
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Williams MS, Ebel ED (2022).
Temporal changes in the proportion of
Salmonella outbreaks associated with 12 food
commodity groups in the United States.
Epidemiology and Infection 150, e126, 1–11.
https://doi.org/10.1017/S0950268822001042

Received: 4 April 2022
Revised: 31 May 2022
Accepted: 1 June 2022

Key words:
Compositional data; salmonellosis
signal-to-noise ratio

Author for correspondence:
Michael S. Williams,
E-mail: mike.williams@usda.gov

© The Author(s), 2022. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Temporal changes in the proportion of
Salmonella outbreaks associated with 12 food
commodity groups in the United States

Michael S. Williams and Eric D. Ebel

United States Department of Agriculture, Risk Assessment and Analytics Staff, Office of Public Health Science,
Food Safety Inspection Service, 2150 Centre Avenue, Building D, Fort Collins, Colorado 80526, USA

Abstract

Using data from 20 years of Salmonella foodborne outbreaks, this study investigates significant
trends in the proportion of outbreaks associated with 12 broad commodity groups. Outbreak
counts are demonstrated to have a stronger trend signal than outbreak illness counts. The
number of outbreaks with an identified food vehicle increased significantly between 1998
and 2000. This was followed by a 10-year period when the number of outbreaks decreased.
The number of outbreaks increased significantly between 2010 and 2014 and then remained
unchanged for the remainder of the study period. During the period of 1998 through 2017,
the proportion of outbreaks for three commodities groups, consisting of eggs, pork and seeded
vegetables, changed significantly. No significant changes were observed in the remaining nine
commodity groups. Simple approximations are derived to highlight the effect of dependencies
between outbreak proportions and a consumption analysis for meat and poultry is used to
enhance the limited interpretability of the changes in these proportions. Given commodity-
specific approaches to verifying food safety and promoting pathogen reduction, regulatory
agencies benefit from analyses that elucidate illness trends attributable to the products
under their jurisdiction. Results from this trend analysis can be used to inform the develop-
ment and assessment of new pathogen reduction programmes in the United States.

Introduction

In the United States, the Department of Agriculture’s (USDA) Food Safety and Inspection
Service (FSIS) maintains jurisdiction and inspection over meat, poultry and egg products.
The Department of Health and Human Services’ Food and Drug Administration (FDA) is
responsible for all other commodities. State and local governments also maintain some author-
ity to regulate commodities within their more limited geographic jurisdictions. Across these
different agencies, many programmes have been implemented to encourage pathogen reduc-
tions in some of these commodity groups. An example is the Pathogen Reduction; Hazard
Analysis and Critical Control Point (PR;HACCP) regulation [1]. One of the goals of this regu-
lation was to reduce pathogenic microorganisms on meat and poultry products, thereby redu-
cing the incidence of foodborne illness attributed to consumption of these products.

While both FSIS and FDA collect samples of different food commodities and monitor for
changes in the occurrence of pathogen-positive product samples, it is difficult to link changes
in an individual commodity, or group of commodities, to overall changes in the total burden
of illness. Analyses of changes in contamination rates for an individual commodity, without
considering the possibility of concurrent changes to other commodities, have led to discrep-
ancies in the degree to which changes in human illnesses have been linked to different com-
modities [2–4]. Estimating the change in an individual commodity’s contribution to overall
foodborne illness requires an assessment of changes within the context of foodborne illnesses
for all commodities. This requires understanding the proportion of estimated illnesses for a
specific pathogen attributed to specific commodities. These proportions are referred to as attri-
bution fractions. In the United States, the Interagency Food Safety Analytics Collaboration
(IFSAC), a collaboration amongst the Centers for Disease Control and Prevention (CDC),
FDA and FSIS, works together to generate national estimates of the proportion of illness attrib-
uted to 17 broad commodity groups [5].

Multiple methods and data types exist to estimate pathogen-specific attribution fractions
for various commodities [6–16], and many methods use national datasets of foodborne disease
outbreaks to attribute observed illnesses to specific commodities implicated in pathogen-
specific outbreaks. The advantage of using outbreak data is that the epidemiological evidence
collected from outbreak investigations offers a direct linkage between a commodity and human
illness. In contrast, methods such as the microbial subtyping approach [17] or methods based
on characteristics derived from whole genome sequencing (WGS) [18] usually only provide
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evidence of an association between a pathogen’s host species at
some point prior to human illness without identifying the specific
food vehicle. Despite the differences in methods and data, one
commonality of all attribution methods is that they estimate a sur-
rogate variable that is assumed to be representative of the true
proportion of illnesses associated with a specific product–patho-
gen pair.

