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Although it is widely considered, in many cases, to involve two separable stages (poor 
placentation followed by oxidative stress/inflammation), the precise originating causes of 
preeclampsia (PE) remain elusive. We have previously brought together some of the con-
siderable evidence that a (dormant) microbial component is commonly a significant part 
of its etiology. However, apart from recognizing, consistent with this view, that the many 
inflammatory markers of PE are also increased in infection, we had little to say about 
immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female 
urinary tract microbiomes as the main sources of the infection. We here marshall further 
evidence for an infectious component in PE, focusing on the immunological tolerance 
characteristic of pregnancy, and the well-established fact that increased exposure to the 
father’s semen assists this immunological tolerance. As well as these benefits, however, 
semen is not sterile, microbial tolerance mechanisms may exist, and we also review the 
evidence that semen may be responsible for inoculating the developing conceptus (and 
maybe the placenta) with microbes, not all of which are benign. It is suggested that when 
they are not, this may be a significant cause of PE. A variety of epidemiological and other 
evidence is entirely consistent with this, not least correlations between semen infection, 
infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we 
argue for a significant paternal role in the development of PE through microbial infection 
of the mother via insemination.

Keywords: preeclampsia, immunology, microbes, dormancy, semen, infection

“In one of the last articles which he wrote, the late Professor F.J. Browne (1958) expressed 
the opinion that all the essential facts about pregnancy toxemia are now available and that 
all that is required to solve the problem is to fit them together in the right order, like the 
pieces of a jigsaw puzzle. (1)”

“It appears astonishing how little attention has been given in reproductive medicine to 
the maternal immune system over the last few decades. (2)”

introdUCtion

Preeclampsia (PE) is a multifactorial disease of pregnancy, in which the chief manifestations are 
hypertension and proteinuria (3–11). It is commonest in primigravidae, where it affects some 3–5% 
of such pregnancies worldwide (10, 12, 13), and is associated (if untreated) with high morbidity and 
mortality (14–18). The incidence can be even greater in some geographical locations (19, 20). There 
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is much literature on accompanying features, and, notwithstand-
ing possible disease subdivisions (21, 22), the development of 
PE is typically seen as a “two-stage” process [e.g., Ref. (23–29)], 
in which in a first stage incomplete remodeling of spiral arteries 
leads to poor placentation. In a second stage, the resulting stress, 
especially hypoxia-induced oxidative stress (30–36) (and possibly 
hypoxia-reperfusion injury), then leads to the symptoms typical 
of later-pregnancy PE. However, the various actual originating 
causes of either of these two stages remain obscure. Many theories 
have been proposed [albeit a unitary explanation is unlikely (21)], 
and indeed, PE has been referred to as a “disease of theories”  
(1, 37–39). The only effective “cure” is delivery (40, 41), which 
often occurs significantly preterm, with its attendant complica-
tions for both the neonate and in later life (42, 43). Consequently, 
it would be highly desirable to improve our understanding of the 
ultimate causes of PE, so that better prevention or treatments 
might be possible.

The “two-stage” theory is well established, and nothing we 
have to say changes it. However, none of this serves to explain 
what “initiating” or “external” factors are typically responsible 
for the poor placentation, inflammation, and other observable 
features of PE (44).

Microbes are ubiquitous in the environment, and one poten-
tial external or initiating factor is low-level microbial infection. 
In a recent review (44), we developed the idea (and summarized 
extensive evidence for it) that a significant contributor to PE might 
be a [largely dormant (45–48) and non-replicating] microbiome 
within the placenta and related tissues, also detectable in blood 
and urine. Others [e.g., Ref. (49–56)] have drawn similar conclu-
sions. Interestingly, recent analyses (21, 57) of placental gene 
expression in PE implicate changes in the expression of trigger-
ing receptor on myeloid cells-1 and the metalloprotease INHA, 
and in one case (21) also lactotransferrin, that also occur during 
infection (58–61). Although we highlighted the role of antibiot-
ics as potentially preventative of PE (44), and summarized the 
significant evidence for that, we had relatively little to say about 
immunology, and ignored another well-known antidote to infec-
tious organisms in the form of vaccines. There is certainly also 
an immune component to PE [e.g., Ref. (26, 62–70) and below]. 
One of the main theories of (at least part of the explanation of) 
PE is that of “immune maladaptation” (62, 64, 66, 71). Thus, 
the main focus of the present analysis is to assess the extent to 
which there is any immunological evidence for a role of infectious 
agents (and the utility of immunotolerance to or immunosup-
pression of them) in PE. Figure 1 summarizes our review in the 
form of a “mind map” (72). We begin with the broad question of 
immunotolerance, before turning to an epidemiological analysis. 
A preprint has been lodged in bioRxiv (73).

iMMUne toLeranCe in preGnanCy

Much of the original thinking on this dates back to Sir Peter 
Medawar (74–79), who recognized that the paternal origin of 
potentially half the antigens of the fetus (80) created an immu-
nological conundrum: it should normally be expected that the 
fetus’s alloantigens would cause it to be attacked by the maternal 
immune system as “foreign.” There would therefore have to be an 

“immune tolerance” (79, 81–83). Historically it was believed that 
the fetus is largely “walled off ” from the mother (84); however, 
we now appreciate (85–88) that significant trafficking of fetal 
material across the placenta into the maternal circulation and 
vice versa occurs throughout pregnancy. Indeed, this is the basis 
for the development of non-invasive prenatal testing. In line with 
this, grams of trophoblast alloantigens are secreted daily into the 
maternal circulation during the third trimester (Figure 2), and 
this is related to the prevalence of PE (89–95). Consequently, both 
the concept and the issue of immune tolerance are certainly both 
real and important. At all events, the immunobiology of the fetus 
has been treated in theory largely in the way that a transplanted 
graft is treated, and uteroplacental dysfunction [leading to PET 
and intrauterine growth restriction (IUGR)] has in some cases 
been regarded as a graft rejection [e.g., Ref. (70, 96–102)]. Clearly 
there are relationships between the immunogenicity of the for-
eign agent and the responsiveness of the host; to this end, Zelante 
et al. (103) recognize the interesting similarities between toler-
ance to paternal alloantigens (as in pregnancy) and the tolerance 
observed in chronic fungal infections. This said, the host–graft 
analogy is increasingly seen as somewhat naive (104–106).

the Clinical Course of automimmune 
disease during pregnancy: an 
inconsistent effect
The seminal observation by Philip Hench that the symptoms of 
the rheumatoid arthritis (RA) were frequently and dramatically 
ameliorated by several conditions, including pregnancy (107), led 
to the discovery of cortisone (108) and gave unique insights into 
the complex interaction between the maternal immune system 
and the developing fetal/placental unit. Contemporary data 
suggests that the improvement in RA is not ubiquitous as first 
thought. Amongst all pregnant women about 25% of women have 
no improvement in their symptoms at any stage in pregnancy and 
in a small number of cases the disease may actually worsen (109). 
The process by which pregnancy affects disease activity in RA is 
not completely understood and several putative mechanisms have 
been proposed. Of interest, although plasma cortisol rises during 
pregnancy and was initially thought to be key in the amelioration 
of symptoms, there is actually no correlation between cortisol 
concentrations and disease state (110). It has also been reported 
that the degree of maternal and paternal MHC mismatch has 
been shown to correlate with the effect of the RA remission 
during pregnancy (111), leading to the hypothesis that the early 
immunological events in pregnancy that establish tolerance to 
the fetal allograft contribute to RA remission. Clearly, this may 
also account for the disparity in response to pregnancy. RA is not 
unique in being the only autoimmune disease to be profoundly 
altered by pregnancy. Although less well studied, non-infectious 
uveitis tends to improve during pregnancy from the second tri-
mester onward, with the third trimester being associated with the 
lowest disease activity (112). Again, the mechanism underlying 
this phenomenon is not completely elucidated.

