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ABSTRACT: The microbiome has been shown to be important for
human health because of its influence on disease and the immune
response. Mass spectrometry is an important tool for evaluating
protein expression and species composition in the microbiome but is
technically challenging and time-consuming. Multiplexing has
emerged as a way to make spectrometry workflows faster while
improving results. Here, we present MetaProD (MetaProteomics in
Django) as a highly configurable metaproteomic data analysis
pipeline supporting label-free and multiplexed mass spectrometry.
The pipeline is open-source, uses fully open-source tools, and is
integrated with Django to offer a web-based interface for configuration and data access. Benchmarking of MetaProD using multiple
metaproteomics data sets showed that MetaProD achieved fast and efficient identification of peptides and proteins. Application of
MetaProD to a multiplexed cancer data set resulted in identification of more differentially expressed human proteins in cancer tissues
versus healthy tissues as compared to previous studies; in addition, MetaProD identified bacterial proteins in those samples, some of
which are differentially abundant.
KEYWORDS: mass spectrometry, metaproteomics, proteomics, multiplexing, isobaric labeling, differentially expressed proteins,
bacterial proteins

■ INTRODUCTION
The human microbiome has been shown to be influential in
human health and diseases, such as type 2 diabetes1 and
colorectal cancer.2 Microbiota can be involved in important
metabolic pathways in the host related to nutrition3 and can be
involved in the development of immunity and protection.4,5

Microbiota can also act as an important biomarker for
identifying a disease.6 Metaprotemics has emerged as a field
focused on the identification of quantification of bacterial
proteins to allow for a determination of protein function,7

microbiome species composition,8 locality,9 changes in
bacterial gene expression in response to disease,10 and
information on future treatments that may be focused on
bacterial proteins.11

Shotgun proteomics using mass spectrometry (MS) is a
widely used technique in metaproteomics because of the ability
to analyze complex samples containing thousands of proteins12

that may be common in microbiome-based samples. These
studies have been utilized in such cases as to provide data for
carcinogenesis models13 and identify target pathways for
therapeutic treatments.14

Many readily available pipelines exist utilizing mass
spectrometry for protein identification and quantification.
There are two general categories of the approaches: label-free
proteomics and multiplex labeling.15

Label-free approaches have the advantages of generally
requiring less sample and preparation complexity15 but may
have problems with high protein coefficients of variance (CVs)
between different replicates16 and missing peptides or proteins
in a replicate that makes statistical analysis more challenging.17

Another consideration is the length of time MS experiments
may take. Label-free approaches generally run one sample on
the instrument at a time, and this can cause experiments with
dozens or hundreds of samples to be time-consuming,
particularly as it has been shown that longer gradients on the
liquid chromatography instrument have been shown to reduce
CV values between replicates.18

Multiplexing approaches offer the advantage of allowing one
to run multiple samples at the same time on the instrument,
which has been shown to reduce CV values in replicates
because the same peptide from different samples elutes
together,19 improve the ability for relative and absolute
quantification,20 allow for a higher number of peptide
identifications, and ultimately allow for more overall
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quantification per instrument.19,20 Utilizing labeling ap-
proaches, such as TMT or iTRAQ, therefore may be critical
for large-scale studies focused on identifying changes in
bacterial composition and protein expression based on the
disease state of the individual.
Many metaproteomics pipelines exist, such as Metapro-IQ,21

MetaLab,22 and HAPiID23 for label-free approaches and
IsoProt24 for labeled data, but these pipelines tend to be tied
to a single-search algorithm when multiple algorithms together
have shown improved results25 or rely on Docker containers,
which may not be suitable for high-performance computing
(HPC) applications.
MetaProD is a highly configurable metaproteomics pipeline

supporting both label-free and labeled experiments starting
from raw mass spectrometry data all the way through
generating tables of results in a Django-based web interface.
MetaProD allows users to configure all projects and settings in
the web-based interface (such as a choice of multiple search
algorithms) and other typical options that may be changed
during mass spectrometry experiments (such as enzyme
specificity and missed cleavages). The web interface also
allows users to view results, including protein expression in
normalized spectral abundance factor26 (NSAF) or number of
peptide spectrum matches (PSM) and species expression, in a
web browser and export desired results to downloadable files
for further analysis elsewhere. Users can have the option to
configure this interface to suit their own analysis needs using
Django, but many of the typical use-case scenarios have been
provided for. Tests of MetaProD using metaproteomic data of
the known microbial community and other real metaproteo-
mics data sets showed that MetaProD achieved fast and
efficient identification of peptides and proteins from
metaproteomic data of a mixture of species associated with
different environments/hosts.