In the United States, outbreaks attributed to Salmonella-
contaminated foods provide the most robust data source available
for the attribution of illnesses to different commodities. This is
due to the large number of outbreaks, relative to the other
foodborne bacterial pathogens [19], the occurrence of
Salmonella outbreaks across all 17 commodity groups [20, 21]
and the general similarity between the characteristics of sporadic
cases identified through laboratory surveillance and outbreak
cases [22]. In recent years, FSIS has focused on Salmonella and
has sought to utilise programmes and policies to promote the
reduction of Salmonella and other pathogens in meat, poultry
and egg products [23].

This study examines 20 years of data for Salmonella-attributed
foodborne outbreaks to determine if significant trends for various
commodities can be identified. Topics include variable selection
and models for identifying significant trends. While the analysis
for this study necessarily includes commodity groups that fall out-
side of FSIS’ jurisdiction, the presentation of results will focus pri-
marily on meat and poultry products.

Data description

The United States has a long history of surveillance for food and
waterborne outbreaks, dating back to surveillance for milk-
attributed outbreaks beginning in 1923. In 1998, state and local
health departments began submitting foodborne outbreak reports
directly into CDC’s Electronic Foodborne Outbreak Reporting
System (eFORS) [24]. In 2009, the surveillance system was
expanded beyond foodborne outbreaks to capture data on water-
borne outbreaks and outbreaks transmitted by contact with ani-
mals, people or the environment, and outbreaks with an
unknown mode of transmission. At this time the reporting plat-
form was renamed the National Outbreak Reporting System
(NORS) [25]. Detailed descriptive statistics of the NORS, includ-
ing temporal and spatial patterns, are available in earlier publica-
tions [26–28]. The publicly available data from NORS were
extracted for the period 1998–2017 [29]. This database contains
summary information for all bacterial foodborne outbreaks,
some of which have a single identified food vehicle. Each of the
implicated food vehicles has been grouped into one of 17 broad
commodity groups [20, 21]. This dataset represents 2712
Salmonella foodborne disease outbreaks, of which 863 outbreaks
have a single identified food vehicle. The total number of illnesses
associated with all outbreaks was 72 412, and the total number of
illnesses among food vehicle-identified outbreaks was 34 082.

An assessment of the outbreak data by commodity groups
finds that many of the 17 groups consistently experience an aver-
age of less than one Salmonella outbreak per year. For example,
the commodity group consisting of oil and/or sugar-related
Salmonella outbreaks consists of a single outbreak during the
20-year period. Similarly, there were only two outbreaks asso-
ciated with the commodity group of game. To address this
issue, the 17 groups were further combined into 12 groups such
that each group had close to a minimum of one outbreak in
more than 10 of the 20 years. This was accomplished using the

following approach: the group of other meat/poultry was com-
bined with the game group; all aquatic protein groups were com-
bined; the group of other vegetables was combined with vegetable
row crops; the group of oils and sugars was eliminated. The result-
ing dataset is given in Table 1.

To aid in the interpretation of changes in the proportions of
outbreaks it is helpful to understand changes in consumption pat-
terns. The USDA Economic Research Service (ERS) Food
Availability Data System (FADS) has provided estimates of annual
per capita consumption for broad food commodity groups since
1909 [30]. The loss-adjusted food availability estimates serve as
proxies for the total number of servings of each commodity at
the national level. These estimates account for factors such as
the differences in spoilage and waste for each commodity but
do not account for the possibility of annual changes in serving
size. This analysis will assume that serving size has remained con-
stant. Given this study’s primary focus on FSIS-regulated meat
and poultry commodities, only the effect of changes in consump-
tion for the beef, chicken, pork and turkey commodity groups will
be considered. These estimates are derived from an annual census
of the number of animals slaughtered, so the only sources of
uncertainty are the adjustment factors applied to convert slaugh-
ter totals to servings. Annual beef consumption is derived from
the sum of beef and veal consumption to be consistent with the
hierarchy used to classify outbreaks [20].

Methods

The analyses are divided into two parts. The first analysis is a vari-
able selection process to determine the best variable for assessing
changes in the proportion of outbreaks for each commodity. This
analysis investigates the temporal patterns in the number of
annual outbreaks and the number of annual illnesses associated
with outbreaks. The most appropriate variable was then used
for the assessment of trends.

The second set of analyses will determine if significant changes
in the proportion of outbreaks attributed to any of the 12 com-
modity groups have occurred. The study will focus primarily on
outcomes relevant to the FSIS-regulated commodities of beef,
chicken, pork and turkey. Nevertheless, all commodity groups
must be considered due to the correlated nature of proportions
that share common measurements [31].