It is now generally accepted (113) that, notwithstanding the 
sweeping generalization, autoimmune diseases with a strong cel-
lular (innate) pathophysiology (RA, multiple sclerosis) improve, 
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FiGUre 1 | A “mind map” (72) of the review. Start at “midnight” and read clockwise.
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whereas diseases characterized by autoantibody production such 
as systemic lupus erythematous and Grave’s disease tend toward 
increased severity in pregnancy.

We have previously reported an association between pregnancy 
and the risk of subsequent maternal autoimmune disease which 
was also related to the mode and gestation of delivery. There was 
an increased risk of autoimmune disease after cesarean section 
may be explained by amplified fetal cell traffic at delivery, while 
decreased risks after abortion may be due to the transfer of more 
primitive fetal stem cells (114).

Mechanisms of immune tolerance during 
pregnancy
Following the recognition of maternal immunotolerance, a chief 
discovery was the choice of HLA-G, a gene with few alleles, for 
the antigens used at the placental interface. Thus, the idea that 
placental HLA-G proteins facilitate semiallogeneic pregnancy 
by inhibiting maternal immune responses to foreign (paternal) 
antigens via these actions on immune cells is now well established 
(115–120).

It is also well established that regulatory T cells (Tregs) play 
an indispensable role in maintaining immunological unrespon-
siveness to self-antigens and in suppressing excessive immune 
responses deleterious to the host (121). Consequently, much 
of present thinking seems to involve a crucial role for Tregs in 
maintaining immunological tolerance during pregnancy (70, 77, 
122–132), with the result that effector T cells cannot accumulate 
within the decidua (the specialized stromal tissue encapsulating 
the fetus and placenta) (133).

In an excellent review, Williams et al. (134) remark “Regulatory 
T cells (Tregs) are a subset of inhibitory CD4+ helper T cells that 
function to curb the immune response to infection, inflamma-
tion, and autoimmunity.” “There are two developmental pathways 
of Tregs: thymic (tTreg) and extrathymic or peripheral (pTreg). 
tTregs appear to suppress autoimmunity, whereas pTregs may 
restrain immune responses to foreign antigens, such as those 
from diet, commensal bacteria, and allergens.” Their differential 
production is controlled by a transcription factor called Foxp3.

Further, “a Foxp3 enhancer, conserved noncoding sequence 
1 (CNS1), essential for pTreg but dispensable for tTreg cell 
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FiGUre 2 | Effective lowering of the normal immunological response to fetal cell trafficking [sometimes referred to as “suppressed” but in fact a highly dynamic state 
(104, 106)] leads to a normal pregnancy, while its failure can lead to preeclampsia. We note too that other Thelper populations may play roles in the physiologic and 
pathologic immune interactions between mother and offspring.
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generation, is present only in placental mammals. It is suggested 
that during evolution, a CNS1-dependent mechanism of extra-
thymic differentiation of Treg cells emerged in placental animals 
to enforce maternal–fetal tolerance” (135).

Williams et  al. conclude that “These findings indicate that 
maternal–fetal tolerance to paternal alloantigens is an active 
process in which pTregs specifically respond to paternal antigens 
to induce tolerance. Thus, therapies should aim not to suppress 
the maternal immune system but rather to enhance tolerance. 
These findings are consistent with an increase in the percentage 
of Tregs during pregnancy and with no such increase in women 
with recurrent pregnancy loss (136)” (134). Thus maternal toler-
ance is based on exposure to the paternal alloantigens, although 
mechanisms such as the haem oxygenase detoxification of haem 
from degrading erythrocytes (137) are also important. Note too 
that pregnancy loss is often caused by automimmune activity 
(138) (and see later).

Additionally, Treg cells have several important roles in the 
control of infection [e.g., Ref. (139–144)]. These include moderat-
ing the otherwise potentially dangerous response to infection and 
being exploited by certain parasites to induce immunotolerance.

Finally, here, it is also recognized that the placenta does allow 
maternal IgG antibodies to pass to the fetus to protect it against 
infections. Also, foreign fetal cells persist in the maternal circula-
tion (145) [as does fetal DNA (146, 147), nowadays used in pre-
natal diagnosis]. One cause of PE is clearly an abnormal immune 

response toward the placenta. There is substantial evidence for 
exposure to partner’s semen as prevention for PE, largely due to 
the absorption of several immune modulating factors present in 
seminal fluid (148). We discuss this in detail below.

innate and adaptiVe iMMUnity

Although they are not entirely independent (149, 150), and 
both respond to infection, it is usual to discriminate (the faster) 
innate and (the more leisurely) adaptive immune responses  
[e.g., Ref. (151–155)]. As is well known [reviewed recently (156)], 
the innate immune system is responsible for the recognition of 
foreign organisms such as microbes. It would be particularly 
convenient if something in the immune response did actually 
indicate an infection rather than simply any alloantigen, but 
unfortunately—especially because of the lengthy timescale over  
which PE develops—innate responses tend to morph into adaptive 
ones. This means (i) that there may be specific signals from early 
innate events that may be more or less specific to innate responses 
and (ii) that it also does not exclude the use of particular patterns 
of immune responsive elements (157–159) to characterize disease 
states.

An alteration of the immune system is widely recognized 
as an accompaniment to normal pregnancy (77, 104–106, 127, 
160–162), and especially in PE (63–65, 67, 69–71, 163–170), and 
it is worth looking at it a little more closely.
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The innate immune system responds to microbial components 
such as lipopolysaccharide (LPS) via cell membrane receptors. 
Innate immune cells express a series of evolutionarily conserved 
receptors known as pattern-recognition receptors (PRRs). PRRs 
recognize and bind conserved sequences known as pathogen-
associated molecular patterns (PAMPs). Bacterial LPS and 
peptidoglycan, and double stranded viral RNA are unique to 
microbes and act as canonical PAMPs, while the main family of 
PRRs is represented by the Toll-like receptors (TLRs) (171, 172). 
Downstream events, as with many others (173, 174) converge on 
the NF-κB system and/or interferon, leading to the release of a 
series of inflammatory cytokines such as IL-2, IL-6, IL-8, TNF-α, 
and especially IL-1β.

Matzinger’s “danger model” (175–180) [and see Ref. (79) and 
Figure 3] suggested that activation of the immune system could 
be evoked by danger signals from endogenous molecules expelled 
from injured/damaged tissues, rather than simply from the rec-
ognition of non-self (although of course in the case of pregnancy 
some of these antigens are paternal alloantigens). Such endog-
enous molecules are referred to as damage-associated molecular 
patterns (DAMPs), but are not our focus here, albeit they likely 
have a role in at least some elements of PE (181). We shall see later, 

however, that Matzinger’s theory is entirely consistent with the 
kinds of microbial (and disease) tolerance that do seem to be an 
important part of pregnancy and PE [and see Ref. (182)].

The maternal innate immune system plays an important role 
both in normal pregnancy and in particular in hypertensive dis-
orders of pregnancy including preeclampsia (PE) (167, 183–189). 
One persuasive and widely accepted view is that normal pregnancy 
is characterized by a low-grade systemic inflammatory response 
and specific metabolic changes, and that virtually all of the fea-
tures of normal pregnancy are simply exaggerated in PE (44, 183, 
190, 191). Certainly it is long established that “Normal pregnancy 
and PE both produce inflammatory changes in peripheral blood 
leukocytes akin to those of sepsis” (183), and there are innate 
immune defenses in the uterus during pregnancy (160). Normal 
pregnancy has been considered to be a Th2 type immunologi-
cal state that favors immune tolerance in order to prevent fetal 
rejection (137). However, normal pregnancy actually fluctuates 
between pro- (implantation and placentation; parturition) and 
anti-inflammatory (fetal growth) phases (105, 106). By contrast, 
PE has been classically described as a Th1/Th2 imbalance (125, 
164, 192–194), but as mentioned above [and before (44)], recent 
studies have highlighted the role of Tregs as part of a Th1/Th2/
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Th17 paradigm (167, 168). This leads to the question of whether 
there is some kind of trade-off between the responses to paternal 
alloantigens and those of microbes.

a trade-off for Mating and immune 
defense against infection
Certainly there is some evidence for a trade-off between mating 
and immune defense against infection (195–197). Consistent 
with this (albeit with much else) is the fact (198–200) that preg-
nancy is associated with an increased severity of at least some 
infectious diseases. There is evidence (201, 202) that “adaptive 
immune responses are weakened, potentially explaining reduced 
viral clearance. Evidence also suggests a boosted innate response, 
which may represent a compensatory immune mechanism to 
protect the pregnant mother and the fetus and which may imply 
decreased susceptibility to initial infection” (199).

tHe roLe(s) oF CoMpLeMent in pe

Complement, or more accurately the complement cascade, is 
an important part of the innate immune system that responds 
to infection. Later (downstream) elements also respond to the 
adaptive immune system. Our previous review (44) listed many 
proteins whose concentrations are changed in both infection 
and PE. Since we regard low-level infection as a major cause of 
the inflammation observed in PE, one would predict that the 
complement system is activated in PE, and this observation is 
amply borne out (203–217). Some of the details are mentioned 
in Table 1.