■ EXPERIMENTAL PROCEDURES

Pipeline Implementation

General Information. MetaProD is designed to work with
label-free or multiplexed metaproteomic data but can support
general proteomics data. For metaproteomic data analysis,
MetaProD uses a two-step strategy including a profiling step
and a full-proteome search for identification of peptides from
metaproteomic data as with HAPiID.23 We showed
previously23 that a two-step approach is important for efficient

and fast peptide identification from metaproteomic data with
unknown species composition. Figure 1 shows a general
overflow of the MetaProD workflow.
The pipeline is developed using Python scripts to interface

with the different proteomics software and generate results and
is fully integrated with the Django web framework to allow for
a web-based graphical user interface (GUI) for configuration
and viewing of results. Users of the pipeline have the option to
expand upon the web interface as desired using the extensive
documentation provided by Django and examples provided in
the code. The proteomics pipeline itself is run using simple
command-line arguments on a Linux-based system but should
be portable to any system where Django and Java are available.
The system is designed to allow for implementation on HPC
systems by dividing projects into jobs, which then can be fed
into HPC workload managers, such as Slurm.
Generation of the Protein Database. A FASTA

database containing protein sequences is generated by
downloading the list of bacterial pan-proteomes27 from
Uniprot28 (release 2021_03 was used for testing, but the
software can download a newer version). The list of bacterial
reference proteomes is also downloaded from Uniprot (release
2021_03), and the two lists are combined to a final FASTA file
containing only proteins in nonduplicated proteomes by
filtering any duplicate proteomes that appear in both lists.
Supporting Information File 1 contains the specific list of
Uniprot proteome IDs used for this paper. The list of proteins
is filtered down to highly abundant proteins (HAPs) for the
initial profiling step based on methods discussed by HAPiID23

to limit the size of the initial FASTA database required. This is
done by including any protein containing the term “ribosomal”
in the protein name and reduces the initial FASTA file used
from 42 125 535 sequences to 510 154. The full Uniprot
human reference proteome (Uniprot ID UP000005640) can
be added along with a list of common contaminants obtained
from the Common Repository of Adventitious Proteins
(CRAP)29 depending on the configuration in the web interface
to help reduce false-positives or otherwise include those
proteins in the search results. The FASTA file is then
processed using SearchGUI30 (version 4.1.16) to append
decoy sequences to be used for false-discovery rate (FDR)
calculations.31

Proteomics Processing. MetaProD uses a two-step
strategy including a profiling step and full-proteome search

Figure 1. Overview of the MetaProD workflow showing the profiling step (green), full-proteome step (red), and postprocessing (blue).
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for identification of peptides from metaproteomic data. Unlike
HAPiID23 and many other pipelines that can use only one
search engine peptide identification, MetaProD can utilize
multiple search engines. RAW files generated from the mass
spectrometer are converted by ThermoRawFileParser32 to
convert the file from the RAW to mzML, as needed.
SearchGUI is then used as an interface for the six mass
spectrometry search engines with Comet,33 MetaMorpheus,9

MSGF+,34 Myrimatch,35 OMSSA,36 and X!Tandem37 being
available as the search engines, which can be selected
individually or together for both the profiling and full-
proteome steps, and the previously mentioned FASTA file is
used as a search database. The web interface allows the user to
configure many common mass spectrometry settings, such as
precursor and fragment tolerances in either parts per million
(ppm) or daltons (Da), precursor charge ranges, peptide
length filtering, proteases, post-translation modifications
(PTMs) (with the option of adding new ones, as needed),
and PSM, peptide, and protein-level FDR rates. Peptide-
Shaker38 (version 2.2.9) is used to combine the results from
multiple search engines using the same settings as SearchGUI.
For multiplexed data, Reporter39 (version 0.9.8) is used to
calculate the expression ratios from the multiplex labels for the
PSMs. Custom Python scripts are implemented for protein
inference to generate the minimum list of proteins to explain
the peptides using a greedy approach and to filter the results to
the configured FDR for spectra, peptides, and proteins.
The information from the initial profile step is used to

generate a list of species covering a configurable amount of
total protein NSAF (90% by default). This species list is used
to regenerate a FASTA database containing all proteins from
the proteomes for these species as described by HAPiID.23

The SearchGUI, PeptideShaker, and Reporter steps are then
repeated using the new FASTA database for this full-proteome
step.
Additional Python scripts are used for multiplexed data to

map the labels back to specific patients and phenotypes, to
calculate the normalized protein expression ratios from the
PSM ratios generated by Reporter, and to interface with the R
packages PEMM40 for imputation of missing protein values
and DEqMS41 for generation of differentially expressed
proteins.
The final results are stored in a SQL database and then

accessible to the Django web interface or user-generated SQL
queries.
Web Interface. The Django-based web interface includes a

configurable administration panel where projects can be
created, the file queue can be managed, and specific search
settings can be set for each project. Examples of the
configuration interface are shown in Supporting Information
Figures S1a and S1b. The interface includes example label-free
and TMT-10 projects along with a predefined list of
modifications and enzymes to use, but these can be expanded
by the user in the future as long as they are supported by
SearchGUI and PeptideShaker. The web interface also allows
one to configure detailed sample information for multiplexed
samples, such as phenotype, label, and patient identifier.
The web interface also includes a detailed results section for

each project. This includes summary information for a project,
which includes the number of peptides, PSM, and protein per
file or project, NSAF information, and the top 10 species by
both NSAF and PSM for the profile and proteome steps. Other
information available per project includes the full file lists, full

species lists, full protein list, full peptide list, and full PSM list.
Each page also allows one to click for more details. The protein
page, for example, allows one to view the accession number,
the Uniprot proteome, the organism, and the protein
description and to click a link to view all peptides and PSMs
associated with a specific protein as shown in Supporting
Information Figure S2. Much of this information can also be
downloaded into tab-separated value (TSV) files for use
elsewhere.
A full help page is available to explain the use of the Web

site, and all aspects of the web interface can also be configured
by the user by following the Django documentation if they
wish to expand upon it or change aspects of the layout. The
user can also change the stylesheet to quickly customize the
appearance of the Web site.
Pipeline Tests

