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While pre-clinical Torsades de Pointes (TdP) risk classifiers had initially been based

on drug-induced block of hERG potassium channels, it is now well established that

improved risk prediction can be achieved by considering block of non-hERG ion

channels. The current multi-channel TdP classifiers can be categorized into two classes.

First, the classifiers that take as input the values of drug-induced block of ion channels

(direct features). Second, the classifiers that are built on features extracted from output

of the drug-induced multi-channel blockage simulations in the in-silico models (derived

features). The classifiers built on derived features have thus far not consistently provided

increased prediction accuracies, and hence casts doubt on the value of such approaches

given the cost of including biophysical detail. Here, we propose a new two-step

method for TdP risk classification, referred to as Multi-Channel Blockage at Early After

Depolarization (MCB@EAD). In the first step, we classified the compound that produced

insufficient hERG block as non-torsadogenic. In the second step, the role of non-hERG

channels to modulate TdP risk are considered by constructing classifiers based on direct

or derived features at critical hERG block concentrations that generates EADs in the

computational cardiac cell models. MCB@EAD provides comparable or superior TdP risk

classification of the drugs from the direct features in tests against published methods.

TdP risk for the drugs highly correlated to the propensity to generate EADs in the model.

However, the derived features of the biophysical models did not improve the predictive

capability for TdP risk assessment.

Keywords: Torsades de Pointes, machine-learning, classification and prediction, cardiac modeling, early

afterdepolarization

1. INTRODUCTION

In-vitro examination of drug effects on multiple cardiac ion channels and in-silico reconstruction
of cardiac electrical activity from in-vitro experiments are two coupled components in the
new paradigm of TdP risk assessment (Sager et al., 2014). At the molecular/ionic level,
pharmacological TdP genesis is associated with drug-induced reduction in the net repolarizing
current (Antzelevitch, 2007), which is manifested in prolongation of the QT interval in the
body-surface ECGs. Drug-induced block of hERG (human Ether-à-go-go-Related Gene) channels,
which gate the primary repolarizing current IKr , is an acknowledgedmarker for TdP risk prediction.
However, recent studies have shown that the classification that is based on the safety margins
from the hERG channel assays has moderate concordance with QTc prolongation (Gintant, 2011)
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and TdP risk (Mirams et al., 2011; Kramer et al., 2013). Drug-
induced modulation of non-hERG channels either mitigates (i.e.,
block of L-type voltage regulated calcium channel current ICaV
and inward late sodium current INaL) or enhances (i.e., block
of slow activating potassium current IKs or increase of INaL)
the pro-arrhythmic effects of hERG channel block (Bril et al.,
1996; Antzelevitch, 2004; Lacerda et al., 2008; Towart et al., 2009;
Fermini et al., 2016). Several multi-channel TdP risk classifiers
have already been created (Mirams et al., 2011; Christophe, 2013,
2015; Kramer et al., 2013; Mistry et al., 2015; Okada et al., 2015;
Lancaster and Sobie, 2016; Abbasi et al., 2017). Table 1 lists
previously published classifiers that are based on several in-vitro
ion channel assays.

The drug-induced changes in the ionic currents result in
altering of action potential and calcium transient at the cellular
level. These modulations can further trigger events in the
cardiac cells, such as early or delayed afterdepolarizations
(EADs or DADs), and increase heterogeneity in the electrical
activity across the myocardium [i.e., increase in transmural
dispersion of repolarization (TDR)]; both effects are thought
to be the key determinants for TdP genesis (Wu et al., 2002;
Antzelevitch, 2007). In-silico reconstruction of drug-induced
responses of action potential and calcium transient at cellular or
electrical activity at tissue levels could potentially provide better
mechanistic insight. The classifiers that use the features from the
in-silico simulations (derived features) have shown the capability
to make good predictions (Table 1) of torsadogenic risk (Mirams
et al., 2011, 2014; Christophe, 2013, 2015; Okada et al., 2015;
Lancaster and Sobie, 2016; Abbasi et al., 2017; Li et al., 2017).
However, in spite of providing better biological insights for TdP
genesis, the role of computational models in improving TdP
risk prediction is controversial as machine-learning/statistical
analysis of the in-vitro ion channel measurements (direct
features) have been shown to produce equally accurate TdP risk
assessment (Kramer et al., 2013; Mistry et al., 2015).

The amount of drug-induced block of the channels
depends on the compound’s effective free therapeutic plasma
concentration (EFTPC). Unfortunately, reported EFTPC values
are highly variable (Redfern et al., 2003). The maximum
EFTPC values, which is used to determine the ion channel
block, also vary across the datasets (e.g., Moxifloxacin 3.5 µM
in Crumb et al., 2016, 10.9 µM in Kramer et al., 2013). In
addition, the actual free plasma concentrations of drugs in
subjects could also differ because of inter-individual variations,
impaired metabolism, and interactions with other drugs. In
fact, drug concentrations could potentially be much larger
than reported maximum EFTPC values. Researchers have
employed different strategies to address the uncertainty in
EFTPC. Direct and derived features have been evaluated at
the drug’s EFTPC, at supra-therapeutic drug concentrations
(which is several times above maximum EFTPC), or across
a wide range of drug concentrations (Christophe, 2013,
2015; Kramer et al., 2013; Mirams et al., 2014; Mistry
et al., 2015; Okada et al., 2015; Lancaster and Sobie, 2016;
Abbasi et al., 2017; Ando et al., 2017; Li et al., 2017). The
range is obtained by titrating up the drug concentrations
until a fixed threshold, until a predetermined increase in

action potential prolongation is reached, or until EADs are
triggered.

Here, we propose a new two-step method for TdP risk
classification, referred to as Multi-channel Blockage at Early
After Depolarization (MCB@EAD). The MCB@EAD classifier
employs as inputs direct or derived features obtained at drug
concentrations that produce critical hERG block (∼60% block
that generates pause-induced EADs in the biophysical models).
We test the proposed classifier on several previously published
datasets derived from in-vitro screening of the ion channels
and on a large composite dataset comprising of all datasets.
Finally, we examine the connection between TdP risk of the
drugs and drug propensity to induce pause-dependent EADs.
Our results show that MCB@EAD classification from the direct
features performs better or equivalently to previously suggested
methods including the classifiers built on derived features from
biophysical models. We also highlight the link between the direct
and derived feature based classifiers and demonstrate that TdP
risk for the drugs highly correlates to the likelihood to produce
EADs in the model.

2. METHODS

Table 2 provides a brief summary for each of the analyzed
datasets. More extensive descriptions of the datasets is provided
in the Supplemental Material.

2.1. Torsadogenicity Definition
The definition of drug groups according to their torsadogenic risk
is critical for the development of the TdP risk classifiers. Different
torsadogenic definitions from previous classification studies are
listed below.

Redfern et al. assigned drugs to five categories based on the
number of reports of TdP in humans, QT prolongation and TdP
associated withdrawal from themarket (Redfern et al., 2003). The
five categories are:

• R1: Class Ia and III antiarrhythmics with QT prolongation as
intended effect.

• R2: Drugs that have been withdrawn from the market due to
unacceptable risk of TdP for condition being treated.

• R3: Drugs with numerous case reports of TdP in humans.
• R4: Drugs with isolated reports of TdP in humans.
• R5: Drugs with no published reports of TdP in humans when

used alone.

Arizona Center for Education and Research on Therapeutics
(AZCERT) maintains a list of drugs associated with
QT prolongation/TdP risk (Woosley et al., 2017)
(https://crediblemeds.org/) and has categorized the drugs
into three groups:

• CM1: Drugs with known risk of TdP. These drugs prolong the
QT interval and are clearly associated with a known risk of
TdP, even when taken as recommended.

• CM2: Drugs with possible risk of TdP. These drugs can cause
QT prolongation but currently there is lack of evidence for a
risk of TdP associated with themwhen taken as recommended.
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TABLE 1 | TdP classifiers based on in-vitro ion channel assays.