The complement cascade may be activated in three main ways 
(Figure 4), known as classical, alternative or lectin pathways (150, 
206, 208, 228, 229). Complement activation by the classical, alter-
native or lectin pathway results in the generation of split products 
C3a, C4a, and C5a with proinflammatory properties.

Because both innate and adaptive immunity can activate ele-
ments of the downstream complement system, it is hard to be 
definitive, but there is some evidence that elements such as Ba and 
Bb [the latter of known structure (230)] are selectively released 
during infection, very much upstream and in the alternative 
pathway (208, 228, 229, 231–233). Most importantly (Table  1), 
while probably not a specific serum marker, there is considerable 
evidence that Bb levels are increased in PE, arguably providing 
further evidence for a role of infectious agents in the etiology of PE.

We might also note that C1q−/− mice shows features of PE 
(234), consistent with the view that lowering levels of anti-
infection response elements of the complement system leads to 
PE, consistent again with an infectious component to PE.

indUCtion oF toLeranCe By 
eXposUre to antiGens and oUr 
Main HypotHesis: roLes oF seMen 
and seMinaL pLasMa

A number of groups [e.g., Ref. (118, 148, 235–240)] have argued 
for a crucial role of semen in inducing maternal immunological 
protection, and this is an important part of our own hypothesis 

here. The second component, however, is a corollary of it. If it is 
accepted that semen can have beneficial effects, it may also be that 
in certain cases it can also have harmful effects. Specifically, we 
rehearse the fact that semen is not sterile, and that it can be a cru-
cial source of the microbes that may, over time, be responsible for 
the development of PE (and indeed other disorders of pregnancy, 
some of which we rehearse).

Semen consists essentially of the sperm cells suspended in a 
fluid known as seminal plasma (241). Seminal plasma contains 
many components (242, 243), such as transforming growth 
factor β (TGF-β) (236, 244–248), and there is much evidence 
that a number of them are both protective and responsible for 
inducing the immune tolerance observed in pregnancy. Thus, 
in a key article on the issue, Robertson et al. state, “TGF-β has 
potent immune-deviating effects and is likely to be the key agent 
in skewing the immune response against a Type-1 bias. Prior 
exposure to semen in the context of TGF-β can be shown to be 
associated with enhanced fetal/placental development late in 
gestation. In this article, we review the experimental basis for 
these claims and propose the hypothesis that, in women, the 
partner-specific protective effect of insemination in PE might be 
explained by induction of immunological hyporesponsiveness 
conferring tolerance to histocompatibility antigens present in the 
ejaculate and shared by the conceptus” (148).

Transforming growth factor-β and prostaglandin E [also 
prevalent in seminal fluid (249)] are potent Treg cell-inducing 
agents, and coitus is one key factor involved in expanding the 
pool of inducible Treg cells that react with paternal alloantigens 
shared by conceptus tissues (250–253).

Both in humans and in agricultural practice, semen may be 
stored with or without the seminal fluid (in the latter cases, the 
sperm have been removed from it and they alone are used in the 
insemination). However, a number of articles have shown very 
clearly that it is the seminal fluid itself that contains many pro-
tective factors, not least in improving the likelihood of avoiding 
adverse pregnancy outcomes (148, 197, 254, 255). Thus semen is 
the preferred substrate for inducing immunotolerance and hence 
protection against PE.

eVidenCe FroM epideMioLoGy—
seMen Can Be proteCtiVe  
aGainst pe

As well as those [such as preexisting diseases such as hyperten-
sion and diabetes (256, 257), that we covered previously (44)], 
there are several large-scale risk (or antirisk) factors that correlate 
with the incidence of PE. They are consistent with the idea that a 
woman’s immune system adapts slowly to (semen) proteins from 
a specific male partner (148, 235, 236), and that the content of 
semen thus has major phenotypic effects well beyond its donation 
of (epi)genetic material. We believe that our hypothesis about the 
importance of semen in PE has the merit of being able to explain 
each of them in a simple and natural way:

 1. The first pregnancy with any given partner means an increased 
susceptibility to PE (5, 258, 259).
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taBLe 1 | Changes in the complement system during PE and related pregnancy disorders.

Complement element details reference

Bb Raised in PE, OR 2.1 (CI 1.4–3.1, P < 0.0003). (205)

Bb Adjustment for risk factors did not attenuate the association between an elevated Bb and preeclampsia [adjusted 
odds ratio (aOR) 3.8, 95% CI 1.6–9, P < 0.002] in the cohort. After removing women with plasma obtained before 
10 weeks, the adjusted OR of Bb in the top decile for preeclampsia was 6.1 (95% CI 2.2–17, P < 0.0005)

(204)

Bb Median Bb levels were higher in the maternal plasma of severe PE subjects (n = 24) than in controls (n = 20), 
1.45 ± 1.03 versus 0.65 ± 0.23 µg/mL, P < 0.001

(214)

Bb Preterm birth. Women with Bb in the top quartile were 4.7 times more likely to have an SPTB less than 34 weeks’ 
gestation as compared with women who had levels of Bb in the lower 3 quartiles (CI 1.5–14, P < 0.003)

(203)

Bb Maternal Bb levels were significantly higher in the preeclamptic group than in the nonpreeclamptic group  
(P < 0.003 in all studied, P < 0.007 in African Americans)

(218)

Bb Pyelonephritis. Pregnant women with pyelonephritis had a higher median plasma concentration of fragment  
Bb than those with a normal pregnancy (1.3 mg/ml, IQR: 1.1–1.9 vs. 0.8 mg/ml, IQR: 0.7–0.9; P < 0.001). No 
significant differences were observed in the median maternal plasma concentration of fragment Bb between 
pregnant women with pyelonephritis who had a positive blood culture and those with a negative blood culture

(219)

Bb Median amniotic fluid Bb levels were also significantly higher (P = 0.03) in preeclamptic women than in normal 
pregnant women (1,127 versus 749 ng/mL). The alternative complement pathway is principally involved

(215)

Bb, C3a, C5a, and MAC Increased significantly in EOSPE (all P < 0.01) and LOSPE (P-value: 0.027, <0.001, 0.001, and <0.001,  
respectively) compared with Early/Late control

(216). See also (220)

Bb or C3a Women who were obese with levels of Bb or C3a in the top quartile were 10.0 (95% confidence interval, 3.3–30) 
and 8.8 (95% confidence interval, 3–24) times, respectively, more likely to develop preeclampsia compared with the 
referent group at 20 weeks gestation

(221)

C1q and C4d Increased significantly in LOSPE (P-value: 0.003 and.014, respectively) compared with L-control (216). See also (220) 

C3a Adjusted for parity and prepregnancy body mass index, women with levels of C3a in the upper quartile in early 
pregnancy were three times more likely to have an adverse outcome later in pregnancy compared with women in 
the lowest quartile (95% confidence interval, 1.8–4.8; P < 0.001). This was especially the case for preterm birth 
(P < 0004). Elevated C3a as early as the first trimester of pregnancy is an independent predictive factor for adverse 
pregnancy outcomes, suggesting that complement-related inflammatory events in pregnancy  
contribute to the subsequent development of poor outcomes at later stages of pregnancy

