-
boembolism, which significantly increase the relative risk of death in 
these patients [3,4]. In this regard, it has been reported that chronic 

anticoagulant therapy and prophylactic treatment with sodium heparin 
have been effective in reducing the relative risk of death from COVID-19 
[5,6]. Studying the underlying mechanisms associated with injury and 
dysfunction of vascular endothelium associated with severe COVID-19 
could help find more effective therapeutic options for the disease, and 
aid in reducing its mortality. 

Hyperinflammation in COVID-19 patients is characterized by 
elevated peripheral levels of the cytokine IL-6. This cytokine also confers 
a pro-thrombotic environment by inducing the expression of fibrinogen, 
the precursor of fibrin [7]. Patients with severe COVID-19 have been 
reported to have markedly elevated levels of fibrinogen (630 mg/dl, 
reference range 200–400 mg/dl) and D-dimer (0.6–4 µg/ml, reference 
concentration < 0.4 µg/ml), a fibrin breakdown product [8]. Another 
molecule that could be associated with thrombosis secondary to COVID- 
19 is the chemokine CX3CL1, which, as will be discussed below, could be 
positively regulated in the endothelium during SARS-CoV-2 infection, 
and contribute to a pro-thrombotic loop. 

The chemokine CX3CL1, also known as fractalkine (FKN), is 
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abundantly expressed in endothelial cells after activation with pro- 
inflammatory cytokines such as TNF-α and IL-1β [9,10]. It is synthe-
sized as a membrane-bound molecule and also exists as a soluble 
chemotactic molecule [11]; both the membrane bound and the soluble 
form bind to a single receptor called CX3CR1. CX3CL1 is a relevant 
chemokine in endothelial dysfunction preceding atherosclerosis and 
other cardiovascular events [12,13]. CX3CL1 is cleaved in response to 
inflammatory stimulus such as atherosclerosis, diabetes and post- 
transplant vasculopathy [14]. As discussed in the Evaluation of Hy-
pothesis section, CX3CL1 could be up-regulated in the endothelium 
during SARS-CoV-2 infection and could contribute to the perpetuation of 
a pro-thrombotic loop. 

In human cells, Angiotensin Converting Enzyme 2 (ACE2) mediates 
SARS-CoV-2 internalization through interaction with the coronavirus 
spike protein (S) [15]. Indeed, human recombinant soluble ACE2 has 
been used to inhibit SARS-CoV-2 infection of endothelial cells [16]. It 
has been suggested that after endocytosis of the viral complex, ACE2 is 
down-regulated [17,18]. ACE2 is a vasoprotective regulator of the renin 
angiotensin system (RAS), which catalyzes the conversion of Angio-
tensin II (Ang II) to the heptapeptide Ang 1–7, a molecule that has 
vasodilatory, antioxidant and anti-inflammatory activity [19]. In an 
experimental model of induced thrombosis in vena cava, in spontane-
ously hypertensive rats it was demonstrated that a low activity of ACE2 
is a prothrombotic factor [20]. In other studies it has been described that 
Ang 1–7 decreases vascular inflammation and the aggregation of 
platelets to blood vessels [20,21]. Therefore, SARS-CoV-2 mediated 
downregulation of ACE2 could cause the accumulation of angiotensin II, 
which ultimately diminishes the capacity to counteract RAS activation 
contributing to the pathology of COVID-19. Additionally, there is in vivo 
evidence that ACE2 depletion induces a robust upregulation of CX3CL1 
[22] 

Hypothesis 

A potential pathophysiological mechanism of SARS-CoV-2 infection 
in endothelial cells could be the blocking or neutralization of the natural 
function of the ACE2 receptor after endocytosis of viral particles. This 
condition would lead to the overexpression of CX3CL1, which would 
promote endothelial damage due to the excessive recruitment of im-
mune cells, and have a pro-thrombotic effect derived from platelet 
activation that may contribute to the physiopathology of COVID-19. 

