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In everyday life, our senses are flooded with a plethora of
sensory inputs. To interact effectively, the brain should
combine signals when they come from common events
and process signals independently when they arise from
different events. Integrating information across the
senses is crucial for an animal’s survival, enabling faster
and more accurate responses. A critical question is how
the ability to integrate signals across the senses depends
on sensory experience during neurodevelopment.

Previous elegant neurophysiological work has shown
that early audiovisual experience is critical for the align-
ment of spatial receptive fields across visual (eye-centred)
and auditory (head-centred) reference frames (Hyde &
Knudsen, 2002; Stein et al., 2014a). Neurons in the supe-
rior colliculus of dark-reared cats failed to show a non-
linear response amplification for multisensory relative to
unisensory stimuli, typically observed in normally reared
cats (Stein et al., 2014b; Wallace et al., 2004). Likewise,
selective exposure to independently sampled auditory
and visual signals during neurodevelopment reduces
the fraction of audiovisual neurons with superadditive
responses to audiovisual stimuli (Xu et al., 2012). By
contrast, exposure to collocated audiovisual signals
appears to sharpen the spatio-temporal window in which
superadditive responses can be observed.

A recent study in EJN (Smyre et al., 2021) started to
probe the functional relevance of those neurophysiological
changes. As one example of abnormal audiovisual

statistics, it investigated how dark rearing influences an
animal’s audiovisual localization behaviour. The study
presented cats, reared normally or in darkness, with
auditory, visual or collocated audiovisual stimuli from six
locations along the azimuth. Further, catch trials were
included, on which no stimuli were presented. The animal
had to approach the location of the stimulus or refrain
from making a response on catch trials. Therefore, the task
combined stimulus detection and spatial localization com-
ponents. For stimulus detection, a multisensory benefit
was observed predominantly for normally reared animals.
Dark-reared animals were worse at detecting audiovisual
stimuli than normally reared animals despite comparable
or even better detection of unisensory stimuli.

A more complex picture arose for spatial localization,
as here dark rearing profoundly affected localization accu-
racy even under unisensory stimulation. To enable a com-
parison between normally and dark-reared animals, the
study developed predictions for audiovisual spatial locali-
zation using a statistical facilitation model. Inspired by the
classical race model typically used for response time ana-
lyses (Miller, 1982; Otto & Mamassian, 2012), the authors
applied the statistical facilitation model to response
choices, thereby enabling predictions for audiovisual local-
ization accuracy under independent processing assump-
tions. Specifically, the facilitation model sampled auditory
and visual estimates independently and selected the more
accurate one for making an overt response. Because in
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reality the brain cannot assess the accuracy of its own
auditory and visual estimates, the model’s predictions
form an extreme upper bound for audiovisual localization
accuracy under the assumption of independent processing.
Nevertheless, the localization accuracy of normally reared
animals exceeded the statistical facilitation predictions. By
contrast, the localization performance of dark-reared ani-
mals did not pass this upper bound, suggesting that the
development of audiovisual integration abilities relies on
exposure to audiovisual inputs during sensitive periods of
neurodevelopment.

Further insights into how exposure to abnormal
audiovisual spatial statistics affects localization behaviour
can be provided from a normative Bayesian perspective
(Ernst & Banks, 2002; Körding et al., 2007;
Noppeney, 2021). A Bayesian observer sets a benchmark
of optimal performance against which observers’ behav-
iour can be compared. According to normative Bayesian
inference, observers should combine signals that are
known to come from one source weighted by their rela-
tive reliabilities (i.e. inverse of noise or variance) into
more precise perceptual estimates (Ernst & Banks, 2002;
Fetsch et al., 2012, 2013). Indeed, accumulating research
has shown that human observers integrate spatial signals
from vision and audition near-optimally into more reli-
able spatial estimates (Alais & Burr, 2004) though modest
deviations from optimality have been noted (Meijer
et al., 2019).

Recent modelling efforts have moved towards more
complex situations, in which signals can come from com-
mon or separate causes. In these situations with causal
uncertainty, observers need to infer the signals’ causal
structure by combining noisy correspondence cues
(e.g. spatial disparity or temporal synchrony) with prior
expectations about the signals’ causal structure. Intrigu-
ingly, human and non-human observers have been
shown to gracefully transition from sensory integration
to segregation for increasing audiovisual spatial disparity
or asynchrony consistent with normative models of
Bayesian Causal Inference (Acerbi et al., 2018; Aller &
Noppeney, 2019; Cao et al., 2019; Körding et al., 2007;
Magnotti et al., 2013; Mohl et al., 2020; Rohe et al., 2019;
Rohe & Noppeney, 2015a, 2015b; Wozny et al., 2010).
Observers integrate audiovisual signals when they are
close in time and space, yet keep them separate at large
spatio-temporal conflicts.

A central aim for future research is to define the role
of early audiovisual experience in shaping how animals
perform causal inference and arbitrate between sensory
integration and segregation. How does exposure to abnor-
mal audiovisual spatial statistics affect the key computa-
tional ingredients of Bayesian causal inference? From the
perspective of efficient coding (Wei & Stocker, 2015), the

brain may mould receptive fields and tuning functions to
optimize the sensory representations to the abnormal
audiovisual input statistics—which may in turn alter
Bayesian causal inference via changes in the likelihood
function. For instance, less precise spatial representations
would make the arbitration between sensory integration
and segregation less reliable. Further, exposure to inde-
pendently sampled auditory and visual signals may
reduce binding of spatio-temporally coincident audiovi-
sual signals. Critically, however, profound changes in
sensory experience during neurodevelopment may not
only affect key parameters of Bayesian causal inference
but even result in multisensory processing that deviates
from normative computational principles.
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