The final analysis is an investigation of the effects of changes in
consumption patterns on the probability of illness associated with
the meat and poultry commodities.

Variable selection

A decision to use outbreak or illness counts in an estimation strat-
egy depends on two factors, with the first being whether one of
the variables is better suited to the modelling of trends across
time. The second is to determine whether there are significant dif-
ferences between the outbreak counts and illness counts that
might lead to contradictory conclusions.

The estimation of temporal trends is dependent on the
strength of the underlying temporal pattern compared to the
degree of variability in the data, which can be defined by the
signal-to-noise ratio given by

SNRx = E(x)��������
Var(x)

√ .
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Table 1. Data and summary statistics of annual outbreaks using the 12 commodity classes

Food categories

Metric Beef Chicken Dairy Eggs

Fish and
other

seafood
Fruits–
nuts

Other meat/poultry and
game Pork

Seeded
vegetables Sprouts Turkey

Vegetable row
crops and other

vegetables All

Mann–
Kendall

0.370 0.819 0.267 0.001 0.090 0.066 0.772 0.003 0.019 0.517 0.547 0.283 0.229

Mean of
ratios

0.09 0.19 0.05 0.18 0.04 0.10 0.02 0.11 0.06 0.05 0.08 0.04 NA

Mean 3.7 8.4 2.3 8 1.6 4.3 0.7 4.6 2.6 2 3.3 1.9 43.2

Variance 3.7 12.4 3 34.8 1.9 9.4 0.7 7.7 2.6 1.4 3.1 1.6 81.8

Outbreak counts

1998 3 6 3 8 2 1 1 1 1 1 2 0 29

1999 2 17 1 24 0 7 1 0 0 4 3 1 60

2000 4 10 0 22 4 3 0 5 1 2 6 2 59

2001 4 9 3 9 1 6 0 5 0 3 1 1 42

2002 6 6 3 7 0 2 2 2 5 1 4 3 41

2003 9 8 1 12 1 4 1 3 1 2 2 1 45

2004 4 14 2 9 1 0 1 6 2 1 8 3 51

2005 5 7 3 12 1 1 0 1 3 1 4 2 40

2006 2 6 3 3 0 3 0 3 4 1 3 2 30

2007 5 5 4 5 1 1 0 6 3 3 2 3 38

2008 3 5 1 7 2 5 0 1 2 1 6 1 34

2009 4 3 0 7 2 2 1 4 3 4 1 4 35

2010 1 4 0 7 1 3 0 6 3 4 3 1 33

2011 2 7 1 1 0 8 0 10 3 3 4 0 39

2012 4 8 0 7 1 7 1 3 2 1 3 1 38

2013 5 10 5 3 2 8 3 8 5 1 3 0 53

2014 2 13 3 2 5 6 1 6 5 1 2 3 49

2015 1 10 5 5 4 1 0 8 4 1 4 4 47

2016 2 9 5 5 2 7 1 7 4 3 2 2 49

2017 5 11 3 5 2 11 0 7 1 1 2 3 51

Total 73 168 46 160 32 86 13 92 52 39 65 37 863
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The variable with the larger signal-to-noise ratio will be better
suited for the estimation of trends.

To investigate the SNR statistic for outbreak counts, assume
the annual number of outbreaks can be modelled as Ot∼
Poisson(λ), where t is the indicator for year t. Using this model,
the signal-to-noise ratio for outbreak counts is

SNRO = E(Ot)���������
Var(Ot)

√ = l��
l

√ =
��
l

√
.

For each outbreak j in year t, let Stj be the number of illnesses
and assume a general discrete distribution with mean and
variance terms defined by Stj∼ (μ, σ2). Then the number of

illnesses in year t is defined by the random sum It =
∑Ot

j=1
Stj. The

properties of a variable that is a random sum are such that

E(It) = E(Ot)E(St) = lm

and

Var(It) = E(Ot)Var(St)+ E(St)
2Var(Ot) = ls2 + m2l,

which yields

SNRI = m
��
l

√
���������
m2 + s2

√ .

Given the signal-to-noise ratio values for outbreak vs. illness
counts, we can determine under what conditions SNRI ≥ SNRO.
Investigating this inequality yields

m
��
l

√
���������
m2 + s2

√ ≥
��
l

√

m���������
m2 + s2

√ ≥ 1,

with the condition of equality satisfied only for σ2 = 0. It might be
reasonable to use illness counts if σ2 were small relative to μ2, but
a previous analysis of outbreak illness counts found that they are
highly variable and remain heavily right-skewed even after apply-
ing a log transformation [32].