Evaluation of hypothesis 

Coronavirus Spike protein has a high affinity towards ACE2 in the 
soluble and membrane-bound forms [23]. At the cell membrane, SARS- 
CoV-2 spike protein binding to ACE2 triggers the receptor-mediated 
endocytosis of viral particles after activation by TMPRSS2, a cellular 
serine protease [40]. It has been proposed that sequestration of ACE2 in 
acidic endosomes depletes ACE2 from plasma membrane, countering its 
protective effects [17,18,24]. So far, there is no direct evidence that 
SARS-CoV-2 negatively regulates the expression of ACE2; however, this 
has been demonstrated in other coronaviruses that use ACE2 as an entry 
pathway. For example, VERO cells infected with SARS-CoV dramatically 
reduced by shedding the expression of ACE2 from 24 h post-infection 
[25], and depletion of ACE2 has also been documented in lung tissue 
of animals infected with SARS-CoV [26]. Furthermore, the human 
coronavirus NL63 has been reported to negatively regulate the expres-
sion of the ACE2 protein during its replication [27]. Recently Kumar et 
al., have proposed as a hypothesis that the entry of SARS-CoV-2 virus 
into the endothelial cell downregulates the expression of the ACE2 re-
ceptor, causing an imbalance in the RAS which leads to endothelial 
damage and activation of the prothrombotic cascade in COVID-19 pa-
tients [28]. 

Although the biological consequences of negative regulation of ACE2 
expression, or a decrease in its activity in endothelial cells, would have 

severe thrombogenic effects, chemokine CX3CL1 could contribute to 
perpetuating the thrombotic loop as discussed below. A direct indication 
that CX3CL1 expression might be increased by SARS-CoV-2 infection is 
found in mice genetically deficient in ACE2 that exhibit increased 
CX3CL1 expression, especially when hypertrophy and myocardial 
damage are induced through chronic cardiac administration of Ang-II 
[22]. Although the molecular mechanism responsible for CX3CL1 
upregulation upon ACE2 ablation should be investigated, the link be-
tween RAS and this chemokine in vivo is clear. 

The initial overexpression of CX3CL1 could favor the recruitment of 
CX3CR1+ immune cells, such as monocytes [29] and cytotoxic T cells, 
which could produce an inflammatory environment, as has been 
described in atherosclerosis [30], and rheumatoid arthritis [31]. In 
addition, studies carried out in rats indicate that the increase in the 
levels of CX3CL1 could have a pro-thrombotic effect [32]. Lung tissue of 
rats subjected to the acute pulmonary thromboembolism model shows 
increased levels of CX3CL1 mRNA, however, the mechanisms of these 
increases remain unknown. Interestingly, anticoagulation treatment 
with aspirin was found to decrease CX3CL1 mRNA levels, in addition to 
controlling pulmonary arterial pressure and damage caused by pulmo-
nary embolism [32]. These findings suggest that CX3CL1 overexpression 
accompanies the damage caused by pulmonary thromboembolism. 
CX3CL1 could promote thrombosis through platelet activation. It has 
been shown that when platelets are stimulated with CX3CL1 they in-
crease the expression of P-selectin, adhesion to collagen and fibrinogen 
is promoted in laminar flow, and degranulation is increased [33]. 

In COVID-19 patients, treatment with heparin has had favorable 
results in preventing thrombosis [6]. Evidence from in vitro studies in-
dicates that, in human endothelial cells, the expression of CX3CL1 might 
also be decreased with heparin treatment, e.g. in IFN-γ stimulated 
human umbilical cord endothelial cells, treatment with heparin (4 mg/ 
ml) resulted in CX3CL1 downregulation at the transcriptional and pro-
tein levels, and it also decreased the adhesion of mononuclear cells [34], 
which play a central role in vascular injury. 

Finally, during convalescence from COVID-19 disease, mainly in 
hospitalized patients, there is a decrease in blood flow due to the lack of 
mobility, which is known to promote thrombosis. Ruze et al reported 
that the expression of CX3CL1 in endothelial cells is increased when 
blood flow is decreased [35]. Therefore, it is possible that an increase in 
the expression of CX3CL1 is favored at the initial moment of infection 
and could be aggravated later with patient immobility (Fig. 1). 

