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Background: Considerable inter- and intra-laboratory stain variability exists in pathology, representing a challenge in
development and application of deep learning (DL) approaches. Since tackling all sources of stain variability with
manual annotation is not feasible, we here investigated and compared unsupervised DL approaches to reduce the
consequences of stain variability in kidney pathology.
Methods: We aimed to improve the applicability of a pretrained DL segmentation model to 3 external multi-centric
cohorts with large stain variability. In contrast to the traditional approach of training generative adversarial networks
(GAN) for stain normalization, we here propose to tackle stain variability by data augmentation. We augment the
training data of the pretrained model by the stain variability using CycleGANs and then retrain the model on the
stain-augmented dataset. We compared the performance of i/ the unmodified pretrained segmentation model with
ii/ CycleGAN-based stain normalization, iii/ a feature-preserving modification to ii/ for improved normalization,
and iv/ the proposed stain-augmented model.
Results: The proposed stain-augmentedmodel showed highest mean segmentation accuracy in all external cohorts and
maintained comparable performance on the training cohort. However, the increase in performance was only marginal
compared to the pretrained model. CycleGAN-based stain normalization suffered from encoded imperceptible infor-
mation into the normalizations that confused the pretrained model and thus resulted in slightly worse performance.
Conclusions:Our findings suggest that stain variability can be tackledmore effectively by augmenting data by it than by
following the commonly used approach of normalizing the stain. However, the applicability of this approach providing
only a rather slight performance increase has to be weighted against an additional carbon footprint.
Introduction

Histological analysis represents the gold-standard for diagnosing many
diseases including almost all types of cancer and majority of kidney
diseases.1 The widespread use of digital whole-slide scanners in pathology
has paved the way for digital pathology to generate large amounts of digi-
tized highly resolved histological data, i.e. the so-called whole-slide images
(WSIs). This allows the use of computational approaches, in particular deep
learning (DL) techniques, for automated and efficient image analysis.
However, due to the lack of standardization, the process of tissue prepara-
tion and digitization involves multiple degrees of variability, e.g. in cutting
thicknesses, staining protocols, dye compositions, scanner characteristics,
and modalities. This results in various appearances and considerable vari-
ability of the same histological stain between laboratories and even within
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a laboratory. In turn, this impedes computational image analysis resulting
in lower performance of computer-aided diagnosis systems (Fig. 1).2

Generative adversarial networks (GANs) have recently been proposed
to tackle stain variability.3 Such networks generate synthetic image data.
In this work, they were employed to synthesize images to augment the
training data. GANs are successfully used in 3 major applications in digital
pathology. First, stain normalization,2,4–9 i.e. reducing color variations
within a specific stain. Second, stain translation,10–14 i.e. converting
between different stains. And third, the conversion of different modalities,
e.g. histology and fluorescence.15,16 Most of those approaches employ the
cycle-consistent generative adversarial network (CycleGAN).17 It repre-
sents the state-of-the-art for unsupervised domain adaptation based on
image-to-image translation, i.e. converting between 2 image domains, e.g.
horse and zebra images, by transferring the image style. This is performed
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Fig. 1. Overview of stain variations in all cohorts.
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in an unsupervised manner, i.e. without the need for matching image pairs
to reduce manual overhead. In this study, CycleGANs were used to convert
between different stain variations. More specifically, we tackle intra-stain
variation to improve the applicability of DL models to external data of the
same stain showing distinct color distributions. This represents the major
aim of stain normalization, addressing the problem by transferring the
color distribution of the training images to the external data.

Related work

Traditional non-DL approaches for stain normalization perform color
matrix projections,18 color deconvolution,19,20 or match chromatic and
density distributions using color and contextual information21 to finally
align the color profile of target WSIs to reference images. However, an
exhaustive study2 examined the effects of stain normalization and conven-
tional (non-DL) data augmentation on classification performance of
convolutional neural networks (CNN) in various histopathology tasks.
They found that extensive color augmentation during training already
outperformed traditional stain normalization approaches on external
cohorts, making them redundant.