Feature In-silico model Classification References NTotal NCorrect

TDP+ TDP−

IC50,hERG
EFTPC

NA Feature < 30 Feature > 30 Redfern et al., 2003 52 NA

APD90 Ventricular myocyte models

of rabbit, rat and human

LDA Mirams et al., 2011 31 30

−log(
IC50,hERG
IC50,CaV

) NA LR Kramer et al., 2013 55 50

1+a0BPCaV+a1BPNa,fast
1+a2BPhERG

NA LR Mistry et al., 2015 31 from

(Mirams et al., 2011)

55 from

(Kramer et al., 2013)

28

TDR Human ventricular

myocyte model

TDR profiles Christophe, 2015 55 from

(Kramer et al., 2013)

NA

CDrug,Arrhythmia
EFTPC

3D FEM model

of human heart

Feature < 200 Feature > 200 Okada et al., 2015 12 12

EADs Human ventricular

myocyte model

Waveform appearance Abbasi et al., 2017 12 from

(Okada et al., 2015)

11

APD50

& Diastolic Ca2+
Human ventricular

myocyte models

SVM and PCA Lancaster and Sobie, 2016 86 from

(Kramer et al., 2013) and

(Mirams et al., 2011)

75

AUCINaL,drug
AUCINaL,control

+
AUCICaV,drug
AUCICaV,control

Human ventricular

myocyte model

LDA Li et al., 2017 12 12

LDA, Linear Determinant Analysis; LR, Logistic Regression; SVM, Support Vector Machine; PCA, Principal Component Analysis; Cdrug,EAD, concentration of the drug that produces

EAD; BPx , % block of the x (x = Na, fast, CaV, hERG) ion channels; TDR, transmural dispersion of repolarization; Cdrug,Arrhythmia, concentration of the drug that produces arrhythmia in

the model; EAD, early after depolarizations; AUCIx,drug/control , area under the curve of the x (x = CaV, NaL) current transient at steady state action potential in the presence (drug) or

absence of the drug (control). Table also lists the number of compounds analyzed in the study (NTotal ) and the number of correctly classified compounds (Ncorrect ).

• CM3: Drugs with conditional risk of TdP. These drugs are
associated with TdP but only under certain conditions of their
use.

Champeroux et al. assigned drugs into three categories based
on the number of reports of TdP cases associated with the drug
(Champeroux et al., 2005):

• CH1: Drugs with numerous reports of TdP.
• CH2: Drugs causing QT prolongation and/or TdP at very low

frequency.
• CH3: Drugs without reports of TdP or QT prolongation.

Based on a general consensus, a working group formed under the
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative
picked 28 compounds and categorized them into three groups
(Colatsky et al., 2016; Fermini et al., 2016) for testing/training of
the classifiers under the new CiPA paradigm:

• CP1: Drugs with high risk.
• CP2: Drugs with intermediate risk.
• CP3: Drugs with low risk.

To consistently compare with other methods we attempt to use

the binary TdP definitions [i.e., a drug is either torsadogenic

(TdP+) or non-torsadogenic (TdP−)] as in the original
publications (see Table 2 and the Supplemental Material for
further details regarding the exact risk definition used for the
particular datasets). For dataset 7 where tertiary definition is
reported, binary TdP definition was defined by placing CP1
and CP2 drugs into torsadogenic (TdP+) and CP3 drugs to
non-torsadogenic (TdP−) categories. In the case of the merged
dataset or the datasets that lacked binarized TdP definitions
(Crumb et al., 2016), we assigned drugs as TdP+ or TdP−
using a similar approach as in Lancaster and Sobie (2016).
The drugs which fell in the known risk category (CM1)
in the CredibleMeds database, R1, R2, and R3 category in
Redfern et al. (2003) or drugs with several reports for TdP
(CH1) (Champeroux et al., 2005) were assigned to TdP+. For
the remaining drugs we categorized the drug as TdP+ if a
warning for TdP associated with QT prolongation appeared
on its package label (http://dailymed.nlm.nih.gov/). The risk
categorization for the drugs are provided in the Supplemental
Material. Paroxetine has a warning for TdP in the label and
Imipramine was assigned to CH1 category in Champeroux
et al. (2005). These two drugs were also assigned as TdP+
in Lancaster and Sobie (2016). Here, we defined them as
TdP− as these two compounds are not directly associated
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TABLE 2 | Datasets analyzed for TdP risk. The total number of drugs in each dataset is listed in the “Number compounds” column.

Datasets Number compounds Risk categorization tested Figure/Table

Dataset 1 31 TdP+: R1, R2, R3 categories (RCOD) Figure 3, Table 4

(Mirams et al., 2011)

Dataset 2 55 TdP+: R1, R2, R3, CM1, CM2, CM3

categories

Figure 3, Table 4

(Kramer et al., 2013) or label warning (RCOD)

Dataset 3 12 TdP+: R1, R2, R3 categories (RCOD) Figure 3, Table 4

(Okada et al., 2015)

Dataset 4 86 TdP+: CM1 and CH1 categories, Figure 3, Table 4

(Lancaster and Sobie, 2016) Drugs in CM2 and CM3 if label warning

(RCOD)

Dataset 5 30 TdP+: R1, R2, R3, CH1, CM1 category Figures 2A,B, left panel, Figure 4

(Crumb et al., 2016) or label warning Tables 4, 5

TdP+: CM1 and CM2 Figures 2A,B, right panel, Figure 4, Table 5

TdP+: CM1 Table 5

TdP+: CM1 and CM3 Table 5

Dataset 6 57 TdP+: CM1 Figure 3, Table 4

(Ando et al., 2017)

Dataset 7 12 TdP+: CP1 and CP2 category Figure 3, Table 4

(Li et al., 2017) High: CP1 Intermediate: CP2 Low: CP3

(RCOD)

Figure 6

Dataset 8 197 TdP+ R1, R2, R3, CH1, CM1 category or

label warning

Figure 5

(Combined Datasets 1, 2, 3, 5, 6, and 7) TdP+: CM1 and CM2 Table 6

TdP+: CM1 Table 6

TdP+: CM1 and CM3 Table 6

Dataset 9 26 High: CP1 Intermediate: CP2 Low: CP3

(RCOD)

Figure 6

(Fermini et al., 2016)

(IC50,channel extracted from Datasets 1, 2, 3, 5, 6, and 7)

“Risk categorization tested” column refers to the TdP risk definition (see more info on definitions in the text) used to test/train the particular datasets, and the “Figure/Table” column list

the corresponding Figure and Table numbers where the results of the particular dataset and risk categorization pair are reported. The IC50 values and risk category of individual drug for

each datasets are also reported in the Supplemental Material.

with QT prolongation or TdP. These drugs inhibit CYP2D6
and increase plasma concentrations of TdP positive drugs
such as Thioridazine (http://dailymed.nlm.nih.gov/). Sometimes
alternative definitions were also considered and are explicitly
defined in the manuscript.

2.2. Drug-Induced Ion Channel Block
The in-vitro ion channel assay data is converted to drug-induced
block of ion channel (direct features) using

Blockchannel = 100× (
CDrug

h

IC50,channel
h
+ CDrug

h
), (1)

where IC50,channel is the drug concentrations at which the whole-
cell current through particular channels is reduced by half, CDrug

is the concentration of the drug and h is the Hill-coefficient.
The Hill coefficient values were taken as reported in the original
datasets. The IC50, Hill coefficients, and EFTPC values for each of
the datasets are given in the SupplementalMaterial. Note that Hill
coefficient values had little impact, and even fixing Hill coefficient
to 1 for all the drugs did not significantly alter the observed
classification accuracies (results not shown). The drug-induced
blocks of ion channels are used as input features for the machine-
learning based classifiers or utilized to scale the maximum
conductance (gchannel) of the particular ion channels in the
in-silico models, assuming that drug-induced effect on multiple
ion-channels are well represented by a simple conductance-block
model (Mirams et al., 2011),

gchannel,drug = (1− Blockchannel/100)× gchannel. (2)
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The effects of drug-induced modulation of multi-channel
conductance (Equation 2) on the action potentials (AP) and
calcium transients are simulated for all of the compounds using
two versions of human ventricular myocyte models (O’Hara
et al., 2011; Dutta et al., 2016). Ohara et al. model (OHR) (O’Hara
et al., 2011) was picked as it has been chosen as the consensus base
model for proarrhythmic risk assessment (Colatsky et al., 2016).
OHRmodel was also shown to have the best predictive capability
for TdP risk classification among the few tested models in
Lancaster and Sobie (2016).We also utilized the modified version
of the OHR model (OHRmv) which has been shown to better
fit APD-rate dependence experimental data under drug block
conditions, particularly improving the effect of INaL block on
action potential prolongation (Dutta et al., 2016). Several derived
features are extracted from AP and calcium transients, and TdP
risk classifiers are constructed using these derived features. The
details on the simulation protocols and the computations of the
derived features are reported in section 2.6 that describes in-silico
simulations.