Settings Used Throughout. MetaProD was set to use the
following settings unless otherwise described: HCD fragmen-
tation, Q-Exactive as the instrument, 8−30 peptide length, 2−4
precursor charge range, 1% PSM/peptide/protein FDR, and
0−1 precursor isotope range.
MetaProD was set to use an enzyme for digestion, and

trypsin was used as the protease in all cases with a maximum of
two missed cleavages along with specific digestion except
where described. Carbamidomethylation of C was set as a fixed
modification and oxidation of M was set as a variable
modification for all data sets.
Parts per million (PPM) error rates were set to either 5, 10,

or 20 ppm for both precursor and fragment as described for
individual data sets.
Finally, we tested multiple search engine configurations as

described for each data set. The search engines tested include
Comet, MetaMorpheus, MSGF+, MyriMatch, OMSSA, and X!
Tandem individually for both the profile and full-proteome
steps. We also used different configurations for the profile and
full-proteome steps as summarized in Table 1.

Label-Free CAMPI Data Sets. Raw mass spectrometry
data was generated using a defined mixed culture from lab-
scale bioreactors containing eight sequenced microbes:
Anaerostipes caccae (DSMZ 14662), Bacteroides thetaiotaomi-
cron (DSMZ 2079), Bifidobacterium longum (NCC 2705),
Blautia producta (DSMZ 2950), Clostridium butyricum (DSMZ
10702), Clostridium ramosum (DSMZ 1402), Escherichia coli
K-12 (MG1655), and Lactobacillus plantarum (DSMZ 20174)
as part of the Critical Assessment of MetaProteome

Table 1. Summary of Search Engine Configurations Used
Throughout This Papera

identifier search engines

C,3 Comet (Profile); Comet, MetaMorpheus, MSGF+ (Full)
C,4 Comet (Profile); Comet, MetaMorpheus, MSGF+, X!Tandem

(Full)
3 Comet, MetaMorpheus, MSGF+ (Profile, Full)
4 Comet, MetaMorpheus, MSGF+, X!Tandem (Profile, Full)
6 Comet, MetaMorpheus, MSGF+, X!Tandem, MyriMatch,

OMSSA (Profile, Full)
aConfigurations that use the same single-search engine for profiling
and full-proteome search are not shown in this table. C,3 and C,4 use
different combinations of search engines in the two steps, whereas
configurations 3, 4, and 6 use the same combination of search engines
in both steps.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00614
J. Proteome Res. 2023, 22, 442−453

444

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00614/suppl_file/pr2c00614_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00614/suppl_file/pr2c00614_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00614/suppl_file/pr2c00614_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00614/suppl_file/pr2c00614_si_002.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00614?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Investigation (CAMPI).42 The list of species and correspond-
ing Uniprot proteome are reflected in Supporting Information
Table S1, and full details of the sample preparation and
processing are available in the original study.42 The RAWs file
used in this study (samples S07 and S11) were downloaded
from ProteomeXchange with the data set identifier
PXD023217.
The known species and strain composition of the sample

allow one to test the pipeline performance of a multispecies
FASTA database and determine potential configuration
options for future studies. The single RAW file was run
through the pipeline using individual and multiple search
engines and multiple ppm-error settings, and the number of
proteomes selected during profiling along with the PSM,
peptide, and protein identifications during the full-proteome
step were recorded along with the runtime of each case to
benchmark the performance of the different search algorithms
and the FASTA generation method.
We tested each search engine individually in both profile and

full-proteome steps. We also tested using different combina-
tions of search engines as shown in Table 1. Each combination
was tested at 5, 10, and 20 ppm error rate for both precursor
and fragment to benchmark error settings and the correspond-
ing runtime and identifications.
We additionally investigated using 90% and 80% of NSAF

for the profiling step to probe the number of proteomes
selected during profiling and the resulting accuracy during the
full-proteome step.
The CAMPI study also analyzed a fecal sample, which we

included in our study. Raw mass spectrometry data was
generated from a fecal sample obtained from a 33 year old
omnivorous nonsmoking woman. The RAW files used in this
study (sample F07) were downloaded from ProteomeXchange
with the data set identifier PXD023217.
We tested the fecal data with the same parameters as the S07

and S11 samples previously mentioned.
Label-Free Human Mucosal−Luminal Interface Data

Set. Human musosal−luminal interface (HMI) samples were
collected during endoscopy from the ascending colon of eight
children.21 The bacteria in the samples were isolated,
processed, and digested with trypsin and run with a 4 h
gradient on a Q-Exactive mass spectrometer to produce a total
of eight RAW files. Full details of the sample preparation and
processing are available in the original study.21 These eight files
were downloaded from ProteomeXchange with the data set
identifier PXD003528.
The eight samples were run through the pipeline using the

six search engines as the only engine for both profiling and the
full-proteome steps at 5 ppm error and the C,3 and C,4
combinations from Table 1 at both 5 and 10 ppm. The
pipeline was set to select the top 90% of NSAF for species
selection for the full-proteome step in all cases.
We additionally ran the C,3 and C,4 combinations at 5 and