DL approaches for stain normalization have often shown its superiority
over the aforementioned traditional methods in terms of structure similar-
ity or classification performance.2,4–6,8,22 For instance, hematoxylin-eosin
(HE)-stained images from different centers were converted into grayscale
and then mapped to the stain style of a particular center using conditional
GAN (cGAN)-based frameworks.5,6 Whereas Salehi et al.5 trained the
cGAN on a single center and conditioned the mapping on the original
source image, Cho et al.6 trained it jointly on all centers and conditioned
on the selected center for stain style transfer.

Many studies have employed CycleGANs for stain normalization.4,8,9

Shaban et al.4 used them to translate HE data between Aperio and Hama-
matsu scanners. Mahapatra et al.8 added a feature-preserving loss to
CycleGAN training for semantic guidance. They penalized the discrepancy
of intermediate feature maps of input images and their translations by a
pretrained segmentation CNN to preserve structural information. Several
works have also included a feature-preserving loss on feature maps or out-
puts by a prior CNN to improve the image translation.6,7,10 De Bel et al.9

trained a CNN for the segmentation of glomerular tufts on one data center
2

(Amsterdam) and applied it to another center (Radboud) using extensive
color augmentation during training and CycleGANs for stain normalization.
They found improvements in segmentation performancewhen additionally
employing CycleGAN-based stain normalization on top of extensive color
augmentations.

However, very little research has been performed to examine the effects
of stain normalization on segmentation performance of strongly augmented
CNNs.7,9 Also, both studies7,9 only analyzed a single structure, i.e. the glo-
merular tuft, although CycleGAN-based image translation can show highly
varying effects on the segmentation of different structures.10

Contributions

Our aim is to improve the applicability of an already existing DL
segmentation model23 to external cohorts of the same stain. In contrast to
previous studies, we do not follow the classical approach of synthesizing
stain-normalized images using GANs, but instead we propose to tackle
this task from a data augmentation perspective. We employ CycleGANs to
translate images from the training cohort (of the segmentation model) to
the external cohorts and use those for data augmentation during training
of a new segmentation model (Fig. 2 iv/). To the best of our knowledge,
this is the first study to use DL-based data augmentation for improved
generalization to external cohorts in digital pathology. We evaluate our
proposed approach for the segmentation of 6major kidney structures on bi-
opsy slides from 3 external centers. We also compare it with 3 approaches
including traditional CycleGAN-based stain normalization (Fig. 2 ii/),
adding a feature-preserving loss into CycleGAN training (Fig. 2 iii/), and
finally using only the already existing segmentation model without stain
normalization or the proposed augmentation (Fig. 2 i/).

Methods

In our application scenario,we presume a pretrained segmentation CNN
including its underlying annotated training data. We selected a previously
developed DL model for the segmentation of kidney structures from
human tissue that has been trained on a single-centric cohort A.23 We aim
at improving its applicability to external cohorts E by retraining it on its
stain-augmented training data using CycleGANs.



Fig. 2.Approaches for improved generalization of the pretrained segmentationmodel to external cohorts. To improve the pretrained model S (i/), CycleGANs are trained for
translation between its training cohort AC and the external cohorts, respectively. Stain normalization then uses the CycleGANs to translate the external domains into the
training cohort AC for improved application (ii/ + iii/). In contrast, the proposed stain augmentation augments the annotated training data of S by the external stain
variations using the CycleGANs (iv/). Then, a new and cohort-independent segmentation model is trained on the stain-augmented annotated training data.
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CycleGANs

The CycleGAN17 is a widely used approach to train CNNs for unsuper-
vised image style transfer. It consists of 2 generators gA→E, gE→A and 2 dis-
criminators dA, dE that are trained in an unsupervised fashion, i.e. using
unpaired images, on the following 3 loss functions: The adversarial loss