2.3. Two-Step Classifier—Multi-Channel
Blockage at hERG EAD(MCB@EAD)
We propose a two-step approach for TdP risk prediction. In
the first step, we classified the drugs into non-torsadogenic
and potentially torsadogenic categories. We performed the
classification in the first step considering solely the block of
hERG channels. Using a Redfern-like criteria (Redfern et al.,
2003), we obtained the ratio between the drug concentration that
produces 60% block of the hERG channel current (IC60,hERG) and

the drug EFTPC (i.e., hERGratio =
IC60,hERG

EFTPC ). The motivation
for using IC60,hERG was that the 60% block of hERG channel
currents triggers pause-induced EAD in the mid cell type of
OHR and OHRmv models (2 Hz pacing rate) at a quiescent
interval greater than 700 ms. For example, a drug with hERG
IC60 of 500 nM and EFTPC of 1 nM would yield a threshold
of 500. Since this drug’s EFTPC would be far from the critical
hERG block concentration, we would classify this compound as
non-torsadogenic. Previous classifiers based on EAD appearance
for different datasets have shown a wide range of thresholds
(approximately 30×−200× EFTPC) for achieving best TdP risk
predictions (Christophe, 2013; Okada et al., 2015). Hence, we
tested four different thresholds for hERG ratio of 50, 100,
150, and 200 for all the datasets and chose the one that gives
the best classification accuracy. For the remaining drugs with
EFTPC above the critical hERG block concentrations (hERG
ratio less than the threshold), the role of multi-channel block was
examined in the second step using logistic regression classifiers
ignoring the EFTPC values of the drugs. The regression classifiers
employed as inputs either the Blockchannel of additional non-
hERG ion channels (direct features) or the features derived from
the simulated calcium transient and the AP in the ventricular
myocyte models, at drug concentrations equal to IC60,hERG.
Such two-step classifier partially solves the problem of EFTPC
variability, restricting EFTPC usage only to the first step to
primarily discard the drugs that produce insufficient hERG
block at extremely high concentrations by classifying them as

non-torsadogenic. Therefore, the moderate variations in EFTPC
values of the drugs would only matter for a very small population
of the drugs with hERG ratio close to the threshold in the
classification. A summary of the two-step approach is given in
Figure 1.

In order to compare the performance of the classifiers based
on the two-step approach to the performance of the classifiers
based on features obtained at actual drug EFTPC concentrations,
we also constructed TdP risk classifiers using the direct and
derived features at reported maximum EFTPC of the drugs. They
are referred in the current paper as one-step classifiers (hERG
ratio is not utilized for these classifiers).

2.4. Classifiers
We utilized statistical/machine-learning models for binary
classification of the drugs into TdP+ or TdP− categories. The
binarized torsadogenic definitions for each drug were used to
train/test the classifier models. Here, we used Logistic regression
model. SVM and neural network models were also tested
and resulted in comparable classification accuracies (results
are shown in the Supplemental Material). Python’s scikit-learn
package (Pedregosa et al., 2011) (http://scikit-learn.org/stable/)
was used to train/test different models. Here, we present results
for logistic regression models only as other methods produced
similar results. The generalized model equation is described as

logit(TdP) =
1

1+ exp−(β0+
∑n

i βiFeaturei)
, (3)

where Feature represents the input metrics to the model (either
direct feature or the derived feature), n is the number of input
features used to train/test the model, and β0 and βi (i = 1, 2, .., n)
are the parameters to be determined. The predictive power of the
model was evaluated by the leave-one-out (LOO) cross validation
technique.

2.5. Two-Dimensional TdP Risk Map
A two-dimensional TdP risk map with hERG ratio (

IC60,hERG

EFTPC ) on
the x-axis and summation of one or more features (block of ICaV
and INaL) on the y-axis were constructed for visualization of the
two-step (MCB@EAD) classifier. The hERG ratio threshold and
regression coefficients from the two-step classifier are used to
generate the two-dimensional risk maps. The hERG ratio (step
1 in the two-step classifier) that provides the best classification
in the two-step classifier is used to set the threshold along
the x-axis. Drugs that fall in the region above the hERG ratio
threshold are considered to be non-torsadogenic. For the drugs
with hERG ratio less than the threshold, the coefficients of the
logistic regression model in step 2 of the two-step classifier are
used to determine the threshold along the y-axis of the risk map.
An example of separating hyperplane that would be obtained
from the second step of the two-step classifier is given by

βICaV blockICaV + βINaLblockINaL +

n
∑

i=3

βfeature,i featurei

+ βintercept = 0 (4)
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FIGURE 1 | Schematic representation of the MCB@EAD two-step approach. In-vitro assay datasets are used to obtain the drug-induced blocks of multiple

ion-channels at drug concentrations equal to IC60,hERG. hERG ratio (
IC60,hERG
EFTPC

) is used as the classification criteria in the first step. Drugs that do not result in 60%

hERG block at concentrations well above their maximum EFTPC are classified as non-torsadogenic (TdP−). hERG ratio thresholds of 50, 100, 150, and 200 were

tested, and the one that provides the best TdP risk discrimination was chosen for the particular datasets. The remaining drugs are considered to be potentially

torsadogenic and analyzed in the second step. The drug-induced blocks of multiple ion-channels at 60% hERG block concentrations (direct features) are used as

inputs to the logistic regression model for TdP risk classification or used to simulate drug-induced changes in action potential (AP) and calcium (Ca) transients using

different protocols. The derived features are extracted from the AP and Ca transients. These derived features are then used to train the logistic-regression model for

TdP risk classification or used directly (e.g., in case of EADs) to classify drugs to TdP+ and TdP− categories.

where blockICaV and blockINaL are the blocks of ICaV and INaL,
respectively. featurei are additional input features of the model,
such as drug trapping parameters. βICaV , βINaL , and βfeature,i

represent the regression coefficients. The regression coefficients
obtained from the step 2 are normalized to the coefficient βICaV

for the ICaV block. This gives

blockICaV +
βINaL

βICaV

blockINaL +

n
∑

i=3

βfeature,ifeaturei

βICaV

= −
βintercept

βICaV

.

(5)
Thus, the left hand side of Equation (5) is plotted on the y-axis,

and the ratio
βintercept
βICaV

determines the threshold along this axis. For

example, if only block of ICaV is taken into consideration, the risk
map has the values of ICaV along the y-axis and hERG ratio along
the x-axis.

Ternary classification for Dataset 7 requires multiple
hyperplanes with different regression coefficients to separate
the high, low and intermediate risk drugs. To represent the
ternary classification in a two-dimensional risk map similar
to the binary classification, we summed the different features
(Featuresum) assuming identical weights for each of the features
(i.e., β1 = β2 = .. = βn equal to βf ) reducing the classification

model to 1

1+exp
−(β0+βf Featuresum) . For Dataset 7, assuming identical

weights for different features resulted in similar accuracy to
a multinomial logistic regression classifier while providing a
simpler visualization in one two-dimensional plot as in the
binary classification. The ratio −β0

βf
obtained after training the

model is used to set the two thresholds along the y-axis. Along
the x-axis arbitrary hERG ratio of 25, the value slightly greater
than the maximum hERG ratio observed for high risk drugs in
Li et al. (2017) and Fermini et al. (2016), was utilized to separate
low and intermediate risk drugs from the high risk drugs. The
hERG ratio of 150 obtained from the merged dataset was utilized
to separate the high and intermediate risk drugs from the low
risk drugs.

2.6. In-Silico Simulations
The alteration in the action potential and calcium transients at
the cellular level arising from drug-induced multi-channel block
were simulated for all the compounds (Dataset 8) using the OHR
model. Using a similar approach as in Lancaster and Sobie (2016),
simulations were carried out at three pacing rates (0.5, 1, and
2 Hz) for each of the endo, mid and epi cell types resulting in
9 simulations per drug, and 13 metrics were obtained from the
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AP and Ca2+ transients. Simulations were carried out for 1,000
beats to allow the models to reach the steady state. The 13 metrics
obtained from the in-silicomodels are listed below:

• Upstroke velocity
• Peak voltage
• Action potential at half maximum duration (APD50)
• Action potential duration at−60 mV (APD @−60 mV)
• Action potential duration at 90% repolarization (APD90)
• Resting voltage
• Action potential triangulation (AP triangulation), calculated as

APD90 - APD30
• Diastolic calcium level (diastolic [Ca2+]i)
• Amplitude of the calcium transient (amplitude of CaT)
• Peak value of intracellular calcium (peak [Ca2+]i)
• Calcium transient duration at half maximum duration

(CaTD50)
• Calcium transient duration at 90% repolarziation (CaTD90)
• Triangulation of the calcium transient (CaT triangulation),

calculated as CaTD90 - CaTD30 (calcium transient duration
at 30% repolarization)

We systematically construct the classifiers on each of the 13
derived features extracted from the action potentials and calcium
transients at two different drug concentrations (i.e., at CDrug =