(208)

C3a Autoantibody-mediated complement C3a receptor activation contributes to the pathogenesis of preeclampsia. (211)

C3a Women who developed early-onset preeclampsia as compared with the term pregnant controls had significantly 
higher (P = 0.04) median amniotic fluid C3a levels (318.7 versus 254.5 ng/mL)

(215)

C3a 751.6 (194.6–1,660) vs. 1,358 (854.8–2,142) ng/mL, P < 0.05 preeclamptic vs. healthy pregnant (222)

C3a, C3a_desArg, and C5a Elevated at term in PE but not earlier (P < 0.05) (223, 224)

C3a, C5a, and AT1-AA Levels in serum from the severe preeclampsia group were significantly higher than in controls (P < 0.05) (225)

C4 C4 was lowered (P < 0.001) in serum of term preeclamptics (226)

C4d Placental immunochemistry showed that C4d was rarely present in placentas from healthy controls (3%), whereas  
it was observed in 50% of placentas obtained from preeclamptic women (P = 0.001)

(210)

C5a The mean cord plasma C5a concentration was higher in patients with PE (8.3 ± 1.71 ng/ml) than normal women 
(3.2 ± 0.35 ng/ml) P < 0.01

(212)

C5b-9 Severe preeclampsia was associated with marked elevations in urinary C5b-9 [median and interquartile range, 4.3 
(1.2–15.1) ng/mL] relative to subjects with chronic hypertension and healthy controls (P < 0.0001)

(227)

C6 Novel evidence that genetic variations in complement genes C6 and MASP1 were associated  
with preeclampsia risk

(217)
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 2. Conception early in a new relationship means an increased 
susceptibility to PE (260–262).

 3. Conception after using barrier contraceptives means an 
increased susceptibility to PE (261, 263, 264).

 4. Conception after using non-barrier methods or after a long 
period of cohabitation means a decreased susceptibility to PE 
(235, 261).

 5. Donor egg pregnancies have a hugely inflated chance of PE 
(259, 265–267).

 6. PE in a first pregnancy increases its likelihood in subsequent 
pregnancies (268).

 7. Oral sex with the father is protective against PE in a subse-
quent pregnancy (269, 270).

 8. Age is a risk factor for PE (271–275).
 9. Donor sperm pregnancies (artificial insemination) are much 

more likely to lead to PE (270, 276–279).

We consider each in turn (Figure 5).
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studies, including a very large one by Conde-Agudelo and Belizán 
(290) (RR 2.38; 95% CI 2.28–2.49), while the meta-analysis 
of English et  al. (287) gives a risk ratio for nulliparity of 2.91  
(CI 1.28–6.61). The consistency of each of these studies allows 
one to state with considerable confidence that there is a two- to 
threefold greater chance of PE with a first baby.

However, an additional and key clue here is not simply 
(and maybe even not mainly) that it is just being nulliparous  
(i.e., one’s first pregnancy) but that it is primipaternity—one’s 
first pregnancy with a given father—that leads to an increased 
susceptibility to PE (19, 204, 291–303) [cf. (304)]. Changing 
partners effectively “resets the clock” such that the risk with a 
new father is essentially as for first pregnancies. Thus, Lie et al. 
(305) noted that if a woman becomes pregnant by a man who 
has already fathered a pre-eclamptic pregnancy in a different 
woman her increased risk of developing pre-eclampsia is 1.8-
fold (CI 1.2–2.6). This is far greater than the typical incidence 
of PE, even for nulliparous women. The equivalent figure in the 
study of Lynch et al. (204) was RR = 5.1, 95% CI 1.6–15. The 
strong implication of all of this is that the father can have bad 
effects but that some kind of “familiarity” with the partner is 
protective (301), the obvious version—and that more or less 
universally accepted—being an immunological familiarity (i.e., 
tolerance). Note, however, that this is when the pregnancy goes 
to term: a prior birth confers a strong protective effect against 
PE, whereas a prior abortion confers only a weaker protective 
effect (259).

the First pregnancy with any Given 
partner Means an increased susceptibility 
to pe
This is extremely well established [e.g., Ref. (5, 67, 163, 256, 258, 
259, 280–288)]. Thus, Duckitt and Harrington (256) showed nul-
liparity to have a risk ratio (over pregnant women with previous 
pregnancies) of 2.91 (95% CI 1.28–6.61). Luo et al. (283) find an 
odds ratio (OR) of 2.42 (95% CI 2.16–2.71) for PE in primiparous 
vs. multiparous women, while Deis et al. found the OR to be 2.06 
(CI 1.63–2.60), P = 0.0021. Dildy et al. (289) summarize several 
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Conception early in a new relationship 
Means an increased susceptibility to pe
The idea that conception early in a new relationship means an 
increased susceptibility to PE follows immediately from the 
above. The landmark studies here are those of Robillard et  al.  
(19, 260, 296), of Einarsson et al. (261), and of Saftlas et al. (262).

Robillard et  al. (260) studied 1,011 consecutive mothers in 
an obstetrics unit. The incidence of pregnancy-induced hyper-
tension (PIH) was 11.9% among primigravidae, 4.7% among 
same-paternity multigravidae, and 24.0% among new-paternity 
multigravidae. For both primigravidae and multigravidae, the 
length of (sexual) cohabitation before conception was inversely 
related to the incidence of PIH (P < 0.0001).

Einarsson et al. (261) studied both the use of barrier methods 
and the extent of cohabitation prior to pregnancy. For those 
(allegedly, etc.) using barrier methods before insemination, the 
OR for PE when prior cohabitation was only 0–4 months versus 
the OR for PE: normotensive was 17.1 (CI 2.9–150.6) versus 1.2 
(CI 0.1–11.5) when the period of cohabitation was 8–12 months, 
and 1.0 for periods of cohabitation exceeding 1 year.

Saftlas et al. (262) recognized that parous women who change 
partners before a subsequent pregnancy appear to lose the 
protective effect of a prior birth. In a large study (mainly based 
around calcium supplementation), they noted that women with 
a history of abortion who conceived again with the same partner 
had nearly half the risk of PE [adjusted odds ratio (aOR) = 0.54, 
95% confidence interval: 0.31–0.97]. In contrast, women with an 
abortion history who conceived with a new partner had the same 
risk of PE as women without a history of abortion (aOR = 1.03, 
95% confidence interval: 0.72–1.47). Thus, the protective effect 
of a prior abortion operated only among women who conceived 
again with the same partner.

Conception after Using Barrier 
Contraceptives Means an increased 
susceptibility to pe
A prediction that follows immediately from the idea that paternal 
antigens in semen (or seminal fluid) are protective is that the 
regular use of barrier methods will lower maternal exposure to 
them, and hence increase the likelihood of PE. This too is borne 
out (261, 263, 264). Thus Klonoff-Cohen et al. found a 2.37-fold 
(CI 1.01–5.58) increased risk of PE for users of contraceptives 
that prevent exposure to sperm. A dose-response gradient was 
observed, with increasing risk of PE for those with fewer episodes 
of sperm exposure. Similarly, Hernández-Valencia et  al. (264) 
found that the OR for PE indicated a 2.52-fold (CI 1.17–5.44, 
P < 0.05), increased risk of PE for users of barrier contraceptives 
compared with women using nonbarrier contraceptive methods.