10 ppm error using semispecific protease cleavage to
benchmark the effect of using a semispecific setting versus
fully specific.
Label-Free Wastewater SD6 Data Set. Microbial

communities were sampled from the surface of the anoxic
treatment phase at a biological wastewater treatment plant in
Luxembourg.43 The SD6 sample used in this paper was
collected on October 12, 2011. The SD6 sample was prepared
for mass spectrometry, split into six fractions, and run on a Q-
Exactive mass spectrometer set to higher-energy collision

dissociation to produce a total of six RAW files. Full details of
the sample preparation are available in the original study.43

The six RAW files were downloaded from PeptideAtlas with
the data set identifier PASS00577.
The six fractions were run through the pipeline using the

same search engine combinations as described for the HMI
data set and grouped together as a single sample for data
analysis.
Multiplexed Colon Cancer (CO) Data. Raw mass

spectrometry data was generated by The National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) (study ID PDC000117).44 Tissue samples from 100
patients were collected from both a tumerous and a
nontumerous site on the colon of each patient. The samples
were prepared for mass spectrometry by using trypsin as a
digestion reagent and TMT-10 as an isobaric labeling reagent.
The 22 TMT-10 samples were fractionated using a reverse-
phased HPLC with a C18 column to produce 12 fractions for
each sample and run on a Thermo Scientific Q-Exactive Plus
mass spectrometer set to high-energy collision dissociation
(HCD) and the data-dependent acquisition (DDA) set to the
top 12 spectra to generate a total of 264 RAW files that were
used in the data analysis pipeline. Full details on the sample
preparation are available in the original study,14 and all data are
available on the CPTAC Web site44 with the data set identifier
PDC000116.
The C,4 at 10 ppm search engine configuration (specific,

90% of NSAF) was used for this data set based on the results
from the other data sets along with the settings used for all data
sets described previously, but TMT 10-Plex of K and TMT 10-
plex of the N-term were added as fixed modifications.
The PSM expression ratios obtained after the search were

normalized relative to the reference channel(s). PSMs were
grouped by sample, modified sequence, and protein and their
median ratio was taken to be the expression ratio of the
corresponding peptide. The peptides were then mapped to
individuals and phenotypes. The peptides were then
normalized by dividing each by the median for that channel.
These peptides were then filtered to include only those that
had values in at least 50% of the channels with a channel being
a ratio for an individual for a given phenotype (cancer or
normal).
Peptide ratios were log2 transformed. Missing values were

imputed using PEMM40 with a phi value of 0; PEMM uses a
penalized EM algorithm to incorporate a missing data
mechanism for imputation of missing values.
The median of the log2 peptide expressionratios for a protein

was taken to be the protein expression ratio. These protein
expression ratios were normalized to have equal medians (0)
per phenotype of an individual and run through DEqMS41 to
identify differentially expressed proteins. The DEqMS results
were filtered to only include proteins with a Benjamini and
Hochberg (BH) adjusted p-value of less than 0.05.
Pipeline Availability

MetaProD, all source code, software, requirements, installation
instructions, and full documentation are available on GitHub at
https://github.com/mgtools/MetaProD. Information about a
publicly available Amazon EC2 image with MetaProD, all
required software, and example projects are available in the
GitHub documentation.
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■ RESULTS AND DISCUSSION

Evaluation of MetaProD Using the CAMPI Data Sets
Because the SIHUMIx data sets (S07 and S11) have known
bacterial composition, we can use them to evaluate the impacts
of different parameters on the performance of the two steps of
MetaProD (profiling and full-proteome search). The profiling
performance of the various search engines and ppm settings for
the S07 sample at 90% of NSAF are reflected in Figure 2a and
both the S07 and S11 samples for both 80% and 90% of NSAF
in Supporting Information Tables S2, S3, S5, and S6. The

SIHUMIx data sets have a potential of eight proteomes
corresponding to the eight species listed in Supporting
Information Table S1. Supporting Information Table S2
indicates that most combinations identified three accurate
and zero inaccurate proteomes at 80% NSAF for the S07 data
set with a few of the combinations identifying inaccurate
proteomes, particularly at 20 ppm error. Supporting
Information Table S3 indicates that at 90% of NSAF for the
S07 data set, four of the search engines (Comet, MSGF+,
OMSSA, and X!Tandem) selected five accurate proteomes