EFTPC and CDrug = hERG IC60).
The onset of TdP is usually preceded by a sudden reduction

of the heart rate (i.e., by pauses or long cycle lengths) (Neal Kay
et al., 1983; Viskin et al., 2000). Here, we test the generation
of pause-induced EADs, that are implicated as triggers of
TdP (Viswanathan and Rudy, 1999; Liu and Laurita, 2005),
in simulations of drug-induced multi-channel blockage in the
ventricular myocytes models (O’Hara et al., 2011; Dutta et al.,
2016). The basic protocol was similar to that in Viswanathan
and Rudy (1999), where stimulation of the cell is carried out
200 times at a constant cycle length of 500 ms. After 200
stimuli, an additional stimulus was applied following a pause of
1,000 ms. Drug-induced EAD development was tested at drug
concentrations = IC60,hERG in the mid cell type. EAD analysis
was also performed at Cdrug = IC60,hERG for combinations of
ICaV , INaL, and IKs blocks ranging from 0–100% with step of
10% resulting in a set of 1,000 simulations. TdP risk prediction
was carried out using ability of drugs to induce EADs as a
classification criteria (EAD+: drugs that induce EADs at 60%
hERG block concentrations, EAD−: drugs that do not induce
EADs at 60% hERG block concentrations). Figure 1 illustrates
the classification based on the drug EAD risk. The drugs with
hERG ratio greater than the hERG ratio threshold determined
for the particular dataset (using the two-step approach on the
direct features) were considered EAD−. For the remaining drugs
the block of ion-channels was calculated at drug concentration
equal to IC60,hERG and overlaid on the parametric space obtained
from EAD analysis at varying combinations of ICaV , INaL and IKs
blocks (Figure 2A), for both the OHR and OHRmv models, to
determine whether a drug will induce EAD or not at 60% hERG
block concentrations.

The system of ordinary differential equations were solved
using the rapid integration scheme (a combination of forward

Euler, Rush-Larsen method, Rush and Larsen, 1978 and adaptive
time-step) proposed in the original model (O’Hara et al., 2011).
For the EAD simulations rapid integration scheme proposed in
O’Hara et al. (2011) yielded different results to gold standard
simulations with fixed time step of 0.001 ms. Hence, for the EAD
simulations we utilized forward Euler method with a time step of
0.001 ms. Execution scripts were written in C++.

3. RESULTS

3.1. Drugs TdP Risk Highly Correlates to
EAD Propensity
A short-long cycle length (i.e., pause) often precedes the onset
of TdP (Neal Kay et al., 1983; Viskin et al., 2000). The pause is
known to facilitate the formations of EADs (Viswanathan and
Rudy, 1999; Liu and Laurita, 2005). Here, we test the effects of
drug-induced block of different channels on triggering of pause-
induced EADs. Block of hERG channel causes prolongation of
action potential and can result in the generation of EADs. In
the OHR and the OHRmv models, the amount of hERG block
required to induce pause-induced EADs is reduced with increase
in the duration of the pause. hERG block by 57 and 55% induced
EADs in the mid-cell paced at 2 Hz (500 ms pacing cycle length)
following a 700 ms pause in the OHR and OHRmv models,
respectively. The amount of hERG block required to induce
EADs in the OHR and OHRmv model following 1,000 ms pause
is reduced to a 47 and 46% block, respectively. Under these
critical blocks of hERG channel, modifications of other channels
may promote or inhibit the EADs. First, we tested individually
the effects of block of six ion-channel currents (ICaV , INaL, IKs,
IK1, INa,fast , and Ito) in promoting or inhibiting pause-induced
EADs at fixed blocks of hERG channels that are marginally
above (60%) and below (40%) the critical value (48%) of hERG
block that is required to induced EADs in the models. At 60%
hERG block, block of ICaV (> 30% for both the OHR and
OHRmv models) and INaL (> 60% for the OHRmv model)
resulted in suppression of EADs. The remaining five channels
had no inhibitory effects. At 40% hERG block, blocks of IKs and
IK1 led to induction of EADs with lower block of IKs currents
promoting triggering of EADs compared to IK1. The block of
remaining five channels did not result in EADs at 40% hERG
block.

For visualization of combined effects of the channels on EAD
induction, we performed EAD analysis for varying combinations
of block of the three most sensitive non-hERG channels (ICaV ,
INaL, and IKs) regulating EAD generation, each ranging from
0 to 100% at Cdrug = IC60,hERG. Figure 2A represents the
EAD test for the models. The red region represents the set
of combinations of blocks for these currents that resulted in
the EADs in the OHR model (EAD+ region). The region in
green covers the parameter subspace where no EADs were
observed in the OHR model (EAD− region). Separation of the
EAD+ region and EAD− region is outlined by the blue and
yellow surfaces for the OHR and OHRmv model, respectively
(Figure 2A). Among the non-hERG channels, block of ICaV had
the highest modulatory effects on EAD generation under normal
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FIGURE 2 | Pause-induced EAD generation: combination of 0–100% ICaL, INaL, and IKs blocks tested at (A) 60% hERG block in the OHR and OHRmv (B) 30%

hERG block in the OHRmv that is modified to simulate LQT3 through increase in late sodium current conductance by 2-fold. Red regions cover the set of

combinations of the blocks of the three channels that induced EADs in the model. Green region covers the set of combinations where EADs did not appear. Blue and

yellow surfaces represent the separation between the EAD+ and EAD− region in OHR and OHRmv, respectively. The blue and yellow surfaces are plotted together in

both plots in (A) to allow for easy comparision, but note that the red and green regions corresponds to the results for the OHR model. Block of ICaL, INaL, and IKs at

drug concentrations equal to 60 and 30% hERG block are calculated from in-vitro patch-clamp data in Crumb et al. (2016) using (Equation 1) and represented as dots

in the parameter space of (A,B), respectively. The drugs with torsadogenic potential were plotted as the red dots, while drugs with no known torsadogenicity risk are

plotted as the green dots for two different TdP definitions. Definition 1 (left panels) - TdP+: Drugs in R1, R2, R3, CH1, CM1 or torsade label. Definition 2 (right panels) -

TdP+: Drugs in CM1 and CM2. The data points for the Dataset 5: 0-Amitriptyline, 1-Azithromycin, 2-Bepridil, 3-Chloroquine, 4-Chlorpromazine, 5-Cibenzoline,

6-Cisapride, 7-Diltiazem, 8-Dofetilide, 9-Flecainide, 10-Lopinavir, 11-Mexiletine, 12-Mibefradil, 13-Moxifloxacin, 14-Nilotinib, 15-Ondansetron, 16-Propafenone,

17-Quinidine, 18-Quinine, 19-Ranolazine, 20-Ritonavir, 21-Saquinavir, 22-Sertindole, 23-Sotalol, 24-Terfenadine, 25-Toremifene, 26-Verapamil. Three drugs

(Amiodarone, Lidocaine and Rufinamide) with hERG ratio greater than 200 were not included in the plot. (C) Transient AP profiles at 200th beat obtained from

simulation of six drugs in the OHR model. Red and green traces show that the drug is defined as TdP+ and TdP−, respectively.
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conditions. Under critical hERG block (60%), block of ICaV by
more than 30% resulted in suppression of the EADs in both
the OHR and OHRmv models (Figure 2A). Block of INaL in the
absence of the block of ICaV did not result in suppression of
the EADs in the OHR model. Even in the OHRmv model with
improved INaL formulation, block of more than 60% of the late
sodium current was required to suppress pause-induced EADs.
Block of IKs currents increased the amount of block of INaL and
ICaV currents required to prevent EADs. A similar parametric
space for EAD generation was also analyzed under enhanced
late sodium currents (Figure 2B), associated with LQT3. In the
OHRmv model the conductance of the late sodium current
was doubled. Block of the hERG channel by 30% was enough
to induce EADs in the OHRmv model under enhanced late
sodium currents. EAD generation was examined at this 30%
hERG block and is shown in Figure 2B. For the simulations with
enhanced late sodium currents, the difference in the effects of
INaL and ICaV was significantly reduced. At 30% hERG block
in the OHRmv model, block of greater than 20 and 30% was
required for EAD suppression by ICaV and INaL, respectively
(Figure 2B).

Table 3 lists the accuracy of TdP risk prediction using EADs
as the classification criteria. As an illustration, the data points
for the drugs in one of the datasets (Dataset 5) are overlaid on
the the parametric space in Figure 2A at hERG blocks of 60%
to visualize the agreement between drugs EAD and TdP risks.
The drugs with positive TdP risk are shown in red, while the
drugs with negative TdP risk are shown in green. Actual AP
profiles were also simulated for drugs in Datasets 5 and 7 at
60% hERG block concentrations taking into account the block
of all seven channels. Figure 2C gives representative examples
of the AP profiles for the multi-channel block of six of the
drugs from Dataset 7 simulated in the OHR model. Our results
show a good concordance between drugs torsadogenic risk and
its propensity to induce EADs (i.e., most of the torsadogenic
drugs resulted in pause-induced EADs in the models while
no EADs are observed for majority of the non-torsadogenic
drugs at 60% hERG block drug concentrations) across all the
datasets. Majority of the datasets (Datasets 1, 2, 4, 6) contains
values of blocks for two non-hERG channels (ICaV , INa,fast) of
which only ICaV had an impact on EAD occurrence in the
OHR and OHRmv models. Hence, for these datasets, OHR

TABLE 3 | Accuracy of drug classification based on EAD.