‘adv ¼ Ex∼pA xð Þ log dA xð Þð Þ þ log 1 � dE gA!E xð Þð Þð Þ½ �
þ Ey∼pE yð Þ log dE yð Þð Þ þ log 1 � dA gE!A yð Þð Þð Þ½ �

forces the generators to synthesize realistic image translations between the
stain styles A and E by fooling the discriminators, since they are trained to
3

distinguish the translations from real images x ∈ A, y ∈ P. The
cycle-consistency loss

‘cyc ¼ Ex∼pA xð Þ ‖gE!A gA!E xð Þð Þ � x‖1½ � þ Ey∼pE yð Þ ‖GA!E GE!A yð Þð Þ � y‖1½ �

incentivizes the generators to synthesize translations with spatially
consistent and aligned structures, since mapping back such trans-
lations facilitate the input reconstruction. This cycle-based recon-
struction loss represents the gist behind CycleGANs. Finally, the
identity loss

‘idt ¼ Ey∼pA yð Þ ‖gA!E yð Þ � y‖1½ � þ Ex∼pA xð Þ ‖gE!A xð Þ � x‖1½ �
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is used to stabilize training in particular at the beginning as it enforces
the generators to learn an identity mapping for images from the target
domain to prevent bad early optimizations. It was also shown to improve
color preservation.24

By adding weights to the loss terms, the overall loss function ‘ is
represented by:

‘ ¼ λadv‘adv þ λcyc‘cyc þ λidt‘idt

CycleGAN-based stain augmentation

We propose to stain-augment the annotated training data of the
pretrained segmentation CNN by translating it to the external cohorts
using CycleGANs, and then retrain a segmentation model on the stain-
augmented dataset (Fig. 2 iv/). Since this approach brings the various
external stain variations into the training dataset, it facilitates learning
respective color distributions and thus the generalization across external
centers. Since we included 3 external cohorts, 3 CycleGANs were trained
for the translation of the trained stain style A to the respective external
cohort E. The segmentation model is then retrained from scratch on the 4
times enlarged annotated training and validation dataset using the same
training routine.23 We compare this approach with CycleGAN-based stain
normalization that works the other way around. Here, E is now translated
into the training domain A of the existing segmentation model for applica-
tion (Fig. 2 ii/ + iii/). Briefly summarized, to tackle data variability, the
proposed approach augments data by the variability, while stain normaliza-
tion normalizes the variability.

Data

Four cohorts showing formalin-fixed, paraffin-embedded, and Periodic
Acid-Schiff (PAS)-stained kidney tissue from humans were used. The local
cohort from Aachen (AC) consisted of 1009 whole-slide images (WSIs) ex-
tracted from the archive of the Institute of Pathology of the RWTH Aachen
university clinic. The Kidney Precision Medicine Project (KPMP, accessed
on March 15, 2021)25 cohort, the Human BioMolecular Atlas Program
(HuBMAP)26 cohort, and the international VALIGA cohort27 each included
data from multiple centers comprising 85, 9, and 648 WSIs, respectively.
All cohorts showed large stain variability and a large morphological
spectrum of kidney diseases (Fig. 1). For the AC cohort, tissue was cut
into 1–3 μm thick sections. Both the AC and VALIGA cohorts were digitized
by the Aperio AT2 whole-slide scanner (Leica Biosystems, Wetzlar,
Germany) with a 40x objective lens. Further detailed information on all
cohorts and their underlying trials is provided in 23,25,26. The KPMP and
HuBMAP cohorts are publicly available and accessible (via atlas.kpmp.
org/repository and portal.hubmapconsortium.org, respectively). The 2
other cohorts, i.e. AC and VALIGA, are not publicly available due to legal
and ethical issues. Access can be provided on a reasonable request and
only for non-commercial research purposes. In total, 1751 WSIs were used.

For performance assessment, we used the manually annotated test
dataset from Boor et al.23 It consisted of 240, 198, and 214 image
patches of size 174 x 174 μm2 from 5 randomly selected WSIs from
the external KPMP, HuBMAP, and VALIGA cohorts, respectively. The
annotations were considered the ground-truth for evaluation and were
exhaustively performed using the publicly available and widely used
software QuPath28.