Figure 2. Profile and full-proteome performance of the different engine combinations for the SIHUMIx S07 data set at 90% of NSAF. (a) Profile
performance of the search engine combinations showing the number of correct and inaccurate proteomes selected during the profile step along
with the runtime of the SearchGUI step for the combination. (b) Full-proteome performance of the search engine combinations showing the total
number of PSMs identified along with the number of PSMs believed to come from species not present in the sample. The runtime for both
SearchGUI steps (profile + proteome) for each combination is also shown.
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during the profile step while MyriMatch selected four and
MetaMorpheus only selected three with MSGF+ showing the
highest number of incorrect proteomes (five) among the
individual search engines with the rest showing only one or
two incorrect. Comet (213 s), MyriMatch (243 s), and X!
Tandem (349 s) showed the quickest profile runtime with
MSGF+ (1784 s) and OMSSA (2710 s) showing the slowest.
For the C,3 and C,4 combinations, the number of incorrect
proteomes increased for a 20 ppm error rate versus 5 and 10
ppm error. Using multiple search engines for the profile step
resulted in significantly increased numbers of incorrect
proteomes along with significantly increased runtime. Increas-
ing the ppm error rate for the profile step also resulted in an
increase of runtime overall due to an increase in search
complexity, particularly as more search engines were used.
For the S11 data set, as shown in Supporting Information

Tables S5 and S6, most combinations identified four or five
accurate proteomes with one or two inaccurate proteomes.
Increasing the number of search engines used during the
profile greatly increased the number of inaccurate proteomes
selected with the 3 (5 ppm) combination resulting in 15
inaccurate proteomes selected and the 6 (20 ppm)
combination resulting in 48 inaccurate proteomes. The trend
shown with the S07 data set continues with Comet (1482 s)
showing the quickest profile performance at 90% of NSAF and
multiple search engines and higher ppm error drastically
increasing the profiling time with the 6 search engine (20
ppm) combination being the slowest at 89 317 s.
Based on these results, we chose Comet by itself to select the

species of interest during the profile step as other combinations
either resulted in more inaccurate proteomes or significantly
increased runtime. We also chose the 90% NSAF combination
over the 80% combination due to the increased number of
accurate proteomes selected, but note that 80% NSAF may
result in fewer inaccurate proteomes and this setting may be
adjusted to reflect the goal of a researcher.
The number of PSMs identified from the full-proteome

search, accuracy (percent of PSMs from species believed to be
in the sample), and runtimes for the various search engine and
ppm combinations are show in Figure 2b for the S07 data set
and Supporting Information Tables S4 and S7 for the S07 and
S11 data sets. MyriMatch and OMSSA showed a clear decrease
in the number of PSMs identified compared to the other
individual search engines (Comet, MetaMorpheus, MSGF+,
and X!Tandem) for both data sets. The C,4 combination at 10
ppm error resulted in the highest number of overall PSM
identifications for the S07 data set and the third highest for the
S11 data set with 4 (10 ppm) and 3 (10 ppm) being the
highest. MSGF+ showed the lowest accuracy among the
individual search engine combinations for the S07 data set and
X!Tandem the lowest for the S11 data set followed by MSGF+.
The number of inaccurate PSMs increased if multiple search
engines were used during profiling. Five and 10 ppm error
rates showed a relatively similar performance with slightly
more PSMs identified at 10 ppm, but the 20 ppm error rate
showed both a decrease in the number of PSMs identified and
an increase in the percent of inaccurate PSMs.
We also generated species-level breakdown of the S07 and

S11 data sets using both NSAF and peptide counts as shown in
Supporting Information Figure S3. In all cases, B. thetaiotao-
micron, Blautia sp. YL58, and E. coli were the top three species
identified with the expression of the remaining species, such as

Erysipelatoclostridium ramosum, varying depending on the
sample and method used.
We compared the MetaProD identification results for the

S07 data set using the combination resulting in the highest
number of PSM identifications (C,4 10 ppm) as well as X!
Tandem (5 ppm) with the reported CAMPI results.42 CAMPI
used two types of search database: a reference database and a
multiomic database, where the reference database combined
reference proteomes of the known strains (except for B.
producta, for which the whole genus Blautia was used) and the
multiomic database was generated from metagenomic and
metatranscriptomic data sequenced from a matching sample.
Table 2 shows that MetaProD identified slightly more PSMs

compared to the CAMPI results, particularly for the C,4
combination (21 558 PSMs), but we could attribute this to
different configurations of these two approaches (e.g., the
number of search engines and the ppm parameter) and
differences in the Uniprot databases.
Table 3 shows the species breakdown of the protein

identifications from our study (C,4 10 ppm) and those

reported by the CAMPI study. MetaProD identified 2871 total
unique nonhuman/non-CRAP proteins. The top five most
abundant species identified by MetaProD are all true species in
the SHIUMIx data set. MetaProD showed significantly more
resulting from B. producta and E. coli, whereas CAMPI showed
a more significant percentage of its proteins resulting from B.
thetaiotaomicron. It should be noted that the CAMPI study
reported that they did not have a reference proteome available
for B. producta, which may have resulted in less identifications
for that particular species for their pipeline and thus affected
the overall percentages of each species. The MetaProD results

Table 2. Comparison of the Number of PSMs and % of
Spectra for MetaProD versus the Reported Results from the
CAMPI Study

combination no. of PSMs % of total spectra in samplea

X!Tandem (5 ppm) 20 201 43.12
C,4 (10 ppm) 21 558 46.02
CAMPI Reference (5 ppm) 18 805 40.14
CAMPI Multi-Omic (5 ppm) 20 085 42.87
a% of total spectra is based the total spectra of 46 847 for the S07
sample reported by the CAMPI study.