Datasets Accuracy: OHR Accuracy: Modified

OHR

Dataset 1 (Mirams et al., 2011) 97 97

Dataset 2 (Kramer et al., 2013) 87 87

Dataset 3 (Okada et al., 2015) 84 84

Dataset 4 (Lancaster and Sobie, 2016) 87 87

Dataset 5 (Crumb et al., 2016) 83 80

Dataset 6 (Ando et al., 2017) 83 83

Dataset 7 (Li et al., 2017) 92 100

Dataset 8 (Merged Dataset) 83 83

and OHRmv models give identical accuracies as the drugs with
greater than 30% ICaV block would result in EAD suppression
in both of these models. For the Datasets 3, 5, and 7, drug-
induced blocks of multiple ion channels are reported. However,
very few drugs among these datasets are located in the region
between the EAD risk decision surfaces for the OHR (blue
surface) and OHRmv (yellow surface) models (i.e., the region in
the parameter space that would result in a different prediction
between the OHR and OHRmv models, Figure 2A). Hence,
similar accuracies are observed for both of the models across
all datasets. For the Dataset 7, Ranolazine (TdP−) was the only
drug that was located on the negative side of the EAD risk
decision surface for the OHRmv and to the positive side of the
decision surface for the OHR, and hence predicted correctly by
the OHRmv model but not by the OHR model. On the contrary
for Dataset 5, Quinine (TdP+) ended up on the negative side
of the EAD risk separating surface for the OHRmv and to the
positive side of the EAD risk decision surface of the OHR model
resulting in its incorrect prediction using the OHRmv model
(Figure 2A).

3.2. Binary TdP Risk Discrimination from
Direct Features
Although the biophysical models can provide mechanistic
insights underlying TdP genesis, the benefits of using biophysical
models in terms of classification is unclear. Here, we wanted to
examine the performance of the classifiers built on direct features
using the proposed method. The predictive power of the TdP
risk classifiers built on the direct features using the proposed
method (MCB@EAD) is shown in Table 4 (two-step classifier
column). Classification scores on the direct features at EFTPC
are reported for comparison (one-step classifier column). The
predictive ability of the two-step classifier was comparable or
better than those for the classifiers built on the various features in
the original datasets and also better than those for the one-step
classifier. Most datasets comprise in-vitro assay data for drug-
induced block of IKr , INa,fast , and ICaV (Datasets 1, 2, 4, and
6). Drug-induced blocks of additional channels were reported
in three datasets (Datasets 3, 5, and 7). The classifiers built
using the block of IKr and ICaV as inputs provided high TdP
risk prediction scores (Table 4). Utilizing the block of INaL as
an additional input feature improved the prediction for the two
datasets (Dataset 3 and Dataset 7) by classifying correctly one
more drug, Ranolazine, as TdP−. On the contrary, in Dataset
5, addition of the block of INaL to the features reduced the
number of correctly classified drugs by one (classifying Ritonavir
incorrectly as TdP−). Taking into account the block of additional
ion channels (INa,fast for Datasets 1, 2, 4, 6 and INa,fast , IKs, Ito, IK1
for Datasets 3, 5 ,7) did not provide any further improvement in
the performance of the classifier for all datasets.

For visualization of our two-step approach we presented
two-dimensional risk maps. Drug-induced block of the ICaV or
the sum of ICaV and INaL blocks is plotted against the hERG

ratio (
IC60,hERG

EFPTCdrug
) for each drug in a two-dimensional risk map

(Figure 3). The values of the hERG ratio (x-axis) and the block
of ICaV (y-axis) that provide the best discrimination vary widely
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TABLE 4 | Binary TdP classifier scores of one-step and two-step classification on the direct features for the eight datasets.

Datasets One step classifier Two step classifier Channel currents

Datasets NDrugs Original model

Accuracy (Feature)

Cdrug = EFTPC Cdrug = IC60,hERG

Dataset 1

(Mirams et al., 2011)

31 97

(APD90)

90 (97) 100 (100) IKr& ICaV

Dataset 2

(Kramer et al., 2013)

55 91

(−log(
IC50,hERG
IC50,CaV

))

89 (82) 95 (95) IKr & ICaV

Dataset 3

(Okada et al., 2015)

12 100

(
CDrug,Arrhythmia

EFTPC
)

58 (66) 92 (92) IKr & ICaV

66 (66*) 100 (92*) IKr , ICaV & INaL

Dataset 4

(Lancaster and Sobie, 2016)

86 87

(APD50 & Diastolic Ca2+)

85 (85) 89 (90) IKr & ICaV

Dataset 5

(Crumb et al., 2016)

30 83 (83) 83 (83) IKr & ICaV

80 (83*) 80 (83*) IKr , ICav & INaL

Dataset 6

(Ando et al., 2017)

36 83

(APD prolongation and EAD (iPSCs))

86 (83) 86 (86) IKr & ICaV

Dataset 7

(Li et al., 2017)
12

100
(

AUCINaL,drug
AUCINaL,control

+
AUCICaV,drug
AUCICaV,control

)

92 (92) 92 (92) IKr & ICaV

100 (92*) 100 (100*) IKr , ICaV & INaL

Dataset 8 197 79 (79) 85 (86) IKr & ICaV

The total number of drugs in the particular dataset are reported in the NDrugs column. Table also lists the feature used for classification in the original methods and corresponding scores

if applicable. The last column shows a list of channel currents used to construct the classifiers. For comparision with the classification accuracy obtained with the direct features, we

reported the highest accuracy obtained for the classifiers from the 13 derived features in isolation at different pacing rate/cell type in the bracket in One step and Two step classifier

columns. *The derived features were extracted from simulations of the drug-induced block of all the reported ion channel currents in the in-vitro assay datasets.

across the datasets (Figure 3). Using the threshold of 22 and 100
for the block of ICaV and hERG ratio, respectively, resulted in the
perfect classification for Dataset 1 (Mirams et al., 2011). However,
for Dataset 2 the hERG ratio threshold of 200 and threshold for

ICaV of 57 provided the best classification. Looking at the risk

maps in Figure 3 we can see that the thresholds that provide best

classification accuracy vary across datasets resulting in variations

in the obtained high risk zones across datasets. For datasets 3,

5, 7 where we also considered block of INaL as one of the input

feature in addition to the block of ICaV the value on y-axis of the
risk map were reported using Equation (5). A two-dimensional
risk map for Dataset 5 for two alternate TdP definitions is shown
in Figure 4. On the two-dimensional risk map with only ICaV
block on the y-axis, we also highlight, using a blue rectangular
outline, the separation between the region with EAD presence
and absence observed in the in-silico simulation at varying ICaV
blocks. For example, at critical hERG block simulations in the
model at block of ICaV less than 30% would result in EADs.
Block of ICaV by more than 30% results in suppression of the
observed EADs. There is approximate correspondence between
the EAD observance region in the in-silico model and the high
torsadogenic region obtained from classifying the direct-features
using machine learning.