Pretrained segmentation model

As pretrained model, we selected the previously developed segmenta-
tion model.23 Detailed information on this model is provided in Boor et
al.23 Briefly described, this pretrained DL segmentation model has solely
been trained on the AC cohort. 2821, 108, and 664 annotated image
patches of size 174×174 μm2 from 64, 4, and 17WSIs were used for train-
ing, validation, and testing, respectively. A U-Net-like29 architecture was
4

trained for the segmentation of 6 kidney structures including tubules, full
glomeruli, glomerular tufts, veins & non-tissue background, arteries, and
arterial lumina (Fig. 1) from PAS-stained human tissue. RAdam30 was
used as optimizer and the initial learning rate of 0.001 was divided by 3
on validation loss plateus until it fell below 4E-6 for training termination.
During training, extensive data augmentation was performed, i.e. spatial
transformations including flipping, 90° rotation, elastic, affine, and piece-
wise affine transformations as well as color transformations including hue
and saturation shifting, gamma contrast, and intensity normalization.

Experimental setting

We evaluated 4 approaches in this study for improving the applicability
of the pretrained DL segmentation model23 to 3 external cohorts. First, we
only applied the unmodified pretrained model as baseline (Fig. 2 i/), sec-
ond, we performed the proposed CycleGAN-based stain augmentation
(Fig. 2 iv/), third, we used the same CycleGANs for stain normalization
(Fig. 2 ii/), and fourth, included a feature-aware loss to the latter for
feature-aware stain normalization (Fig. 2 iii/).

For CycleGAN training, we took the whole dataset of 1751 WSIs and
excluded all slides from patients of the annotated test data in all 4 cohorts
to ensure a patient-level data split. Three CycleGANs were then trained
on the remaining slides for the translation between AC and each external
cohort. The data preprocessing pipeline started with the application of an
already existing segmentation model23 for the automated detection of
kidney tissue in WSIs. This removed interfering, non-kidney structures
such as muscles, fat, or connective tissue from the analysis. Detailed infor-
mation on this model are provided in Boor et al.23 Briefly summarized, an
nn-Unet31 was trained on the AC cohort and showed high segmentation
performance in AC, KPMP, and HuBMAP. We then resampled the detected
tissue into 0.337 μm pixel spacing and tessellated it into images of size 640
x 640 pixels to comply with the input requirements of the pretrained seg-
mentation model. The CycleGANs were then trained on the extracted tiles
using the same architecture and training routine from Bouteldja et al,10

which showed promising performance for domain adaptation across stains.
In short, U-Net-like generators with a depth of seven and PatchGAN32 dis-
criminators with a depth of 4 were trained for 300 000 iterations using
RAdam on random minibatches of size 3. After 150 000 iterations, the ini-
tial learning rate of 10−4 began to decrease to zero linearly. The loss terms
were equally weighted (λadv = λcyc = λidt = 1), and flipping, 90° rotation,
and gamma correction were employed for data augmentation. Detailed
information on this model are provided in Bouteldja et al.10

Regarding the feature-preserving loss for CycleGAN-based stain
normalization, we applied the same pipeline from Bouteldja et al10

that showed improved segmentation performance on CycleGAN-
transformed images by a prior CNN. For this, the pretrained CNN was
integrated into the CycleGAN by penalizing the discrepancy between
its predictions on AC inputs and their reconstructions during training.
This modification aims to leverage semantic guidance to preserve rele-
vant features in stain normalized images for an improved applicability
of the pretrained CNN.

All experiments were implemented using PyTorch and run on an
NVIDIA A100 GPU. CycleGAN training and its feature-preserving variant
consumed about 7 and 11 gigabytes of VRAM and took 8 and 19 hours,
respectively. Training of the pre-existing segmentation model and its
stain-augmented variant required 10 gigabytes of VRAM each and took
19 and 50 hours, respectively. Our source code is publicly available at
https://github.com/NBouteldja/KidneyStainAugmentation.