Table 3. Species Breakdown of the Proteins Found by Our
Pipeline vs That Reported in the CAMPI Study

species % MetaProD proteins % CAMPI proteins

B. thetaiotaomicron 53.95 82.77
B. producta 19.78 0.4
E. coli K-12 14.84 7.18
A. caccae 6.13 6.24
C. ramosum 3.69 0.55
Blautia argia 1.60a 0
C. butyricum 0 1.19
B. longum 0 0.99
Bacteroides doreia 0 0.41a

L. plantarum 0 0.21
Clostridiales bacteriuma 0 0.06a

aThose in bold are species not among the eight species present in the
sample.
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were more similar to the reported CAMPI results using a
metagenomic database along with their Unipept results, both
of which would not have the issue with Blautia. MetaProD
missed low-abundance species including B. longum (0.99%), C.
butyricum (1.19%), and L. plantarum (0.21%). There are false
positives among the low-abundance species, identified by
either MetaProD or CAMPI. This suggests that it may be
desirable to not include low-abundance ones to avoid
introducing false identification of bacterial species when
analyzing metaproteomic data sets with unknown species
composition.
We also evaluated the full-proteome performance of the fecal

F07 data set at both 80% and 90% NSAF for all the
combinations as with S07 and S11 as shown in Supporting
Information Tables S8 and S9. For most combinations, more
PSMs, peptides, and proteins were identified using the 90%
NSAF setting with the exceptions being using Myrimatch and
OMSSA as the only search engines and the 4 and 6 search
engine combinations. The highest number of PSMs (74 385)
identified was by the C,4 (10 ppm) combination at 90% of
NSAF and the 4 (10 ppm) combination (74 608) at 80% of
NSAF. However, the runtime of this 4 (10 ppm) combination
was 318 min compared to 182 min for the C,4 (10 ppm)
combination.
For the F07 data set, we also generated a family-level

breakdown of the results using both NSAF and peptide count
based on the C,4 (10 ppm) combination as shown in Figure 3.
The top five families identified were Lachnospiraceae,
Oscillospiraceae (a heterotypic synonym of Ruminococcaceae),
Streptococcaceae, Bifidobacteriaceae, and Eubacteriaceae, which is
consistent with the CAMPI study.

Analysis of the Human Mucosal−Luminal Interface (HMI)
Data Set
We used MetaProD to analyze the HMI data set and compared
its performance with HAPiID (MSGF+ search engine) and
MetaPro-IQ. We ran MetaProD in two different settings: one
using the full-search database including human, contaminants,
and bacteria, and the other one using a search database
consisting of bacterial proteins only. Table 4 shows the
MetaProD identification results using the C,4 configuration at
10 ppm and specific cleavage for the protease. We also used
this data set with the full-search database to evaluate many of
the search engine combinations and to evaluate changing from
specific to semispecific cleavage as shown in Supporting
Information Tables S10 and S11.
Results from HAPiID (which uses a curated search database

of 3357 genomes based on human gut bacteria) and MetaPro-
IQ (which uses the integrated gene catalog (IGC)45 containing
9.9 million genes generated from 1267 human gut samples as
the search database in a two-step approach) are also shown for
comparison. Using the bacteria-only search database resulted
in identification of fewer unique (unmodified sequence)
bacterial peptides in MetaProD compared to using the full-
search database also containing human proteins and
contaminants for each sample except HM503. About 1.5% of
the total peptides that were assigned to humans using the full-
search database would have also been assigned to bacteria in
the absence of human sequences. The higher number of total
identifications and potential for misclassification for some
peptides suggest that it may be desirable to include human
proteins and contaminants in a database search to reduce false
identification of bacterial peptides and proteins, especially
when the samples come from humans or otherwise could
contain human proteins.
The runtimes of the three pipelines were also compared as

reflected in Supporting Information Table S12. MetaProD

Figure 3. Breakdown of the family-level identifications for the C,4 10 ppm configuration on the CAMPI F07 data sets using NSAF and peptide
counts.

Table 4. Number of Peptides Identified Compared to HAPiID-MSGF and MetaPro-IQ

HM403 HM415 HM454 HM455 HM466 HM467 HM494 HM503

MetaProD (Full, All)a 22 053 17 195 20 746 21 372 19 031 19 039 22 158 24 782
MetaProD (Full, Bac)b 12 833 12 072 16 795 19 809 12 941 14 951 19 410 23 244
MetaProD (Bac, Bac)c 12 367 11 633 16 351 19 557 12 303 14 400 19 176 23 284
HAPiID-MSGF+ 12 962 12 535 17 619 20 803 13 862 15 924 21 108 24 962
MetaPro-IQ 12 606 12 179 15 863 18 677 11 733 12 724 19 248 23 632