3.3. Derived vs. Direct Features as
Predictors for TdP Risk
We examine the performance of classifiers from various derived
features extracted from the simulated action potential and
calcium transient in predicting TdP risk. Drug-induced multi-
channel block was simulated in the OHR model for all the
compounds in the merged dataset (Dataset 8) considering the
block IKr and ICaV channels. Simulations were also carried out
taking into account drug-induced block of all the channels with
available IC50 values. Taking into account the block of additional
channels resulted in similar accuracies and are reported in
the Supplemental Material. Figure 5 shows the performance
of the logistic-regression classifier to discriminate TdP+ and
TdP− drugs (Figures 5A,B) and to predict drug-induced EADs
(Figures 5C,D). The classifiers were built on 13 features extracted
from the steady-state APs and Ca2+ transients (for 3 cell types
at 3 pacing rates). The derived features were extracted at either
EFTPC of the drugs (Figures 5A,C) or at concentrations at which
each drug would produce 60% hERG block (Cdrug = IC60,hERG)
(Figures 5B,D). Among the various derived features obtained
at Cdrugs = EFTPC, diastolic Ca2+ levels provided the best
discrimination score between the TdP+ and TdP− drugs (∼79%
accuracy at 1 Hz in epi cell type, Figure 5A) in agreement with a
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FIGURE 3 | Two-dimensional TdP risk map; blocks of channels are on y-axes and hERG ratio on x-axes for (A) Dataset 1 (Mirams et al., 2011), (B) Dataset 2 (Kramer

et al., 2013), (C) Dataset 3 (Okada et al., 2015), (D) Dataset 3 (IKr , ICaV , INaL) (Okada et al., 2015), (E) Dataset 4 (Lancaster and Sobie, 2016), (F) Dataset 6 (Ando

et al., 2017), (G) Dataset 7 (IKr , ICaV ) (Li et al., 2017), (H) Dataset 7 (IKr , ICaV , INaL) (Li et al., 2017), and (I) Dataset 8 (merged dataset). The regions in green are low

risk regions and the regions in red are high risk areas. Red dots (•) indicate TdP+ drugs and green dots (•) indicate TdP− drugs. For comparsion purposes, we

superimpose a blue rectangular outline that shows the separation between EAD+ and EAD− regions of parameter space. For binary classification the high and

intermediate risk drugs in Dataset 7 were assigned TdP+ and the low risk drugs were assigned to TdP−.

previous report (Lancaster and Sobie, 2016). Classifier was also
built using APD50 and Diastolic Ca2+ together as inputs (the
combination that provided the best prediction in Lancaster and
Sobie, 2016) but did not give an improved classification for the
merged dataset. Several derived features performed well (>90%
accuracy) for EAD risk prediction (Figure 5). However, at drug
concentrations equal to IC60,hERG (Cdrug = IC60,hERG), each of

the 13 features from the Ca2+ transient and AP provided high
classification scores (∼85% maximum) for TdP risk assessment
(Figure 5C). The highest accuracy for each of the features
was obtained at different pacing rates (0.5, 1, and 2 Hz) and
for different cell types (endo, mid and epi). The maximum
classification scores to discriminate the drugs that induced EAD
in the model from the drugs that did not induce EADs was 100%
(Figure 5D) for each of the features. Our results suggest that at
fixed hERG block concentrations where trigger events such as
EADs arise, several derived features obtained from the model

including features from the Ca2+ transient can provide good
TdP risk prediction. These derived features also highly correlate
with EADs (Figure 5). However, the derived features extracted
from simulations of the drug-induced effects in ventricular
myocyte model did not result in much improvement in TdP
risk assessment over the classifiers built on the direct-features
using the proposed method (Table 4). Moreover, combining the
direct and derived features to build the TdP risk classifiers also
did not improve the classification performance (results are not
shown).

3.4. Direct Features Perform Well to Allow
Tertiary Risk Classification
Our results show that classifiers built on the direct features serve
as excellent predictors of TdP risk of the drugs categorized into
binary risk groups. However, a working committee under the
CiPA initiative led by FDA has recently categorized 28 drugs into
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FIGURE 4 | Two-dimensional TdP risk map for Dataset 5 (Crumb et al., 2016). The region in green is a low risk region and the region in red is a high risk area. Red

dots (•) indicate TdP+ drugs and green dots (•) indicate TdP− drugs. Blue rectangle outlines the separation of EAD+ (<30% CaV block) and EAD− (> 30% CaV

block) regions. The misclassified drugs are (A) Ranolazine (CM3, CP3), Cibenzoline (R5), Mibefradil (R4), Saquinavir (CM2) and Amiodarone (CM1, R1); (B)

Cibenzoline, Ranolazine, Mibefradil, Ritonavir (CM3), Saquinavir and Amiodarone; (C) Cibenzoline, Ranolazine, Quinine (CM3), Saquinavir and Amiodarone; and (D)

Cibenzoline, Ranolazine, Chlorpromazine (CM1), Saquinavir and Amiodarone. (A,B) TdP Definition 1: TdP+: Drugs belonging to R1,CM1,CH1 category or drug label

has TdP warning. (C,D) TdP Definition 2: TdP+: Drugs belonging to CM1 or CM2 category.

tertiary risk categories (low, medium, and high risk compounds)
(Colatsky et al., 2016; Fermini et al., 2016). Hence, we test the
predictive capabilities of the classifier based on direct features
to classify the drugs categorized into tertiary risk categories.
Figures 6A,B show a two-dimensional risk map for the 12 drugs
in Li et al. (2017). These drugs have been analyzed previously
using modified OHR model that incorporate dynamic hERG
channel interactions. The 12 drugs are a subset of the 28 drugs
categorized into three risk categories (CP1, CP2, and CP3) under
the CiPA initiative. As a first step, we developed a TdP risk
map using only the block of ICaV channel. The hERG ratio
threshold of 150 and the threshold of ICaV block of 45%, the
values that provided best classification for the merged dataset,
were utilized for classifying the low high and intermediate risk
drugs from low risk drugs Figure 6A. Arbitrary value of hERG
ratio and ICaV block of 25 and 15, respectively (a value greater
than the maximum hERG ratio and maximum block of ICaV
among the high risk drugs in Datasets 7 and 9) was utilized
to separate high risk drugs from the low and intermediate risk
drugs. Three of the four drugs in low risk (CP3) category were
classified correctly. Ranolazine was the only misclassified drug.
The boundaries of red zone were defined to include all high
risk drugs and hence all the drugs from CP1 category were
correctly classified. However, several drugs in intermediate risk

were incorrectly classified. Next, we built regression classifier
using as input metric the sum of block of ICaV , INaL channels
and the degree of drug-trapping parameter which was shown
to be essential to improve risk prediction of intermediate risk
drugs in the original dataset. Figure 6B shows the risk map built
using this metric. The threshold along the y-axis was obtained
from the regression coefficients. The hERG ratio threshold of
25 and 150 were utilized as before. Including the degree of
drug trapping characterized by open-bound/closed-bound ratio
for the drugs at steady-state (Li et al., 2017) as one of the
features in addition to the blocks of CaV and NaL channels,
resulted in the perfect separation of the 12 drugs in 3 categories
(Figure 6B).

We employed the same approach to test all of the 28
drugs (Fermini et al., 2016) categorized in CP1, CP2, and CP3
categories under the CiPA initiative. In-vitro assays for 12 of
these 28 drugs were reported in Crumb et al. (2016) and analyzed
in Li et al. (2017). To augment this dataset, we extract the
IC50 values for hERG and CaV blocks from Datasets 1, 2,
3, 5, 6, 7 resulting in characterization of 26 of the 28 drugs
categorized under the CiPA initiative. Two drugs (Azimilide and
Loratidine) were absent in all of the datasets analyzed here and
hence were not taken into consideration. We used the mean
value of the block if the drug was present in more than one
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FIGURE 5 | Heat maps of leave-one-out cross validation scores for logistic regression classifiers built on 13 features extracted from the APs and Ca2+ transients in

OHR model simulations. Drug-induced multi-channel block evaluated in the mid, endo and epi cell types at 500, 1,000, and 2,000 ms pacing rates. TdP risk

classification at (A) EFTPC drug concentrations and (B) drug concentrations equal to hERG IC50. EAD induction classification at (C) EFTPC drug concentrations (D)

drug concentrations equal to hERG IC50.

dataset. The final dataset of the 26 drugs is reported in the
Supplemental Material. Figure 6C show the two-dimensional
risk maps for the 26 drugs with hERG ratio on the x-axis and
the block of CaV on the y-axis. The 45% ICaV block threshold
and hERG ratio threshold of 150 yielded almost perfect binary
classification (high and intermediate vs. low risk drugs) with
only 2 (Ranolazine and Tamoxifen) drugs of the 8 from the CP3
category and one drug (Clozapine) of the 16 drugs from CP1
and CP2 cateogry (high and intermediate risk drugs) classifying
incorrectly. However, no clear separation was observed amoung
the drugs in CP1 and CP2 categories, with several drugs from
CP2 category ending up in the high risk region. Considering
additional features such as INaL and the degree of drug trapping
(if either of the features were not available their value was set
to zero) and utilizing the threshold obtained from training the
Dataset 7 (Figure 6B) resulted in only 3 intermediate risk drugs
(Clarithromycin, Domperidone, Droperidol) and 1 low risk drug
(Tamoxifen) of the 26 drugs to be misclassified (Figure 6D).
The classifier already performs well in spite of testing data

from heterogeneous sources with some missing values. Further
refinement of the method may be possible when a dataset
is available with all 28 drugs characterized with a consistent
methodology.