We conclude that significant trends are more likely to be
observed using the outbreak counts variable Ot because it
necessarily has a larger signal-to-noise ratio. The effect of
the higher signal-to-noise ratio of Ot can be quantified by
comparing the widths of the confidence intervals relative to the
estimated trend model, described below, that was fitted to Ot

and It. For example, if Ôt is the fitted value at time t, the average
relative interval width statistic is

WO = 1
T

∑T
t=1

(Ôt + t∗×s.e.(Ôt)− (Ôt − t∗×s.e.(Ôt))/Ôt ,

where s.e.(Ôt) is the estimated standard error and t∗ is the
t-statistic derived from the fitted model described below.

The second step in the variable selection process is to deter-
mine what, if any, differences can be detected between the annual
occurrence of outbreaks and illnesses for each commodity. To

start, we assessed the correlation between the number of out-
breaks and illnesses [33]. Next, an analysis of variance model is
used to determine if significant differences exist in the number
of illnesses per outbreaks for any of the commodity groups.

Trends

The goal of this study is to determine if significant trends exist
in the proportion of outbreaks associated with any of the
commodities. If the total number of outbreaks or illnesses is
constant across time, then changes in the annual number of
outbreaks or illness for a commodity group, rather than the
ratio of outbreaks in a commodity group relative to the total num-
ber of outbreaks, can be modelled using a single methodological
approach.

The simplest test for possible trends is a Mann–Kendall test
[34] applied to each of the commodity groups to assess if a signifi-
cant monotonic trend was present in the data. To test for trends
that are not necessarily monotonic, a general additive model was
fitted to the data. For the outbreak counts, the model used for out-
breaks is of the form

log(Ot) = b0 + f (Yeart)+ 1t ,

with t = 1998, 1999, …, 2016, 2017 and f(Yeart) being a penalised
B-spline regression function with a Poisson link function, as
described in previous food safety applications [35–37]. The
Bayesian information criterion is used to select the smoothing
parameters of the best fitting model [38]. This model employs a
visual interpretation for significant trends using a horizontal
line test. A significant trend is indicated in any situation where
a horizontal line, drawn across the graph, intersects both the
lower and upper bounds of the interval. For this study, the
lower and upper bounds are defined as the 2.5th and 97.5th per-
centiles. Therefore, a horizontal line that fails to intersect these
boundaries results in a conclusion that we cannot reject the null
hypothesis of no trend at an α = 0.05 level of significance.
Estimation of this model’s parameters was performed using the
R software package Mixed GAM Computation Vehicle (mgcv)
[39, 40]. This model was fitted to summarise the annual totals
Ot and It. The confidence intervals determine the average relative
confidence interval width statistics (WO, WI).

Interpretation of trends in the proportion of outbreaks or ill-
nesses associated with a specific commodity is not straightforward
because a change in one commodity necessarily affects the pro-
portions for all remaining commodities. The term spurious correl-
ation was used to describe this phenomenon at the end of the
19th century [31]. This effect can be demonstrated by considering
a simplified example. Suppose that outbreaks in year t consist of
only two groups, with the groups being outbreaks associated with
commodities derived from animals (ota) and the other group
being outbreaks from plant-derived foods (otp). Furthermore,
assume the number of animal-associated outbreaks is increasing
linearly (ota = αa + wat, with αa, wa > 0) with time, while the num-
ber of plant-associated outbreaks remains constant (otp = αp). The
proportion of plant-associated outbreaks is

pp(t) =
otp

otp + ota
.

The effect of the increase in animal-associated outbreaks on
the proportion of plant-associated outbreaks can be determined

4 Michael S. Williams and Eric D. Ebel



by considering the first derivative, given by

∂pp(t)

∂t
= −apwa

(ap + aa + wat)
2 . (1)

This example demonstrates that a significant change in the
annual proportion of outbreaks associated with a specific com-
modity category is necessarily offset by changes in the opposite
direction in the remaining categories. Furthermore, this relation-
ship demonstrates why changes in the proportion of outbreaks for
any single commodity cannot be considered in the absence of the
remaining commodities.

The trend model uses the ratio of the number of outbreaks in
year t attributed to food categoryd, denoted ot,d, d = 1, …D, with
respect to the total number of outbreaks from the year, denoted
Ot. The term

p̂t,d =
ot,d
Ot

is the proportion of outbreaks in category d at time t. A similar
model can be constructed for outbreak illnesses. The constraint
that the d proportions add to one implies that they are not
independent of one another (i.e. the proportions are negatively
correlated because if the proportion for one category increases,
this increase must be offset by decreases in other categories).
As a result, these proportions cannot be analysed using statistical
methods that are intended for unconstrained data [31, 41]. The
solution employed is to use the additive log-ratio transformation
technique used in compositional data analyses [42, 43], which
reparametrises the outbreak count variable as

log
ot,d
ot,D

( )
, d = 1, . . .D− 1.