aIncludes bacteria, humans, and contaminants in the search database (Full) and keeps all identified peptides (All). bIncludes bacteria, humans, and
contaminants in the search database (Full) and keeps only the bacterial peptides (Bac). cIncludes only bacterial proteins in the search database
(Bac) and therefore only identifies bacterial peptides (Bac).
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shows improved performance in most cases as compared to
HAPiID and especially compared to MetaPro-IQ. Both
MetaProD and HAPiID use a similar two-step strategy with
HAPs, but the main difference is that HAPiID uses MSGF+ for
the first step and MetaProD uses Comet, by default.
Supporting Information Table S10 shows runtimes of the
individual search engines for MetaProD and shows that Comet
(4163 s) for both steps is significantly faster than MSGF+ for
both steps (35 042 s), and even though MetaProD used four
search engines for the proteome step, the overall speed of
Comet for profiling and then using four search engines for the
second step (28 418 s) is faster than using MSGF+ for both
steps while also providing more identifications overall for this
data set (244 476 PSMs for C,4 versus 201 785 PSMs for
MSGF+).
Analysis of the Wastewater MetaProteomics Data Set
The comparison between the search engines and specific
versus semispecific enzymes is available in Supporting
Information Tables S13 and S14. Similar to the HMI data
set, the C,4 10 ppm combination with specific protease
specificity showed the highest number of identifications
(21 884 PSMs and 11 250 peptides). Of these 11 250 peptides,
9798 were identified as belonging to bacterial species.
We pooled the results from all fractions and took the unique

unmodified sequences from the MetaProD results (8801
peptides) using the C,4 10 ppm (specific) combination and
compared its performance with other previously published
methods of protein identification that utilize a multiomic
(metagenomic and metatranscriptomic) database from match-
ing samples for metaproteomic data analysis. The two
multiomics-based approaches are Contig2Pro,46,47 which uses
proteins predicted (using FragGeneScan48) from assembly
contigs of matching metagenomic and metatranscriptomic data
to build a search database for metaproteomic data analysis, and
Graph2Pro,46,47 which uses a de Bruijn assembly graph (from
MegaHit49) to predict tryptic peptides to improve the use of
matching multiomic data for metaproteomic data and can be
used to approximate the upbounds of metaproteomic
identification. We filtered the Contig2Pro/Graph2Pro results
to match the 8−30 sequence length filtering used by
MetaProD. Table 5 summarizes the results. MetaProD (8801

peptides) performed slightly worse than the Contig2Pro
approach (9021 peptides) and worse than the Graph2Pro
approach (12 764 peptides) . We include a Venn diagram of
the overlap between the unique MetaProD results and the
unique filtered Contig2Pro/Graph2Pro (Metahit) results as
Supporting Information Figure S4, which shows roughly half of
the MetaProD peptides overlap with both Contig2Pro and
Graph2Pro, but 43% are unique to MetaProD. These results
suggest that MetaProD performs reasonably well on nonhu-
man metaproteomics such as wastewater data sets without
using matching metagenomic and/or metatranscriptomic data.

Identification of Differentially Expressed Proteins from
Multiplexed Colon Cancer Data

To demonstrate the utility of MetaProD for multiplexed
metaproteomic data analysis and for exploration of bacterial
proteins in human cancer tissues, we applied MetaProD to a
collection of colon cancer metaproteomic data. Figure 4 shows
that many peptides were only identified in a small fraction of
channels (a specific phenotype for a specific individual). We
first filtered out the peptides that were identified in less than
50% of the channels. For those retained, MetaProD applied
PEMM40 to imputate the missing abundance values for those
channels before estimating the quantification of proteins and
applying differential analysis. In total, MetaProD was able to
identify 3 515 558 unique PSMs (39.9% of the total spectra),
233 368 unique peptides, 9169 unique proteins, and 7670
unique differentially expressed proteins (BH-adjusted p-value
<0.05) in the colon cancer data set, and the full breakdown of
human versus bacteria and a comparison to the reported
CPTAC results14 is available in Table 6. There were
significantly more human PSMs (3 494 405) identified as
compared to bacterial PSMs (21 153). Many of the identified
PSMs were related to human blood, such as hemoglobin
(68 041 PSMs) and albumin (75 279 PSMs).
Figure 5 shows the volcano plot of the distribution of

MetaProD’s differentially expressed proteins (shown as genes).
In summary, MetaProD identified more differentially expressed
(including up- and downregulated) human proteins than
CPTAC (see Table 6). Figure 6 shows the overlap of the genes
that are upregulated in the cancerous samples identified by
MetaProD and CPTAC. Table 7 lists the top five up- and
downregulated proteins identified by MetaProD. Among the
top five upregulated results from MetaProD, the genes S100P,
GPRC5A, and FAP were among the differentially expressed
genes found by the CPTAC pipeline, but TRIM29 and
CALD1 were not. We note TRIM2950 and CALD151 have
both been implicated in colorectal type cancers, so this
suggests that the identification of these genes by our approach
is not erroneous. The top five downregulated genes identified
by MetaProD were found to be linked to cancer, including
LPAR1,52 CHGA,53 SYN2,54 GAP43,55 and NCAM1.56