3.5. Diverse Definition of Drugs
Torsadogenicity Lead to Different
Prediction Accuracies
Different binary definitions for the drug’s torsadogenic risk have
been used across the literature (Lancaster and Sobie, 2016;
Ando et al., 2017; Wiśniowska and Polak, 2017). Tables 5, 6
list the different classification accuracy scores obtained for four
different binary TdP definitions (Datasets 5 and 8, respectively).
Classifiers were constructed on the block of one or multiple-ion
channels as inputs at critical hERG block concentrations (Cdrug =

IC60,hERG). The various definitions not only resulted in variability
of classification scores (Tables 5, 6), but also changed the role
of different ion channels in accurate TdP risk classification
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FIGURE 6 | Two-dimensional TdP risk map for Dataset 7 (Li et al., 2017) (A,B), and drugs in Fermini et al. (2016) (C,D). The region in green is a low risk region. Yellow

region is an intermediate risk region, and the region in red is a high risk area. Red dots (•) indicate high risk drugs, green dots (•) indicate low risk drugs and orange

dots (•) indicate intermediate risk drugs. Metric = % block CaV + % block NaL + degree of drug trapping.

TABLE 5 | Accuracy scores of TdP classifiers on the direct features for Dataset 5

under four different TdP definitions.

Crumb et al., 2016 Target 1 Target 2 Target 3 Target 4

2-step Cdrug = IC60,hERG, direct features

Step1:IC60,hERG/EFTPC 73 60 60 60

Step1:IC60,hERG/EFTPC
83 83 70 70

Step2:% block ICaV

Step1:IC60,hERG/EFTPC
80 83 83 76

Step2:% block ICaV & INaL

Step1:IC60,hERG/EFTPC
80 83 83 76

Step2:% block ICaV , INaL & IKs

2-step Cdrug = IC60,hERG, Derived Features

Step1:IC60,hERG/EFTPC
83 83 83 76

Step2: Derived features

Target1: TdP+ = CM1, CH1, R1, R2, R3, and FDA label QT prolongation and torsade

warnings. Target 2: TdP+ = CM1 and CM2. Target 3: TdP+ = CM1. Target 4: TdP+

= CM1 and CM3. Row reporting the maximum accuracies obtained using the derived

features is reported for comparision with the direct features.

(Table 5). Using the block of ICaV currents provided the best
accuracy scores under two of the four definitions (Target 1
and Target 2) for Dataset 5. Including the effects on additional

TABLE 6 | Accuracy scores of TdP classifiers on the direct features for Dataset 8

under four different TdP definitions.

Dataset 8 Target 1 Target 2 Target 3 Target 4

2-step Cdrug = IC60,hERG, direct features

Step1:IC60,hERG/EFTPC 77 69 64 66

Step1:IC60,hERG/EFTPC
85 77 74 73

Step2:% block ICaV

Step1:IC60,hERG/EFTPC
85 76 74 72

Step2:% block ICaV & INa,fast

2-step Cdrug = IC60,hERG, derived features

Step1:IC60,hERG/EFTPC
86 76 74 73

Step2: Derived features

Target1: TdP+ = CM1, CH1, R1, R2, R3, and FDA label QT prolongation and torsade

warnings. Target 2: TdP+ = CM1 and CM2. Target 3: TdP+ = CM1. Target 4: TdP+

= CM1 and CM3. Row reporting the maximum accuracies obtained using the derived

features is reported for comparision with the direct features.

ion-channels did not improve classification scores for these two
definitions. Taking into account the block of late sodium currents
in addition to CaV channels, provided the best classification
accuracy for remaining two of the four TdP definitions (Target
3 and 4) (Table 5).
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4. DISCUSSION

Evaluation of drug-induced alterations in multiple cardiac ion-
channel currents to determine the drug’s torsadogenic potential
is currently under investigation through initiatives like CiPA
(Comprehensive In-vitro Proarrhythmia Assay) (Sager et al.,
2014; Fermini et al., 2016). We have developed a novel two-
step method (MCB@EAD) for classification of drugs according
to their torsadogenic risk. Using the proposed method, we
examined the drug effects at fixed hERG block (i.e., 60% block)
concentrations for all tested compounds. This approach allows
to isolate the effects of hERG and non-hERG channels in
the classification problem. The proximity of the drug’s EFTPC
to the concentration that results in the critical hERG block
provides one of the metrics for determining the drug’s TdP
risk. For the drugs that induce this critical hERG block at
concentrations below a set threshold, the drug-induced effects on
non-hERG channels provide an additional metric to determine
pro-arrhythmic risk independently of the drug’s EFTPC. Our
classifier shows improved or equivalent prediction to existing
methods. However, one of the advantages compared to previous
studies is that the direct and derived features based MCB@EAD
classifiers were tested on several in-vitro assay datasets reported
previously, as well as on a large composite dataset obtained by
merging the different datasets together. One of the important
findings of the study was that MCB@EAD TdP classifiers from
the direct features provides excellent TdP risk prediction and
performs identical to the TdP classifiers from the derived
features, which are extracted from complex biophysical models.
Although the derived features provided by the biophysical
models did not improve the predictive capability for TdP risk
assessment, the biophysical models helped determine the amount
of block that generates EADs (i.e., the concentration at which
the direct features are analyzed using the MCB@EAD classifier).
The proposed method not only performs comparably or better
than the previous classifiers (Table 4) across various in-vitro
assay datasets published previously, but also highlights the link
between direct and derived feature based classifiers. The results
also show strong correlation between the drugs that generate
EADs and the drugs with positive TdP risk.

4.1. Ion-Channels Critical for TdP Risk
Prediction
Although the role of multiple ion-channels have been suggested
for improved TdP risk prediction, classifiers have been primarily
built on the blocks of IKr , ICaV , and INa,peak currents (Mirams
et al., 2011; Christophe, 2013, 2015; Kramer et al., 2013; Lancaster
and Sobie, 2016). A recent assay reports the drug-induced
effects on seven ion channels (Crumb et al., 2016) providing an
opportunity to identify the ion channels that are important for
pro-arrhythmic risk assessment. The results of our parametric
simulations of EAD indicate a potential role of block of ICaV ,
INaL, and IKs currents, in addition to IKr , for determination of
torsadogenic risk of the drugs (Figure 2). It should be noted
that the EAD simulations results are highly dependent on the
ventricular myocyte model. For example, block of late sodium
current in the OHRmv plays a more prominent role in regulation

of AP sensitivity to EADs as compared to the OHR model
(Figure 2A). The IKs plays a much bigger role in Ten Tusscher
and Panfilov model (Ten Tusscher and Panfilov, 2006) than OHR
model in regulation of APD as shown in Mirams et al. (2014).
The present datasets have limited examples of block of ICaV ,
INaL, and IKs currents in the same compounds. Moreover, among
the non-hERG channels, the regulatory effect of ICaV block was
the highest with the block of ICaV by only 30% resulting in
EAD suppression at critical hERG current block (Figure 2). The
classifiers constructed on the block of IKr and ICaL provided the
best discrimination between torsadogenic and non-torsadogenic
drugs for the majority of the datasets tested here, including the
dataset where drug-induced effects on seven ion channels were
reported (Figure 2, Tables 4, 5). Our results suggest that among
different channels, examination of block of ICaV and IKr might
be the most critical for TdP risk prediction. Relative block of
ICaV and IKr (among the three currents measured in the in-vitro
assay) was shown to provide the best risk prediction, with no role
of peak/fast sodium currents in improving the classification in
Kramer et al. (2013).

Examination of late sodium block can be important for the
drugs with low to moderate ICaV block as these drugs would be
predicted TdP+ if only IKr and ICaV block are considered for risk
prediction. Moderate to high block of INaL by these drugs can
result in suppression of EADs (Figure 2) indicating lower TdP
risk. Earlier datasets did not report values for INaL block. Dataset
5 reports the value of drug-induced block of seven ion-channels,
including the block of INaL. Among the drugs with low to
moderate ICaV in Dataset 5, only three drugs [Ranolazine(CM3),
Toremifene(CM2) and Quinine(CM3)] have greater than 30%
INaL block at critical hERG block concentrations. For the limited
data with inconsistent risk categorization, taking into account the
INaL block did not improve predictive power of the classifiers
(Tables 4, 5). A small improvement in TdP prediction was
observed for Datasets 3 and 7 (Okada et al., 2015; Li et al.,
2017) when considering drug-induced block of INaL as one
of the input features by correctly classifying Ranolazine (the
only drug with high late sodium block in absence of ICaV
block) in both the datasets (Table 4 and Figure 3). The limited
data and inconclusive/minor improvement in torsadogenic risk
classification make it difficult to ascertain the role of ion channels
such as INaL and IKs in predicting TdP risk.