Evaluation

Since the selected segmentation model for this study segmented multi-
ple kidney structures on instance level, we measured quantitative segmen-
tation performance on the external cohorts using instance-level Dice Scores
(IDSC)33 for each class. For a a set of test images t∈ Twith npt binary predic-
tion instances pt,x and ngt ground-truth instances gt,y indexed by x=0,…, npt

http://atlas.kpmp.org/repository
http://atlas.kpmp.org/repository
http://portal.hubmapconsortium.org
https://github.com/NBouteldja/KidneyStainAugmentation
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and y = 0, …, ngt for an arbitrary image t, the IDSC is computed over the
whole test set T as follows:

IDSC ¼ 1
∑

t∈T
npt þ ngt

∑
t∈T

∑
npt

x
DSC pt,i, gt,∗

� �þ ∑
ngt

y
DSC gt,j

�
, pt,∗Þ

� �

For prediction instance pt,i, gt,∗ represents its maximally overlapping
ground-truth instance (0 for false positives), and vice versa for pt,∗. In con-
trast to the image-level dice similarity coefficient (DSC), the IDSC weights
each prediction and ground-truth instance equally across the whole test
set. It ranges between 0 (no single overlap in any test image) and 1 (perfect
overlaps in all test images). By averaging the DSC for all prediction and
ground-truth instances in T, the IDSC measures the mean area overlap per
instance.

For comparison of segmentation performance of all 4 approaches on the
external cohorts, we performed Kruskal–Wallis tests followed by pairwise
Dunn’s post-hoc tests with Bonferroni correction against the proposed
stain-augmented model.

We also compared the performance of the pretrained segmentation
model and its stain-augmented variant on the internal AC test data compris-
ing 664 annotated patches (Section Pretrained segmentation model) to as-
sess whether the stain-augmented model was able to maintain
performance on the training cohort. For this 2-group comparison, we per-
formed Mann–Whitney U tests.

Results

The proposed stain-augmented model (StainAugm) showed high
segmentation accuracies in all external cohorts and structures except for
the more challenging arteries that were detected with considerably worse
performance (Table 1). Performance ranged between 88.8% and 94.6%
instance-level Dice Scores for non-arterial structures. It also outperformed
all other baseline approaches in most cases. Significant improvement was
only found in a few cohorts and only in tubules and arterial structures. Av-
eraged over all structures, the stain augmentation model showed the
highest mean performance in all external cohorts.

Interestingly, the pretrained baseline model (Baseline) provided higher
mean accuracies in all cohorts when being applied on the raw data rather
than its stain-normalized version. It outperformed the stain normalization
Table 1
Segmentation performance in all cohorts.

KPMP Classes

Full glomerulus Glomerular tuft Tubule

Baseline 94.1 94.1 91.1
StainNorm 93.3 93.2 89.8*
w/ SegNet 93.3 93.5 90.1*
StainAugm 93.8 93.3 91.7

HuBMAP
Baseline 92.2 93.5 89.2*
StainNorm 93.9 93.4 88.8*
w/ SegNet 94.6 92.7 89.5
StainAugm 94.3 94.3 90.0

VALIGA
Baseline 93.4 87.9 88.4
StainNorm 93.2 86.6 86.5*
w/ SegNet 95.1 88.6 87.5
StainAugm 94.6 90.1 88.8

AC Internal training co
Baseline 92.6 88.5 88.5*
StainAugm 92.5 88.7 87.8

Segmentation performance was quantified using instance-level Dice scores (%). Th
(StainNorm), and its feature-preserving modification (w/ SegNet) were compared again
tistical significance: *p < 0.05). The baseline was also compared to StainAugm on its tra
class and cohort is in bold, and mean accuracies per row are shown in the rightmost co
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(StainNorm) in most cases and showed only 2 cases of significantly inferior
accuracy compared to the best performing stain-augmented model, i.e.
tubules and arteries in HuBMAP. Besides, the inclusion of the feature-
preserving loss into CycleGANs (w/ SegNet) improved segmentation
performance on stain-normalized images in the majority of cases compared
to their unmodified version.