Conception after Using non-Barrier 
Methods or after a Long period of 
Cohabitation Means a decreased 
susceptibility to pe
This is the flip side of the studies given above [e.g., Ref. (260–262)]. 
It is clear that maternal–fetal HLA sharing is associated with the 

risk of PE, and the benefits of long-term exposure to the father’s 
semen, while complex (306), seem to be cumulative (307). Thus, 
short duration of sexual relationship was more common in women 
with PE compared with uncomplicated pregnancies [≤6 months 
14.5 versus 6.9%, aOR 1.88, 95% CI 1.05–3.36; ≤ 3 months 6.9% 
versus 2.5%, aOR 2.32, 95% CI 1.03–5.25 (308)]. Oral contracep-
tives are somewhat confounding here, in that they may either be 
protective or a risk factor depending on the duration of their use 
and the mother’s physiological reaction to them (309).

donor egg pregnancies Have a Hugely 
inflated Chance of pe
If an immunological component is important to PE (as it evidently 
is), it is to be predicted that donor egg pregnancies are likely to 
be at much great risk of PE, and they are [e.g., Ref. (259, 265–267, 
310–314)] [and also of preterm birth (PTB) (315)]. Thus, Letur 
et al. (265, 266) found that PE was some fourfold more prevalent 
using donated eggs (11.2 vs. 2.8%, P <  0.001), while Tandberg 
et  al. (259) found that various “assisted reproductive technolo-
gies” had risk ratios of 1.3 (1.1–1.6) and 1.8 (1.2–2.8) in second 
and third pregnancies, respectively. Pecks et al. studied PIH (not 
just PE) and found that the calculated OR for PIH after oocyte 
donation, compared to conventional reproductive therapy, was 
2.57 (CI 1.91–3.47), while the calculated OR for PIH after oocyte 
donation, compared to other women in the control group, was 
6.60 (CI 4.55–9.57). Stoop et al. (316) found a Risk Ratio of 1.502 
(CI 1.024–2.204) for PIH. In a study by Levron et al. (317), adjust-
ment for maternal age, gravidity, parity, and chronic hypertension 
revealed that oocyte donation was independently associated with 
a higher rate of hypertensive diseases of pregnancy (P < 0.01). 
In a twins study, Fox et  al. (318) found, on adjusted analysis, 
that the egg donation independently associated with PE (aOR 
2.409, CI 1.051–5.524). The meta-anaysis of Thomopoulos et al. 
(319) gave a risk ratio for egg donation of 3.60 (CI 2.56–5.05) 
over controls, a value similar to that of Blázquez et  al. (320). 
Finally, a recent meta-analysis by Masoudian et al. (313) found 
that that the risk of PE is considerably higher in oocyte-donation 
pregnancies compared to other methods of assisted reproductive 
technology (OR, 2.54; CI 1.98–3.24; P  <  0.0001) or to natural 
conception (OR, 4.34; CI 3.10–6.06; P < 0.0001). The incidence of 
gestational hypertension and PE was significantly higher in ovum 
donor recipients compared with women undergoing autologous 
IVF [24.7% compared with 7.4%, P < 0.01, and 16.9% compared 
with 4.9%, P  <  0.02 (321)]. All of these are entirely consistent 
with an immune component being a significant contributor to PE. 
Given our suggestion that many of these disorders of pregnancy 
have a microbial component, one obvious question pertains to 
whether the use of antibiotics assists the successful progression 
of IVF. Unfortunately this question has been little researched in 
humans (322).

pe in a First pregnancy increases its 
Likelihood in subsequent pregnancies
This too is well established: a woman who has had PE has an 
increased risk of PE in subsequent pregnancies (288, 323), 
especially if suffering from hypertension (324). This may be seen 
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as relatively unsurprising, and of course bears many explana-
tions, and the increased risks can be very substantial (268). In 
the overall analysis of English et al. (287), the risk ratio was 7.19 
(CI 5.85–8.83). Other examples give the recurrence risk, overall, 
as some 15–18% (288). The risk of recurrent PE is inversely 
related to gestational age at the first delivery, and in the study of 
Mostello et al. (325) was 38.6% for 28 weeks’ gestation or earlier, 
29.1% for 29–32 weeks, 21.9% for 33–36 weeks, and 12.9% for 
37 weeks or more. Low birthweight in the first pregnancy is an 
independent predictor of PE in the second: birth weight below 
the tenth percentile in the first delivery accounted for 10% of the 
total cases of PE in the second pregnancy and 30% of recurrent 
cases (326). From the perspective developed here, the suggestion 
is that whatever is responsible for PE in one pregnancy can “live 
on” in the mother and afflict subsequent ones. One thing that 
can “live on” is a dormant microbial community. We discussed 
at length in the previous review (44), and develop in more detail 
later (in the section “host tolerance to microbial pathogens”) 
the evidence that dormant microbes (such as Helicobacter pylori 
and Mycobacterium tuberculosis) can live within their host for 
decades.

oral sex with the Father is protective 
against pe in a subsequent pregnancy
Oral sex (with the father of one’s baby) protects against PE  
(269, 270) (P = 0.0003), arguably because exposure to the paternal 
antigens in the seminal fluid have a greater exposure to the blood 
stream via the buccal mucosa than they would via the vagina. This 
is a particularly interesting (and probably unexpected) finding, 
that is relatively easily understood from an immunological point 
of view, and it is hard to conceive of alternative explanations. 
[Note, however, that in the index study (269), the correlation or 
otherwise of oral and vaginal sex was not reported, so it is not 
entirely excluded that more oral sex also meant more vaginal sex.]

age is a risk Factor for pe
Age is a well known risk factor for PE (271–275), and of course 
age is a risk factor for many other diseases, so we do not regard 
this as particularly strong evidence for our ideas. However, we 
have included it in order to note that age-associated microbial 
dysbiosis promotes intestinal permeability, systemic inflamma-
tion, and macrophage dysfunction (327).

donor sperm pregnancies (artificial 
insemination) are Much More Likely to 
Lead to pe
Finally, here, turning again to the father, it has been recognized 
that certain fathers can simply be “dangerous” in terms of their 
ability to induce PE in those who they inseminate (302, 328). By 
contrast, if immunotolerance to a father builds up slowly as a 
result of cohabitation and unprotected sex, a crucial prediction 
is that donor sperm pregnancies will not have this property, and 
should lead to a much greater incidence of PE. This is precisely 
what is observed (270, 276–279, 310).

In an early study (276), Need et al. observed that the overall 
incidence of PE was high (9.3%) in pregnancies involving artificial 

insemination by donor (AID) compared with the expected inci-
dence of 0.5–5.0%. The expected protective effect of a previous 
pregnancy was not seen, with a 47-fold increase in PE (observed 
versus expected) in AID pregnancies after a previous full-term 
pregnancy. That is a truly massive risk ratio.

Smith et al. (277) compared the frequency of PE when AI was 
via washed sperm from a partner or a donor, finding a relative 
risk for PE of 1.85 (95% CI 1.20–2.85) for the latter, and imply-
ing that the relevant factor was attached to (in or on) the sperm 
themselves.

In a similar kind of study, Hoy et al. found (278), after adjust-
ing for maternal age, multiple birth, parity and presentation, that 
“donor sperm” pregnancies were more likely to develop PE (OR 
1.4, 95% CI 1.2–1.8).

Salha et al. (310) found that the incidence of PE in pregnancies 
resulting from donated spermatozoa was 18.2% (6/33) compared 
with 0% in the age- and parity-matched partner insemination 
group (P < 0.05).

Wang et al. (329) found that the risk of PE tripled in those never 
exposed to their partner’s sperm, i.e., those treated with intracy-
toplasmatic sperm injection done with surgically obtained sperm.

In a study of older women, Le Ray et al. (330) noted that the PE 
rate differed significantly between various groups using assisted 
reproductive technology (3.8% after no IVF, 10.0% after IVF only, 
and 19.2% after IVF with oocyte donation, P < 0.001).