CPTAC did not report a final list of downregulated genes,
and therefore a more direct comparison to their downregulated
results was not possible.
MetaProD was able to identify a significant number of

bacterial peptides from the colon cancer data set. Figure 7
shows a breakdown of the species composition based on the
full set of identified peptides. It shows that proteins associated
with a wide variety of bacterial species could be identified from
the cancer data sets, with the top 10 genuses explaining only
about 23% of identified proteins (the top three genuses are
Steptomyces, Pseudomonas, and Candiddatus). Supporting
Information Figure S5 shows the breakdown of the top 25
microbial species identification. As with human proteins, a list
of differentially abundant bacterial proteins was identified
(BH-adjusted p-value <0.05), and there were 10 bacterial
proteins that had an absolute value log2 ≥ 1 in Table 8.
Notably, all differentially abundant bacterial proteins meeting
this criteria were more abundant in the healthy samples
(negative fold-change values). It should also be noted that
none of the 10 bacterial matches were identified by peptides
that could have matched human proteins. Eight of the 10
proteins from Table 8 (A0A3M2LJ42 and R6WD61 had no
information) had Gene Ontology (GO) annotations available

Table 5. Identification Results for MetaProD on the
Wastewater Metaproteomic Data Set (SD6) Compared to
Other Pipelines

no. of PSMs no. of peptides

MetaProD 21 884 8 801
Contig2Pro 19 199 9 021
Graph2Pro 27 495 12 764
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in Uniprot, and this is shown in Supporting Information Figure
S6. Note that a single protein may have multiple annotations as
three proteins had four annotations, one protein had three, and
four proteins had one. Three of these eight proteins were
annotated as integral components of the membrane, and three
of them were related to translation, the ribosome, and rRNA
binding. The other two proteins did not share function with
any of the others.

■ CONCLUSION
MetaProD offers highly configurable options in a web-based
interface to be suitable for many metaproteomics-based mass
spectrometry applications (both label-free and multiplexed).

Figure 4. Total number of peptides selected when filtering results by the percent of missing channels prior to imputation for the colon cancer data
set.

Table 6. Identification Breakdown for the Colon Cancer
Data Set

no. of pep.
(no filter)

no. of
pep.
(filter)

no. of
prot.

no. of
diffa

no. of
upb

no. of
downc

MetaProD
Human

222 657 64 988 9142 7646 77 522

MetaProD
Bacteria

10 711 28 27 24 0 10

CPTAC
Pipeline

N/A N/A 6422 4744 31 417

aShows the number of differentially expressed proteins. bShows
upregulated (more expressed in cancer). cShows downregulated
proteins (more expressed in healthy).

Figure 5. Volcano plot of the differentially expressed proteins (shown as genes) in the colon cancer data set showing significantly more
downregulated genes.

Figure 6. Comparison of the overlap of the differentially expressed
upregulated genes with a fold change (FC) ≥ 2 and a p-value <0.05
found by the CPTAC pipeline and MetaProD.
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MetaProD performs well in terms of both number of
identifications and runtime compared to many other previously
published pipelines and has the potential to be expanded in the
future to integrate new algorithms or techniques and updated
as new versions of component software are deployed or as
Uniprot updates their database.
The web interface allows for a simple and quick way to

create new projects, modify settings, and administer many
projects at once with the potential for user and password-based
access. The resulting Web site allows for the potential for

results to be viewable by many users at once using a web
browser and can be deployed internally to keep results private
or publicly to allow for broader access.
MetaProD was also able to identify differentially expressed

human and bacterial proteins from a real-world CPTAC cancer
data set, showing one of the many useful applications of the
pipeline.
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Table 7. Top Five Human Proteins That Are More
Expressed in Colon Cancer Samples and Healthy Samples,
Respectively, Sorted by the Fold Change

accession gene description log2(FC)

E9PRL4 TRIM29 tripartite motif-containing
protein 29

1.77

P25815 S100P protein S100-P 1.63
A0A3B3ITN8 GPRC5A retinoic acid-induced protein 3 1.54
E9PGZ1 CALD1 caldesmon 1.53
A0A0D9SEN1 FAP prolyl endopeptidase FAP 1.52
Q6GPG7 LPAR1 lysophosphatidic acid receptor 1 −2.68
G5E968 CHGA chromogranin A −2.69
Q92777 SYN2 synapsin-2 −2.79
P17677 GAP43 neuromodulin −2.86
A0A0D9SF98 NCAM1 neural cell adhesion molecule 1 −3.12

Figure 7. Genus-level breakdown of the colon cancer data showing
the top 10 genuses by peptide count and the total percentage of any
remaining genus. The full set of identified peptides (unfiltered) was
used for this analysis.

Table 8. Top Differentially Abundant Bacterial Proteins
Identified from the Colon Cancer Data Set

accession PPID description log2(FC)
a

A0A1E3W7U5 UP000094472 0S ribosomal protein L6 −2.63
A0A3M2LJ42 UP000261811 uncharacterized protein −2.58
C7HS96 UP000003821 50S ribosomal protein

L24
−2.47

A0A2I9DAV0 UP000236569 3-hydroxyacyl-CoA
dehydrogenase

−1.95

A0A2 V2YZY8 UP000246635 Yip1-like protein −1.55
C7HT74 UP000003821 uncharacterized protein −1.40
A0A2 V2YQV4 UP000246635 uncharacterized protein −1.39
R6WD61 UP000018231 peptidase U32 family −1.26
C8XBG2 UP000002218 50S ribosomal protein L1 −1.21
A0A4R1UYP4 UP000295319 NAD(P)-dependent

dehydrogenase
−1.10

aPositive value indicates higher abundance in cancer samples, and
negative indicates higher abundance in healthy samples.
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