Regarding performance on AC, i.e. the cohort used for trained the
pretrained segmentation model, the stain-augmented model demonstrated
somewhat comparable accuracy compared to the baseline model. Only the
slightly worse predicted tubules showed statistically significant differences.
Despite the stain variability across all cohorts, the pretrained baseline
model still showed somewhat comparable performances in the external co-
horts compared to AC. Except for HuBMAP, only arterial structures were
predicted considerably worse. All other structures even showed improved
accuracies in most cases. In contrast, the stain-augmented model demon-
strated comparable mean performance in HuBMAP and considerably
higher mean accuracies in KPMP and VALIGA compared to AC.

Qualitative segmentation results of the stain-augmented model demon-
strated high accuracies in selected test images from the external cohorts
across the stain variations (Fig. 3). Prediction results of all approaches in
selected images from HuBMAP and VALIGA are depicted in Fig. 4. Both
the baseline model and its stain-augmented variant showed high accuracy.
Regarding stain normalization, realistic and fitting image transformations
were demonstrated. However, the application of the pretrained baseline
model on those normalized images showed shortcomings. In the HuBMAP
image, the upper left artery was confused with a tubule (red arrow). The
inclusion of the feature-preserving loss normalized that artery in a hardly
distinguishable way that could be, in turn, detected by the baseline
model. Similar results were observed for the VALIGA image. Also here,
tubules and the glomerulus were normalized in a realistic way, but could
only be partly or hardly detected. The feature-preserving loss improved
the normalization in this regard but still showed shortcomings.
Discussion

In this study, we investigated different unsupervised approaches to
improve the generalization of a pretrained segmentation CNN to external
cohorts showing distinct stain variations. We proposed to augment the
training data of the CNN by the stain variations using CycleGANs, and
∅

Artery Arterial lumen Vein + background

64.3 59.2 93.1 82.6
59.5* 58.2 92.2 81.0
58.7* 55.0 92.5 80.5
65.2 61.4 93.8 83.2

70.0* 70.8 89.5 84.2
67.1* 67.4* 92.0 83.8
71.5 69.2 92.5 85.0
73.2 73.8 93.2 86.5

62.4 63.6 88.4 80.7
61.3 62.9 89.2 80.0
62.4 60.3 87.1 80.2
67.3 61.8 89.2 82.0

hort of pretrained segmentation model
70.6 66.8 92.0 83.2
69.7 63.0 92.4 82.4

e pretrained segmentation model (Baseline), the stain normalization approach
st the proposed stain augmentation (StainAugm) using Bonferroni-Dunn’s tests (sta-
ining cohort AC using Mann–Whitney U tests (*p < 0.05). Highest performance per
lumn.
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Fig. 4.Qualitative normalization and segmentation results of all approaches. The pretrained segmentation model is denoted by “Baseline”, the proposed stain augmentation
by “StainAugm”, CycleGAN-based stain normalization by “StainNorm”, and its feature-preserving modification by “w/ SegNet”. The stain-normalized translations by the
latter 2 approaches are denoted by “NormStainNorm” and “Normw/ SegNet”, respectively. Interfering information got encoded into the stain-normalized images that confused
the pretrained segmentation model and led to erroneous predictions (a few marked by red arrows).
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compared this with traditional CycleGAN-based stain normalization, a
feature-preserving variant, and simply the pretrained CNN itself.

By stain-augmenting the pretrained CNN, highest mean accuracies in all
external cohorts were achieved while maintaining performance on the in-
ternal training cohort. The proposed model showed comparable mean per-
formance once and even higher mean accuracies twice in the external
cohorts compared to the internal training cohort. In contrast, the pretrained
baseline model demonstrated slightly improved mean performance once
and decreased accuracies twice in the external cohorts. This contrast re-
veals that the proposed stain-augmentation better prevents overfitting on
the training cohort and improves generalization to external cohorts. The re-
sult that the stain-augmented model outperformed the pretrained baseline
CNN in all external cohorts, demonstrated that the external stain variations
affected performance of the baseline model and that its conventional data
augmentation pipeline was not sufficient to fully generalize to the stain
Fig. 3.Qualitative segmentation results in all external cohorts. For each external, multi-c
Their predictions by the proposed stain-augmented model are shown (column 2). They a
assess the feasibility of their instance separation.