The data were fitted to a multivariate linear model of the form

log
ot,d
ot,D

( )
= a1d + a2dt + 1td

and tested for significance of the α1d and α2d, where the vector of
error terms is

1t � MVN(0, S),

with Σ being the D− 1 ×D − 1 covariance matrix. A quadratic
model was also tested for each commodity, though none were sig-
nificant. A similar model could be constructed using illness
counts, but these results are not presented because the
signal-to-noise results from above are still applicable.

In cases where no outbreaks occurred for commodity group d
in year t, the fraction otd/otD was set to 1% of the fraction of out-
breaks for that commodity. Parameter estimates are obtained
using multivariate linear regression and the trend model for
each category d is obtained by back-transforming the model pre-
dictions. Commodity group D is a reference group, and it consists
of all outbreaks not being considered as part of the specific ana-
lysis. The trend for commodity group D is determined from the
constraint that the sum of the proportions is equal to one. The
results of the multivariate linear model are used to determine
which commodities demonstrated significant changes in the

proportion of outbreaks using a framework similar to one
developed previously for assessing trends in antimicrobial resist-
ance [42].

Consumption analysis

The goal of the meat consumption analysis is to provide basic esti-
mates of the change in the number of servings between 1998 and
2017 for the beef, chicken, pork and turkey commodity groups.
The change is estimated by fitting a simple linear model of the
form

N̂d.t = Ĉt,d × K

Ĉd,t = g1d + g2dt, t = 1, . . . , 20,

where N̂d,t is the number of servings per year (or capita) for com-
modity group d, Ĉd,t is the annual consumption (kg) estimate per
capita for commodity group d and K is a constant that converts
consumption data to servings per year (or capita). For example,
if it is assumed a typical serving size of 100 g applies to all com-
modities, then K = 10 servings per kilogram consumed per capita
per year.

The proportional change in annual number of servings is esti-
mated as

DNd = (N̂d,20 − N̂d,1)

N̂d,1
.

Assuming a constant serving size, an improved understanding
of the factors affecting changes in the estimated proportion of
outbreaks for each commodity can be derived by considering
the relationship for any year t

Id,t = Itotal,t × pd,t = Nd,t × Pd,t(ill), (2)

where Id,t is the number of illnesses from the consumption of
commodity d, Itotal,t is the total number of foodborne illnesses
from all commodities, pd.t is the proportion of outbreaks from
commodity d (assumed to be equivalent to the true attribution
fraction of illness cases) and Pd.t(ill) is the probability of illness
per serving. The total number of domestically acquired illnesses
per year can be estimated from the reported case rate per 100
000 [44] multiplied by the total population of the United States
[45], adjusted for foreign travel and non-foodborne cases [46].
The Pd.t(ill) term can be decomposed to describe multiple risk
factors [47], such as dose concentration and difference in viru-
lence between serotypes. Efforts undertaken by government or
industry to reduce contamination would also be captured by
changes in Pd.t(ill).

By assuming serving size is constant across time and commod-
ities, an empirical measure of the change in the probability of ill-
ness per serving for commodity group d is estimated as

DPd(ill) = (D p̂d + 1)(DÎtotal,t + 1)

(DN̂d + 1)
− 1.

As described for DN̂d , the other changes are measured based
on the linear difference between 2017 and 1998. This estimate
of the change in the probability of illness per serving is intuitive
because its numerator estimates the change in annual illness
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counts (as the product of the attribution fraction and total ill-
nesses) and its denominator estimates the change in total servings.
Nevertheless, a linear model fitted to the case rates of salmonel-
losis from 1998 through 2017, based on culture-confirmed test
results [44] has no significant slope term ( p = 0.156).

Results

Comparison of outbreak and illness counts (variable selection)

Figure 1 describes the fitted penalised B-spline models for both
annual outbreak and outbreak illness counts. The outbreak counts
demonstrate a rapid rise due to the doubling of outbreak counts
between the first year (29 outbreaks), and the second and third
years (60 and 59, respectively). This increase has been attributed
previously to the 1998 introduction of an electronic reporting sys-
tem for outbreaks [32]. This increase is followed by a roughly
10-year period (2001–2010) of statistically significant decline,
where the average number of outbreaks drops to a low of roughly
35. The trend is reversed, beginning in the 2009–2010 timeframe,
with a statistically significant increase through 2014. The annual
number of outbreaks stabilises in the high 40s per year from
2014 through 2017.