Davis and Gallup reviewed what was known in 2006 (279), 
particularly from an evolutionary point of view, concluding 
that one interpretation of PE was that it was the mother’s way of 
removing “unsuitable” fetuses. This does not sit easily with the 
considerable mortality and morbidity associated with PE prede-
livery, especially in the absence of treatment. However, Davis and 
Gallup (279) did recognize that “pregnancies and children that 
result from unfamiliar semen have a lower probability of receiving 
sufficient paternal investment than do pregnancies and children 
that result from familiar semen,” and that is fully consistent with 
our general thinking here. Bonney draws a similar view (182), 
based on the “danger” model (176, 178), that takes a different 
view from that of the “allograft” or “self-nonself discrimina-
tion” model. In the “danger model,” the decision to initiate an 
immune response is based not on discrimination between self 
and non-self, but instead is based on the recognition of “danger” 
(abnormal cell death, injury, or stress). One such recognition is 
the well-established recognition of microbes as something likely 
to be causative of undesirable outcomes.

In the study of González-Comadran et al. (331), conception 
using donor sperm was again associated with an increased risk of 
PE (OR 1.63, 95% CI 1.36–1.95).

Thomopoulos et  al. carried out two detailed and systematic 
reviews (319, 332); the latter (319) covered 7,038,029 pregnancies 
(203,375 following any invasive ART) and determined that the 
risk of PE was increased by 75% (95% CI 50–103%).

Overall, these studies highlight very strongly indeed that the 
use of unfamiliar male sperm is highly conducive to PE relative 
to that of partner’s sperm, especially when exposure is over a long 
period. We next turn to the question of why, in spite of this, we 
also see PE even in partner-inseminated semen, as well as more 
generally.
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eVidenCe FroM epideMioLoGy—
seMen Can Be HarMFUL and Can 
ContriBUte stronGLy to pe

In our previous review (44), we rehearsed the evidence for a consid-
erable placental and vaginal microbiome [see also (333–335)], but 
did not discuss the semen microbiome at all. To repeat, therefore, 
the particular, and essentially novel, part of our hypothesis here 
is that if it is accepted that semen (and seminal plasma) can have 
beneficial effects, it should also be recognized that in certain cases 
it can also have harmful effects. In particular, we shall be focusing 
on its microbial content [we ignore any epigenetic effects (336)]. 
We note that this idea would fit easily with the recognition that as 
well as inducing tolerance to paternal antigens, exposures to the 
father’s semen can build tolerance (immunity) to its microbes, 
thereby decreasing the risk of PE. However, microbes and their 
associated PAMPs are well known to be highly inflammatory, 
whether or not they are reproducing, and we consider that it is this 
that is likely the particular driver of the sequelae observable in PE.

MiCroBes assoCiated WitH pe

The female’s urogenital microbiome is important in a number of 
pregnancy disorders (56, 337–339). Specifically, we previously 
found many examples in which microbes are associated with PE, 
and we here update the CC-BY-licensed Table 2 thereof (44).

In addition, we recognize the considerable evidence for a role 
of viruses in various disorders of pregnancy (106, 382, 383).

MiCroBioLoGy oF seMen

Semen itself is very far from being sterile, even in normal indi-
viduals, with infection usually being defined as 103 organisms/mL 
semen (384). Of course the mere existence of sexually transmitted 
diseases implies strongly that there is a seminal fluid (or semen) 
microbiome that can vary substantially between individuals, and 
that can contribute to infection [e.g., Ref. (385–387)], fertility 
(385) (and see below), and any other aspect of pregnancy (388), 
or even health in later life (389).

It is logical to start here with the observation that semen is 
a source of microbes from the fact that there are a great many 
sexually transmitted infectious diseases for which it is the vehicle. 
Table 3 summarizes some of these.

Notwithstanding the difficulties of measurement (405), there 
is, in particular, a considerable literature on fertility (406), since 
infertile males tend to donate sperm for assay in fertility clinics, 
and infection is a common cause of infertility [e.g., Ref. (384) 
and Table  4]. Note that “infertility” is not always an absolute 
term: pregnancies result in 27% of cases of treated “infertile” 
couples followed up after trying to conceive for 2 years, and with 
oligozoospermia as the primary cause of infertility (407). Most 
studies involve bacteria (bacteriospermia). Articles on this and 
other microbial properties of semen beyond STDs include those 
in Table 4.

We deliberately avoid discussing mechanisms in any real 
detail here, since our purpose is merely to show that semen 

is commonly infected with microbes, whose presence might 
well lead to PE. However, we were very struck by the ability of 
Escherichia coli and other organisms (440, 448, 471) actually to 
immobilize sperm [e.g., Ref. (472–475)]. As with amyloidogenic 
blood clotting (476, 477), bacterial LPS (156) may be a chief 
culprit (459). The Gram-positive equivalent, lipoteichoic acid 
(LTA), is just as potent in the fibrinogen-clotting amyloidogen 
assay (478), but while Gram-positives can also immobilize sperm 
(479, 480), the influence of purified LTA on sperm seems not to 
have been tested.

Another prediction from this analysis is that since infection is 
a significant cause of both infertility and PE [and it may account 
for 15% of infertile cases (384, 473)], we might expect to see 
some correlations between them. Although one might argue that 
anything seen as imperfect “background” health or subfecundity 
might impinge on the incidence of PE [such as endocrine disrup-
tion (481) or DNA damage of whatever cause (482)], the risk ratio 
for PE in couples whose infertility had an unknown basis was 
5.61 (CI 3.3–9.3) in one study in Aberdeen (483) and 1.29 (CI 
1.05–1.60) in another in Norway (484). Time to pregnancy in 
couples may be used (in part) as a surrogate for (in)fertility and 
is associated with a variety of poor pregnancy outcomes (485); 
in this case, the risk ratio for PE for TTP exceeding 6 months 
was 2.47 (CI 1.3–4.69) (486). Given the prevalence of infection in 
infertile sperm (Table 4), and the frequency of infertility [10% in 
the Danish study (485), which defined it as couples taking a year 
or more to conceive], it seems reasonable to suggest that micro-
biological testing of semen should be done on a more routine 
basis. It would also help to light up any relationships between the 
microbiological properties of sperm and the potentially causal 
consequence of increased PE risk.

We also note, as thoughtfully and importantly suggested by 
referee 1, that the microbes in the semen may already induce 
inflammation in the endometrium a few days before the concep-
tus implants. This may itself constitute a hostile “environment” 
that can contribute to the process of defective implantation, 
rather than working via the fetus itself.

More quantitatively, and importantly intellectually, if infection 
is seen as a major cause of PE, as we argue here, and it is known 
that infection is a cause of infertility, then one should suppose that 
infertility, and infertility caused by infection, should be at least as 
common, and probably more common than is PE, and this is the 
case, adding some considerable weight to the argument. Indeed, 
if PE was much more common than infertility or even infection, 
it would be much harder to argue that the latter was a major 
cause of the former. In European countries ~10–15% of couples 
are afflicted by infertility (384, 485), and in some 60% of cases 
infection or a male factor is implicated (384). In some countries, 
the frequency of male infertility is 13–15% http://bionumbers.
hms.harvard.edu/bionumber.aspx?id=113483&ver=0 or higher 
(487), and the percentage of females with impaired fecundity has 
been given as 12.3% https://www.cdc.gov/nchs/fastats/infertility.
htm. These kinds of numbers would imply that 6–9% of couples 
experience infection- or male-based infertility, and this exceeds 
the 3–5% incidence of PE.

In a similar vein, antibiotics, provided they can get through 
the relevant membranes (488–490), should also have benefits on 
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taBLe 2 | Many studies have identified a much greater prevalence of infectious agents in the blood or urine or gums of those exhibiting PE than in matched controls.