7

variations. For HuBMAP, mean performance difference was largest indicat-
ing that certain stain variabilities were less well captured by the conven-
tional data augmentation pipeline.

Performance comparison between the cohorts is challenging, since it is
not possible to assess whether performance changes resulted from the stain
variability or fromdifferent cohort-specific data characteristics. It should be
noted that all cohorts show different pathologies with varying occurences
and degrees of severity that likewise affect specific structures and thus
make them hard to detect. E.g., the pretrained CNN demonstrated im-
proved performance in the external HuBMAP compared to its training co-
hort AC. This likely means that the model generalized well to the stain
variations in HuBMAP and showed higher accuracies due to easier-to-
segment structures, e.g. showing less severe pathologies. Hence, for
HuBMAP, pathological alterations of structureswere the determining factor
for performance.
entric cohort, images with 2 representative stain variations are selected (column 1).
re colored in accordance with Fig. 1, however tubules are colored randomly here to
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Stain normalization was outperformed by the pretrained model in al-
most all cases. This suggested, that stain normalization is in fact counterpro-
ductive, at least for the particular use case of DL-based kidney tissue
segmentation. It encoded visually imperceptible information into the
stain-normalized images that confused or prevented the detection of struc-
tures. Along with adversarial examples,34 this illustrates how vulnerable
CNNs can be to even imperceptible image changes. The inclusion of a
feature-preserving loss for stain normalization helped alleviate those pre-
dictability issues and showed improved accuracies in most cases compared
to the unmodified CycleGAN. However, performance was still slightly infe-
rior to the baseline model in the majority of cases.

Unexpectedly, the baseline model showed high segmentation accura-
cies in all external cohorts depite their different stain variations compared
to AC. It outperformed the stain normalization approaches and provided
only slightly inferior accuracy compared to the best performing stain aug-
mentation in all external cohorts. In contrast to the latter, it did not require
additional ressources such as training of CycleGANs and another segmenta-
tionmodel on an enlarged dataset. Considering the growing attention to cli-
mate change issues in the artificial intelligence community and the vast
emissions of CO2 generated by DL models,35 it is to be questioned whether
the reported performance gains justify the larger carbon footprint. Thus,
and in line with related work,2 this study also recommends the application
of extensive conventional data augmentation to DL applications in compu-
tational pathology.

The methodology used in this study can be more generally applied to
making DL models applicable to external target domains in an uninformed
fashion,36 i.e. annotations are only available for the source domain. Our
study supports training a domain-augmentedmodel on real source and sim-
ulated target data and applying it to real target data, rather than training a
model only on the real source domain and applying it to simulated target-
to-source domain translations.
Conclusions

This work represents the first investigation of DL-based data augmenta-
tion to improve the generalization of a CNN to external cohorts in compu-
tational pathology. In contrast to traditional approaches that normalize
external stain variability to the training cohort, we proposed augmentation
of the training cohort with the external stain variability using CycleGANs,
then retraining the CNN on the stain variability-enriched data.

The stain-augmentedmodel outperformed all baseline approaches in all
external cohorts, but showed only slightly improved performance com-
pared to the pretrained and strongly augmented CNN. Both evaluated
stain normalization approaches were counter-productive as the pretrained
CNN showed slightly higher accuracy in the raw external cohorts rather
than their normalized versions. For improved and cost-effective generaliza-
tion to external image domains, our study generally suggests to train
models on domain-augmented training data rather than translate those do-
mains into the training cohort for application. This study also underlines
that, in computational pathology, extensive data augmentation can already
provide highly generalizable models, reducing the need for the aforemen-
tioned approaches, and thus saving computational ressources and CO2
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