4.2. Predictive Power of Direct vs. Derived
Features
In-silico biophysical models can be thought of as a complex non-
linear transfer function, which translates the drug-inducedmulti-
channel block effects at channel level (input) to alterations in APs
and calcium transients at cellular/tissue levels (output). Several
in-silico electrical biophysical models of human ventricular cell
models have been published over the last decade (e.g.,Ten
Tusscher and Panfilov, 2006; Grandi et al., 2010; O’Hara et al.,
2011; Himeno et al., 2015). TdP risk classification on features
extracted from the drug-induced responses in isolated cell
(Mirams et al., 2011; Christophe, 2013, 2015; Lancaster and
Sobie, 2016), tissue (Trenor et al., 2013; Kubo et al., 2017)
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or organ level (Okada et al., 2015) computational models can
provide physiological/mechanistic insights. Moreover, in-silico
models serve as an excellent tool for evaluation of drug-safety
in diseased conditions (Trenor et al., 2013; Kubo et al., 2017).
Our simulations in the OHRmv model under pathological
conditions (enhanced late sodium currents) reveal that EAD can
appear at significantly lower drug concentrations as only 30%
hERG block was required to induce pause-induced EADs under
pathological conditions compared to 60% hERG block under
normal conditions. Moreover, the modulatory effects of non-
hERG channels on EAD induction was also significantly different
for simulations under pathological conditions (Figure 2). On the
other hand, biophysical models show considerable differences in
their formulations and can lead to different predictions based
on the chosen model. Simulations of EAD generation show
a significant difference between the surfaces separating EAD+
region from EAD− region, that are obtained from the OHR and
OHRmv models (Figure 2). Recently, several efforts have been
carried out for optimization of in-silico cardiac cell models for
pro-arrhythmia risk assessment (Dutta et al., 2016; Mann et al.,
2016; Li et al., 2017).

Statistical/machine learning classifiers that use measured in-
vitro block of multiple cardiac channels (direct features) as their
input (Kramer et al., 2013; Mistry et al., 2015) demonstrated
comparable accuracy as compared to TdP risk classifiers built on
derived features, questioning the need of additional complexity
provided by the in-silico models. On the contrary, the study
by Okada et al. suggested the need of highly detailed three-
dimensional cardiac models for pro-arrhythmic risk assessment
and showed relatively low predictive ability using the direct
features and also certain derived features from the in-silico
lumped parameter (zero-dimensional) cellular models (Okada
et al., 2015). Derived features from in-silico simulations that
incorporate dynamic drug-hERG channel interactions were
shown to improve prediction of TdP risk (Li et al., 2017). For
all the datasets tested here, including the datasets in Okada
et al. (2015) and Li et al. (2017), we showed that the classifiers
built on the direct features performed equally or better than
the previously developed classifiers on the derived features
(Table 4). Our results show that for currently available in-vitro
assay datasets simple models based on the direct features can
provide similar accuarcy to more complex models based on
derived features. It should be noted that our two-dimensional risk
classifiers on the direct features also utilized insights gained from
the computational models (the direct features are examined at
critical hERG block concentrations where EAD can arise in the
in-silico models). Our parametric simulation for EAD induction
highlights one of the possible reasons for the insignificant
improvement in predictive power of classifiers built on the
derived features from the in-silico models. Although a non-
linear surface is obtained from the in-silicomodels separating the
EAD+ and EAD− regions (Figure 2), a hyperplane

a× blockICaV + b× blockINaL + c× blockIKs + d = 0 (6)

constructed using direct features can result in nearly identical
separation, where a, b, c, and d are the parameters of the

hyperplane and blockICaV , blockINaL , and blockIKs are the values of
block of ICaV INaL, and IKs, respectively. Moreover, with most of
the datasets comprising values for block of few channels (Mirams
et al., 2011; Kramer et al., 2013) and the much higher incidence
of drug-induced block of particular ion channels (INaL, ICaV , and
IKr) even when drug-induced modulation of several channels
are examined (Crumb et al., 2016), the result is a congregation
of majority of the data in a small region of the plausible high-
dimensional risk space (e.g., see Figure 2). For example, the data
in Mirams et al. (2011) and Kramer et al. (2013) would fall on
a single edge of the 3D EAD space in Figure 2 in the absence of
values for drug-induced block on INaL and IKs in these datasets.
This allows risk classification to be performed by a hyperplane
with a single parameter, such as blockICaV . Here, we utilized an
additional metric, i.e., the hERG ratio, to further improve the
classification performance of the direct-feature based classifiers
(Figures 3, 4, 6). For the limited data currently available, risk
classification using simple statistical models built on the direct
features as the one presented here may suffice.

4.3. Diversity in the Proposed Derived
Features
The classifiers built on derived features obtained from the in-
silico models are based on certain underlying physiological
phenomenon (APD, increase in calcium levels, etc.). Hence,
derived features are thought to allow better extrapolation to
examine drug targets other than those in the training set.
However, diverse derived features from the in-silico models
have been suggested as possible candidate metrics. Several
features from the biophysical models, such as APD50, APD90,
calcium level peak, and CaD90 provided the best classification
depending on the selected in-silico model (Mirams et al., 2011).
Other derived features (EADs, TDR, change in ICaV & INaL)
extracted from the AP and calcium transient (Christophe, 2013,
2015; Li et al., 2017) have also been suggested as possible
candidatemetrics for TdP risk prediction. Rather than examining
the individual features separately, a recent study performed
a comprehensive feature selection among 331 metrics and
determined that two metrics, APD50 and diastolic Ca2+ in the
OHR model at 1 Hz pacing, provided the best discrimination
between torsadogenic and non-torsadogenic drugs (Lancaster
and Sobie, 2016). The overall diversity in reported plausible
candidate metrics for TdP risk classification can be attributed
to different simulation protocols, drug concentrations and
biophysical models. We showed that several derived features
obtained from the in-silico models may track together and
provide equal predictive power for risk classification when
examined independent of drug EFTPC (Figure 5C). Equal
predictive ability of several featuresmakes it difficult to determine
the underlying causal mechanism. In addition, the identical
performance of several derived features limits the extensibility of
the classifier to untrained targets, as classification results depend
on the specific set of features chosen to perform the classification.
For example, examination of untrained ion-channel targets
using a classifier with diastolic Ca2+ level as the primary risk
discriminating feature predicts a decrease in torsadogenic risk
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for increased Na+ − Ca2+ currents (Lancaster and Sobie, 2016).
On the contrary, TdP risk prediction under Na+ − Ca2+

modulation using a classifier with APD50 or APD90 as the
primary discriminating feature would predict opposite effects,
with decreased Na+ − Ca2+ exchanger current being associated
with decreased TdP risk. Moreover, the derived features obtained
from the highly complex biophysical models did not result in
improved prediction over the classfiers built on the direct features
using the proposed method.

4.4. Limitations
One of the primary limitations is the quality of the datasets
itself. The variability in the IC50 values among the several
datasets can be one of the reasons for the observation
of different thresholds for the hERG ratio and ICaV block
that resulted in the best discrimination between TdP+ and
TdP− drugs (Figure 3). Quantification of the uncertainties
in the in-vitro channel screening data and their effects on
risk prediction are presented in Johnstone et al. (2016).
Inconsistencies in risk definition presents another important
challenge for torsadogenic risk assessment. Wiśniowska and
Polak (2017) reports a comprehensive list of compounds that
have been inconsistently defined as TdP+ or TdP− in different
studies to develop torsadogenic risk classifiers. The different
categorizations can lead to different interpretations and accuracy
scores for TdP risk determination (Table 5). Standardization
of torsadogenicity definition, which would allow comparison
of the performance of different classifiers/features, is required.
Certain steps in this direction have been started. Based on
a general consensus, a working group formed under CiPA
initiative picked 28 compounds and categorized each into
three groups (Colatsky et al., 2016; Fermini et al., 2016)

for testing/training of the classifiers. In-silico simulations of
dynamic drug-channel interactions might be essential to further
improve the TdP risk assessment (Li et al., 2017). Inclusion
of the drug-binding parameter, in addition to the amount of
block of ion-channels, resulted in 100% prediction using our
approach. Sufficient IKr block was assumed to be necessary
for TdP generation in our method. The effects of non-hERG
channels are thought to enhance or mitigate the torsadogenic
effects of IKr block. The method resulted in excellent predictive
performance across several datasets that report drug-induced
block of various ion channels only. However, drug-induced
enhancement of ion-channel currents such as INaL can result
in increased TdP risk in the absence of hERG block (Lacerda
et al., 2008; Yang et al., 2014). The method could be further
extended to examine such effects when more data are available.
The present work not only provides a new method for in-
vitro ion-channel screening based TdP risk classification but
also highlights several important issues in regards to the use
of drug-induced multi-channel blockage for torsadogenic risk
prediction.
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