Microbes Comments reference

Chlamydia pneumoniae IgG seroprevalence and gDNA associated with PE (P < 0.0001) (340)
IgG (but not IgA or IgM) associated with PE, OR = 3.1 (341)
Significantly greater numbers with PE, and reversion under antichlamydial treatment (342)
Much greater incidence (P < 0.006) (343)
OR 4.1; P < 0.02 for association with PE (15/48 cases vs. 3/30 controls) (344)

Chlamydia trachomatis Increased risk of PE, OR = 7.2 or 1.6 based on serology (345, 346)

Cytomegalovirus RR for PE 1.5 if infected with CMV (347) [see also (348)]

Helicobacter pylori Seropositivity or DNA. OR = 2.7, or 26 if CagA seropositivity (349) and editorial 
(350)

IgG seropositivity 54% PE vs. 21% controls (343)
Anti-CagA antibodies cross-react with trophoblasts and could inhibit placentation (351)
2.8× greater seropositivity in PE group (352)
OR = 2.86 for seropositivity in PE, correlated with high malondialdehyde levels (353)
Wide-ranging review of many studies showing PE more prevalent after Hp infection (354)
Seropositivity PE:control = 84%:32% (P < 0.001) (355)
OR for seropositivity 1.83 (P < 0.001) (356)
Seropositivity PE:control 86:43% (P < 0.001) (357)
Massive increase in seropositivity in women with PE (358)
Seroprevalence (57%) > controls (33.%) (P < 0.001). Seropositivity for CagA-positive strains  
45.2% in preeclamptic women vs. 13.7% in controls (P < 0.001). Infection associated with  
abnormalities of uterine arteries

(55)

Much greater incidence of antibodies to H. pylori P < 0.0001

Human immunodeficiency virus (HIV) OR 3.52, 95% CI 2.51–4.94, some ascribable to therapy (359)

Human papillomavirus (HPV) High-risk human papillomavirus (HR-HPV) presence implies an OR of 2.18 for PE (360)

Meta-analyses Incidence of PE 19% with asymptomatic bacteriuria, vs. 3% (primigravid) or 6%  
(multigravid) controls (P < 0.005)

(361)

UTI more than twice as likely in severe preeclamptics than in controls (362)
OR of 1.6 for PE if UTI present (363)
Increased risk of PE OR 1.57 for UTI, 1.76 for periodontal disease (52)
Early application of antibiotics in infection reduced PE by 52% (49)
Any overt infection led to an RR of 2 for PE (54)
UTI has OR of 3.2 for PE; OR = 4.3 if in third trimester (364)
UTI has OR of 1.3 for mild/moderate and 1.8 for severe PE (365)
Increased risk of PE with UTI (OR 1.22) or antibiotic prescription (OR 1.28) (366)
OR of 6.8 for symptomatic bacteriuria in PE vs. controls (367)
OR 1.3–1.8 of mild or severe PE if exposed to UTI (368)
OR 1.4 for PE following UTI (369)
OR 1.3 for PE after UTI (370)
Meta-analyses showing associations between PD and PE (53, 371, 372)
High frequency of neutropenia and sepsis in preeclamptic mothers (373)
OR 2.79, CI 2.01–3.01, P < 0.0001 for periodontal disease associating with PE (374)
Periodontitis at enrollment (OR = 5.78, 95% CI 2.41–13.89) and within 48 h of delivery  
(OR = 20.15, 95% CI 4.55–89.29) is associated with an increased risk of preeclampsia

(375)

Periodontitis associated with PE: OR 7.48 (CI 2.72–22.42) (376)
Review (333)

Placental microbiome and PE Many organisms in 13% of PE placentas vs. none in controls (P < 0.006) (377)

Plasmodium falciparum (malaria) Indications that infection with malaria is associated with PE (378)
1.5 RR for PE if malarial (379)
Seasonality: 5.4-fold increase in eclampsia during malaria season (380)
Preeclampsia was significantly associated with malaria infection during pregnancy (P < 0.03)  
and 69.7% of cases of preeclampsia with infected placenta might be attributable to malaria infection

(381)
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sperm parameters or fertility if a lack of it is caused by infection, 
and this has indeed been observed [e.g., Ref. (436, 452, 491)].

roLes oF tHe prostate and testes

In the previous review, we focused on the gut, periodontitis, and 
the urinary tract of the mother as the main source of organisms 
that might lead to PE. Here we focus on the male, specifically 

the prostate and the testes, given the evidence for how common 
infection is in semen. The main function of the prostate gland is 
to secrete prostate fluid, one of the components of semen. Thus, 
although it is unlikely that measurements have regularly been 
done to assess any relationship between this and any adverse 
effects of pregnancy, it was of interest to establish whether it 
too is likely to harbor microbes. Indeed, such “male accessory 
gland infection” is common (492–496). In some cases, the origin 
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taBLe 4 | Some examples of the semen microbiome and reproductive biology.

study organisms reference

Complementarity 
between partners

Many. Gardnerella vaginalis in female partners 
was significantly related to inflammation in 
male genital tracts

(408)

Fertility Many microbiological changes as a function 
of fertility (more microbes correlate with lower 
fertility)

(384, 
388, 407, 
409–453)

General 
microbiology

552 different microbes in 182 samples out of 
201 tested, simply plating 10 µL of semen

(454)

Microbes in 36/37 samples

Review (455)

35% of samples had microbes (456)
(457)

IVF No positive antibiotic effect (458)

LPS and 
protection 
by probiotic 
lactobacilli

(purified LPS) (459)

Review Many microbes (445, 460, 
461)

Semen quality Ralstonia increased in low-quality sperm (462)

Viral infection Ebola virus (463–466)

HIV

Zika virus (467)
(468–470)

taBLe 3 | Organisms of well-known sexually transmitted diseases that have 
been associated with semen.

organism 
(disease)

Comments reference

Chlamydia 
trachomatis

Effects on fertility (390)

32% prevalence in infertile couples (391)

Human 
Immunodeficiency 
Virus (AIDS)

Many examples of seminal transmission via 
unprotected sex

(392–397)

Neissseria 
gonorrhoeae 
(gonorrhea)

Gonorrhea actually means “flow  
of semen”

(398)

Survives being frozen in semen used for 
artificial insemination

(399)

Many antigonococcal antibodies also present (400)

Same strains in urine and semen; likely origin 
in urethra

(401)

Treponema 
pallidum (syphilis)

Infectivity of semen (402)

More than half (12 out of 20) of the women 
classified as proved and probably syphilitic 
had mild to moderate PE

(403)

Coinfection of syphilis and HIV in men having 
sex with men

(404)
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is probably periodontal (497). Recent studies have implicated 
microbial PRRs, especially TLRs, as well as inflammatory 
cytokines and their signaling pathways, in testicular function, 

implying an important link between infection/inflammation 
and testicular dysfunction (498). The testes are a common and 
important site of infection in the male (499, 500), and even 
bacterial LPS can cause testitis (501). Similarly, infection (espe-
cially urinary tract infection) is a common cause of prostatitis 
(502–512). Finally, prostatitis is also a major cause of infertility 
(492, 493, 495). Such data contribute strongly to the recognition 
that semen is not normally going to be sterile, consistent with 
the view that it is likely to be a major originating cause of the 
infections characteristic of PE.

MiCroBiaL inFeCtions in 
spontaneoUs aBortions, 
MisCarriaGes, and ptB

Our logic would also imply a role for (potentially male-derived) 
microbes in miscarriages and spontaneous abortions. A microbial 
component to these seems well established for both miscarriages 
(513–515) and spontaneous abortions (516–521). Of course the 
ability of Brucella abortus to induce abortions in domesticated 
livestock, especially cattle (and occasionally in humans), is well 
known (522–524); indeed, bacteriospermia is inimical to fertiliza-
tion success (525), and nowadays it is well controlled in livestock 
by the use of vaccines (526) or antimicrobials (525). Indeed, 
stored semen is so widely used for the artificial insemination of 
livestock in modern agriculture that the recognition that semen 
is not sterile has led to the routine use of antibiotics in semen 
“extenders” [e.g., Ref. (527–530)].

The same general logic is true for infection as a common 
precursor to PTB in the absence of PE, where it is much better 
established [e.g., Ref. (531–565)]. It arguably has the same basic 
origins in semen.