The fitted penalised B-spline models for illness counts demon-
strates a monotonic and nearly linear increasing trend in the
number of illnesses; however, this increase is not statistically sig-
nificant. A Cox and Stuart trend test [48] also fails to identify a
significant trend ( p = 0.37).

The effect of the additional variability associated with includ-
ing the number of illnesses can be quantified by considering the
relative width of the confidence intervals (e.g. the proportional
difference between the ranges of the confidence interval relative
to the estimated mean). Averaging across the 20 years, the average
relative width of the confidence interval for the model based on
the number of outbreaks is WO = 0.34, whereas this value for ill-
ness counts is nearly double at WI = 0.59. In addition, a Pearson’s
product moment correlation test failed to find a significant

correlation between outbreaks and either illness counts (ρ =
0.01, p = 0.98) or log-transformed illness counts (ρ = 0.15, p =
0.55).

To further investigate the relationship between outbreak
counts and illness counts, an analysis of variance model was
used to assess if the number of illnesses per outbreak differed sig-
nificantly by commodity. Of the 17 commodity groups in the
dataset, prior to collapsing groups, only the seeded vegetables
variable was significantly different ( p = 0.0045). A likely cause
of the significant difference is the number of large outbreaks asso-
ciated with tomatoes, cucumbers and peppers. Removing the ill-
nesses attributed to seeded vegetables and refitting the model
indicates no significant difference across the remaining commod-
ities groups ( p = 0.64). Thus, these analyses suggest that the aver-
age annual number of cases of salmonellosis from outbreaks with
an identified food source has remained constant at roughly 1700
illnesses per year, but that the power to detect a significant change
in the number of illnesses is low in comparison to the number of
outbreaks per year.

Trends by commodity

After reducing the number of commodity groups from 17 to 12,
only the group consisting of other meat-game has an average of
less than one outbreak per year. Nearly 60% of all outbreaks
occur in the groups of chicken, eggs, pork and seeded vegetables
(Table 1). The Mann–Kendall test suggests significant monotonic
trends in the annual number of outbreaks for the eggs, pork and
seeded vegetables commodities (p = 0.001, 0.003, 0.019, respect-
ively). Two of these commodity groups (i.e. eggs and pork) also
have means and variances of their count data that differ substan-
tially, indicating a departure from a simple Poisson process with a
constant rate parameter.

Outputs of the compositional trend model are used to assess
changes in the proportion of outbreaks attributed to the 12
food commodity groups between 1998 and 2017. The

Fig. 1. Penalised B-spline regression fits and confidence intervals for outbreak counts (blue) and illness counts from outbreaks (red). The horizontal solid lines are
used to test for significant trends.

6 Michael S. Williams and Eric D. Ebel



compositional trend model for the five meat and poultry com-
modity groups is given in Figure 2. Amongst these commodity
groups, only pork demonstrates a significant increasing trend
( p = 0.006), with the trend in the proportion of outbreaks increas-
ing from 0.04 to 0.18 between 1998 and 2017, respectively. While
the trend model for beef decreases from roughly 0.10 to 0.05 dur-
ing the study period, the decrease is not significant ( p = 0.21).
The proportion of outbreaks for the commodity groups of
chicken, turkey and other meat/game is essentially unchanged
during the 20-year study period. The trend in the proportion of
outbreaks for all other outbreaks (i.e. the reference group D) is
also included in Figure 2 to demonstrate that the proportion of
outbreaks from non-meat commodities remained roughly con-
stant at slightly more than 0.5.

As was the case with all meat and poultry commodities, other
than pork, most of the remaining commodity groups exhibit no

significant trends. Figure 3 shows the results of the application
of the compositional data analysis approach to identify all com-
modity groups that demonstrate a significant trend. Only the
commodity groups consisting of eggs, pork and seeded vegetables
demonstrate significant overall changes (p = 0.005). This analysis
finds that the commodity group of seeded vegetables increases
from 0.02 to 0.1.

The proportion of egg-associated outbreaks demonstrated the
largest reduction of any commodity group. The trend for this
commodity monotonically and significantly decreases from 0.33
in 1998 to 0.06 in 2017 (Fig. 3). The effect of the reduction in
this single commodity on the 11 remaining commodity groups
can be estimated using equation (1), which shows that if there
were no changes in the number of outbreaks for all other com-
modities, the estimated cumulative effect of the reduction in
egg-associated outbreaks would be an increase in the proportion

Fig. 2. Compositional regression models for the five commodities groups and one group consisting of the remaining non-meat commodities in the United States.
Pork is the only commodity group where the trend is statistically significant.