Empirical data 

In a recent study, direct evidence of upregulation of CX3CL1 was 
observed by transcriptional profiling of two pulmonary cell lines (Calu-1 
and A549) upon infection with SARS-CoV-2 [36]. This upregulation 
seems to be specific as infection with Influenza A or other coronaviruses 
such as SARS-CoV or MERS did not show a significant change in CX3CL1 
expression [36]. In vivo data correlating CX3CL1 upregulation and SARS- 
CoV-2 infection is currently missing; it will be especially relevant to 
characterize transcriptional changes upon infection of endothelial cells 
where expression of CX3CL1 is relevant. However, as mentioned early, 
ACE2 deficiency triggers an increase in the expression of CX3CL1 in 
mice [22] and coronavirus spike protein induces downregulation of 
ACE2 in the cell membrane[26,27], therefore it is plausible that a 
mechanistic link exists between SARS-CoV-2 infection and CX3CL1 
upregulation in endothelial cells. 

On the other hand, a small clinical study evaluated the plasma levels 
of a panel of adhesion molecules in 39 patients with COVID-19; 
measured molecules included intercellular adhesion molecule (ICAM- 
1), vascular cell adhesion molecule-1 (VCAM), vascular adhesion 
protein-1 (VAP-1) and CX3CL1. The samples were grouped according to 
illness severity: 9 samples from patients with mild symptoms and 30 
samples from patients with severe symptoms were analyzed. The au-
thors found a global increase in plasma levels of adhesion molecules in 
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patients with severe COVID-19, compared to patients with mild symp-
toms or control individuals. In the case of CX3CL1, patients with severe 
symptoms presented a 2.1-fold increase in this chemokine in relation to 
patients with mild symptoms, presenting medians of 1457.5 pg/ml and 
684.6 pg/ml respectively [37]. 

Consequences of the hypothesis 

Although more evidence should be collected regarding the upregu-
lation of CX3CL1 in endothelial cells as well as its levels in the plasma of 
COVID-19 patients, different experimental studies and direct clinical 
evidence may suggest that the pro-thrombotic cytokine CX3CL1 could 
be increased and play a role in the pathophysiology of COVID-19. 
Increased levels of CX3CL1 have been described in cardiovascular dis-
orders, and a recent report found that this chemokine is increased in 
patients with COVID-19, especially in patients with the severe mani-
festation of the disease. Indirect studies suggest potential mechanisms 
by which CX3CL1 could promote vascular damage and thrombosis. 
Reduction of ACE2 abundance in the cell membrane induced by the 
spike-mediated endocytosis may not only contribute to aggravate 
serious cardiovascular conditions such as arterial and venous throm-
boembolism, but also induce CX3CL1 upregulation in the endothelium, 
contributing to a pro-thrombotic environment and immune cell 
recruitment contributing to the harmful cycle associated with severe 
COVID-19 and its lethality. 

Overall, it is highly relevant to study the role of CX3CL1 in the 
pathophysiology of COVID-19, especially as in vivo pharmacological 
inhibition of CX3CL1 can be achieved with mAb or chemical compounds 
[38,39]. Finally, soluble CX3CL1 can be readily detected in serum, and 
thus may be a potential predictive marker for thrombotic complications 
to identify COVID-19 patients requiring a more aggressive anti- 
thrombotic management (Fig. 1). 
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Fig. 1. Proposed mechanistic link between SARS-CoV-2 infection and CX3CL1. 
In the early stage of COVID-19, viral particle binding to the ACE2 receptor on 
the cell membrane of endothelial cells, induces its internalization and intra-
cellular degradation. The decrease in ACE2 function increases the expression of 
CX3CL1, favoring the recruitment of CX3CR1+ cells, causing an increase in 
local inflammatory mediators and vascular damage due to immune cells with 
cytotoxic or inflammatory activity. Vascular damage could also lead to platelet 
activation and thrombosis by mechanisms dependent on or independent of 
CX3CL1. Additionally, during hospitalization and/or convalescence, a decrease 
in blood flow due to patient immobility could also increase CX3CL1 levels. 
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