Fig. 3. Trend models for the three commodities
groups that demonstrated statistically significant
changes ( p = 0.005) in the proportion of outbreaks
between 1998 and 2017.
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of outbreaks across the remaining commodities of 0.25. This esti-
mate is conservative because the number of non-egg-associated
outbreaks actually increases significantly by roughly 50% during
the study period (Fig. 4). Applying simple linear models to
describe the decrease in egg-associated outbreaks, fitted to the
data in Figure 4, results in an estimated increase in the proportion
of non-egg-associated outbreaks of 0.30. The consequence of this
result is that the proportion of outbreaks for the
non-egg-associated commodities is expected to increase as a result
of the decrease in egg-associated outbreaks, particularly in the
1998–2008 timeframe when the annual decrease in egg-associated
outbreaks was the greatest. This observation suggests a more
nuanced interpretation of the results presented for the meat and
poultry commodities (Fig. 2) because the commodities that
demonstrated no change in their proportion of outbreaks (i.e.
chicken, turkey and other meat/game) would be expected to

increase somewhat as a consequence of the reduction in
egg-associated outbreaks.

Limits of the interpretability of compositional data

Further investigation of the meat and poultry commodities high-
lights the difficulty of generalizing the changes in the proportion
of outbreaks to meaningful measures of risk for a commodity
group. A recognised limitation of compositional data methods
is that while changes in the proportions can be observed, it is
not possible to determine why the change occurred and what fac-
tors may have contributed to the change [49]. Using the chicken
commodity group as an example, not only does the proportion of
outbreaks remains constant (Fig. 2), the best fitting linear model
for the number of chicken-associated outbreaks consists of only
the intercept term (i.e. ochicken,t = 8.54), suggesting that the

Fig. 4. Changes in the number of egg-associated (a) and non-egg-associated outbreaks (b) during the study period. The substantial decrease in the number of
egg-associated outbreaks inflates the proportion of outbreaks associated with all other commodity groups and highlights the difficulty of interpreting compos-
itional data.

Fig. 5. Trends in annual consumption per capita
and the reported case rate per 100 000 between
1998 and 2017.
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reduction in egg-associated outbreaks is offset by increases in
commodities groups other than chicken (equation (1)), so that
both the total number and proportion of chicken-associated out-
breaks remain essentially constant.

A comparison of the results for the meat and poultry com-
modities also demonstrates that changes in the proportion of out-
breaks, or lack thereof, are not necessarily indicative of changes in
the risk of illness associated with the product, because consump-
tion patterns changed significantly during the study. This is
demonstrated by considering the change in consumption and
its effect on the implied probability of illness per serving.

Figure 5 demonstrates that there were significant changes in
the consumption for all four of the commodities of interest ( p
< 0.002). The per capita annual consumption for the commodity
groups of beef, pork and turkey all declined by between 9% and
22%, while chicken was the only one of these commodities to
experience an increase of 15% (Table 2). Under the assumption
that the change in the proportion of outbreaks is equivalent to
the change in the true attribution fraction, the change in the
implied probability of illness decreases between 15% and 35%
for beef, chicken and turkey, and an increase of 367% for pork
(Table 2).

Discussion

The available data do not support causal inferences, but the pat-
terns observed do suggest hypotheses for further study. Of interest
is the observed decrease in the annual number of outbreaks with
an identified food source during the 2000–2010 period (Fig. 1).
Earlier studies have identified an overall reduction in total out-
break counts for all pathogens due to changes in the surveillance
system but concluded that Salmonella outbreaks had remained
stable [25, 50]. This analysis covers a longer time period and
finds a significant reduction in outbreaks with an identified
food source during this period. Considering the patterns observed
across all the commodities, it seems likely that much of the
change is due to the reduction in the number of egg-associated
outbreaks. The hypothesis is supported by the magnitude of the
reduction in outbreaks associated with eggs (15 fewer outbreaks
between 2000 and 2010) matched with the reduction in total out-
breaks (26 fewer outbreaks between 2000 and 2010) (Table 1).

The increase in the number of outbreaks with an identified
food source between 2010 and 2014 is more difficult to attribute
to any one product because only the pork and seeded vegetable
commodities groups were consistently increasing during this per-
iod, and neither commodity has a large number of outbreaks on
par with eggs in 1999 and 2000. A reasonable hypothesis is that
outbreak investigation methods may have improved, with the con-
tinued expansion and improvement of surveillance networks [51]

and the widespread adoption of new technologies such as WGS
into these surveillance networks [52, 53]. Also note that uniden-
tified improvements in the sensitivity of the surveillance system
would bias the estimated changes in the probability of illness asso-
ciated with a commodity, similar to the changes in annual
consumption.

Amongst meat and poultry commodities, the consistent and
significant increase in the proportion of pork-associated out-
breaks is of concern. Pork ranks as the third most frequently con-
sumed meat commodity in the United States, yet only the chicken
and the fruits–nuts commodities are responsible for a larger aver-
age proportion of outbreaks in the later years of the dataset
(Table 1). This suggests that the risk of illness per serving from
pork may have increased and is high relative to the other meat
and poultry commodities [54]. FSIS is considering new
Salmonella performance standards focused on raw pork products,
in part because of concerns about recent Salmonella outbreaks
linked to these products.

This analysis uses outbreak counts to estimate the fraction of
outbreaks for each of the 12 commodity groups. The analysis,
and its results, will likely be compared to the attribution estimates
produced by IFSAC. While the 2017 estimates of the proportion
of outbreaks from the compositional data models are generally
similar to the 2017 attribution estimates reported by IFSAC
[19] for the commodity groups that were not collapsed, direct
comparisons are not appropriate because the desired inferences
(i.e. trend modelling vs. estimation of a mean) generally require
a different treatment of the available data.

While the statistics describing the annual fraction of outbreaks
has the lowest signal-to-noise ratio, the possible inferences are
limited by the available sample size. We would caution against
inferences any more detailed than simple trends in broad com-
modity groups. A limitation of the study is that it does not recog-
nise the differential risk for specific products within a commodity
group (i.e. an inherent assumption of an equal probability of ill-
ness given exposure for all products within the group) [55]. For
example, unpasteurised milk products [56], oysters [57], chicken
livers [58] and a type of frozen breaded chicken products that
appear to be cooked [59, 60] have been identified as infrequently
consumed products within the dairy, fish and other seafood, and
chicken commodity groups that are responsible for disproportion-
ately large shares of outbreaks relative to their consumption.

The compositional data analysis demonstrates that significant
trends exist in the proportion of outbreaks for three broad com-
modity groups (eggs, pork, seeded vegetables), while significant
changes in the other groups were not observed. We would, how-
ever, caution against any additional interpretations beyond these
results because compositional data analysis techniques can only
provide information on the change in the relative values of the
components [49] and the techniques cannot be used to determine
which external factors led to the change. While there are more
annual outbreaks of salmonellosis than any other bacterial food-
borne pathogen, inferences drawn from the data for this pathogen
are limited to assessing broad trends.

A limitation of the study is the inherent biases associated with
all outbreak surveillance systems. Examples of factors that could
affect the interpretation of the data are whether an outbreak
leads to an investigation, whether specimens are collected, the
types of samples and sensitivity of assays used to detect the patho-
gen and whether a food vehicle is identifiable for the outbreak.
The degree to which these biases could have changed over the
20-year duration of the dataset is also unknown.

Table 2. Overall changes in consumption, proportion of outbreaks and the
change in the implied probability of illness per serving for the four primary
meat commodities in the United States from 1998 through 2017

Commodity γ1 γ2 ΔNd Δpd,t ΔPd(ill)

Beef 30.7 −0.36 −0.22 −0.49 −0.35

Chicken 24.3 0.20 0.15 −0.07 −0.19

Pork 22.1 −0.11 −0.09 3.24 3.67

Turkey 6.4 −0.03 −0.10 −0.23 −0.15
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A further limitation of the study is that it does not recognise
the differential risk for specific products within a commodity
group and how these may change over time (e.g. changes in the
serotype abundance and/or virulence, changes in preparation
methods). This suggests that gaining insights into the effective-
ness of food safety efforts undertaken by government and/or
industry likely requires a more extensive effort to combine add-
itional data throughout the food chain (e.g. data on serotypes
or seasonal changes in occurrence) with data on sporadic illnesses
and outbreaks. Additionally, the temporal effects observed for
Salmonella may assist in interpreting the sparser outbreak data
for other pathogens and commodities. Furthermore, the model-
ling effort will likely need to account for changes across the full
collection of commodities to limit the effect of latent variables.

Despite the limited amount of available data and the difficul-
ties in interpreting the results, this study demonstrates the success
of efforts to reduce outbreaks associated with eggs. Furthermore,
the increases observed in commodities such as pork are leading to
new efforts to reduce cases of salmonellosis associated with these
products, such as FSIS-proposed performance standards for raw
pork products.
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