Although recurrent pregnancy loss is usually treated separately 
from infertility (where the role of infection is reasonably well 
established) it is possible that in many cases it is, like PE, partly 
just a worsened form of an immune reaction, with both shar-
ing similar causes (including the microbial infection of semen). 
There is in fact considerable evidence for this [e.g., Ref. (138, 
443, 566–580)]. Of course it is not unreasonable that poor sperm 
quality, that may be just sufficient to initiate a pregnancy, may 
ultimately contribute to its premature termination or other dis-
orders of pregnancy, so this association might really be expected. 
It does, however, add considerable weight to the view that a more 
common screening of the male than presently done might be of 
value (581) in assessing a range of pregnancy disorders besides 
PE. In particular, it seems that infection affects motility (see 
above), and that this in turn is well correlated (573) with sperm 
DNA fragmentation and ultimate loss of reproductive quality.

Amyloids in semen are known to enhance human immuno-
deficiency virus infectivity (582). According to our own recent 
experimental analyzes, they may be caused by bacterial LPS  
(476, 477) or LTA (478). We note too that the sperm metabolome 
also influences offspring, e.g., from obese parents (583), and that 
many other variables are related to sperm quality, including oxi-
dative stress (584–591). Thus it is entirely reasonable to see semen 
as a cause of problems as well as benefits to an ensuing pregnancy.
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taBLe 5 | Protective events of vaccines against various adverse pregnancy 
outcomes.

adverse event risk or odds ratio (95% confidence 
interval) of vaccinated:unvaccinated

reference

Preterm birth OR = 0.39 (0.18–0.83) (606)
0.56 (0.45–0.70) (608)

0.60 0.38–0.94 (605)
0.28 (0.11–0.74) during epidemic

0.63 (0.47–0.84) (607)

IUGR 0.15 (0.02–0.94) (606)
0.36 (0.17–0.78) (624)
0.31 (0.13–0.75) (605)
0.63 (0.4–1.0) (641)

Stillbirth 0.73 (0.55–0.96) (612)
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MiCroBiaL eFFeCts on 
iMMUnotoLeranCe

If our thesis is sound, one may expect to find evidence for the 
effects of microbes on the loss of immunotolerance in other set-
tings. One such is tolerance to dietary antigens, of which gluten, 
a cause of celiac disease, is preeminent. Recently, evidence has 
come forward that shows a substantial effect of a reovirus in 
lowering the immunotolerance to gluten in a mouse model of 
celiac disease, and thereby causing inflammation (592, 593). 
Interestingly, pregnancies in women with celiac disease were 
considerably more susceptible to PTB and other complications 
than were controls (594–601), especially when mothers were not 
on a gluten-free diet. Similarly, preeclamptic pregnancies led to 
a much (4-fold) higher likelihood of allergic sensitization in the 
offspring (602) The roles of hygiene, the microbiome and disease 
are a matter of considerable current interest [e.g., Ref. (603)].

It was consequently logical to see if intolerance to peanut 
antigen was also predictive of PE, but we could find no evidence 
for this. Again, however, in a study (604) in which PE had roughly 
its normal prevalence, mothers experiencing it were significantly 
more likely to give birth to children with increased risk of asthma, 
eczema, and aeroallergen and food allergy.

eFFeCts oF VaCCination on 
preGnanCy oUtCoMes, inCLUdinG pe

We noted above (and again below) that the evidence for a role of 
microbes in PTB is overwhelming [also reviewed in Ref. (44)]. 
From an immunological point of view, there seems to be a hugely 
beneficial outcome of vaccination against influenza in terms of 
lowering PTB (605–610) [cf. (611)] or stillbirth (612). PE was 
not studied, save in Ref. (613) where the risk ratio of vaccination 
(0.484, CI 0.18–1.34) implied a marginal benefit. There do not 
seem to be any safety issues, either for influenza vaccine (612–
633) or for other vaccines (625) such as those against pertussis 
(634–636) or human papillomavirus (637).

As well as miscarriage and PTB, other adverse pregnancy 
outcomes studied in relation to vaccine exposure (638) include 
IUGR. IUGR frequently presents as the fetal phenotype of PE, 
sharing a common etiology in terms of poor placentation in early 
pregnancy (639). These other adverse events have been scored 
more frequently than has been PE, and Table 5 summarizes the 
evidence for a protective effect of vaccines, though it is recognized 
that there is the potential for considerable confounding effects 
[e.g., Ref. (632, 640)]. While Table  5 does not have examples 
from PE this is because the tests have seemingly not been done; 
because the effects on related disorders of pregnancy are clear, we 
think these should be sufficient to encourage people to look at 
the effects on PE (indeed readers may already have unpublished 
data).

There are no apparent benefits of vaccine-based immunization 
vs. recurrent miscarriage (642, 643).

Unrelated to the present question, but very interesting, is 
the fact that the risk of RA for men was higher among men who 
fathered their first child at a young age (P for trend <0.001) (644). 

This is consistent with the fact that its prevalence in females is 3.5 
times higher, and that it has a microbial origin (645–648).

GeneraL or speCiFiC?

The fact that vaccination against organisms not usually associated 
with adverse pregnancy outcomes is protective can be interpreted 
in one (or both) of two ways, i.e., that the vaccine is unselective 
in terms of inhibiting the effects of its target organism, or the 
generally raised level of <some kind of> immune response is 
itself protective. Data to discriminate these are not yet to hand.

In a similar vein, the survival of the host in any “battle” between 
host and parasite (e.g., microbe) can be effected in one or both of 
two main ways: (i) the host invokes antimicrobial processes such 
as the immune systems described above, or produces antimicro-
bial compounds or (ii) the host modifies itself in ways that allow 
it to become tolerant to the presence of a certain standing crop of 
microbes. We consider each in turn.

antiMiCroBiaL CoMponents oF 
HUMan seMen, a part oF resistanCe 
in tHe seMen MiCroBioMe

Antimicrobial peptides (AMPs) [http://aps.unmc.edu/AP/main.
php (649)] are a well-known part of the defense systems of many 
animals [e.g., Ref. (650–659)] [and indeed plants (650, 660)], and 
are widely touted as potential anti-infectives [e.g., Ref. (661–663)]. 
Their presence in the cells and tissues of the uterus, fetus and 
the neonate indicates an important role in immunity during 
pregnancy and in early life (657, 664–668). Unsurprisingly, they 
have been proposed as agents for use in preventing the transmis-
sion of STDs (669, 670), and as antimicrobials for addition to 
stored semen for use in agriculture (671–675). Our interest here, 
however, is around whether there are natural AMPs in human 
(or animal) semen, and the answer is in the affirmative. They 
include secretory leukocyte protease inhibitor (659), semen-
derived enhancer of viral infection (676), and in particular the 
semenogelins (677, 678). HE2 is another AMP that resides in the 
epididymis (679, 680), while the human cathelicidin hCAP-18 
[cathelicidin AMP, 18  kDa)] is inactive in seminal plasma but 
is processed to the AMP LL-37 by the prostate-derived protease 
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gastricsin (668, 681). Thus it is clear that at least some of the 
reason that the semen microbiome is not completely unchecked 
is down to AMPs. Stimulating their production, provided they 
are not also spermicidal, would seem like an excellent therapeutic 
option.

Host toLeranCe to MiCroBiaL 
patHoGens

It is a commonplace that—for any number of systems biology 
reasons based on biochemical individuality (682)—even highly 
virulent diseases do not kill everyone who is exposed to them 
at the same level. As indicated above, this could be because the 
host is resistant and simply clears the infections; this is certainly 
the more traditional view. However, an additional or alternative 
contribution is because while hosts do not clear all of them 
they can develop “tolerance” to them. This latter view is gaining 
considerable ground, not least since the work of Schneider, Ayres 
et  al. (683) showing that a variety of Drosophila mutants with 
known genetic defects could differentially tolerate infection by 
Listeria monocytogenes. This concept of tolerance (684–691) is 
very important to our considerations here, since it means that 
we do indeed have well-established methods of putting up with 
microbes more generally, without killing them. It is consistent 
with clearly established evolutionary theory (692–694), and the 
relative importance of resistance and tolerance within a popula-
tion affects host–microbe coevolution (695). The concept of 
tolerance sits easily with the Matzinger model of danger/damage 
[e.g., Ref. (175, 177, 178, 180)], as well as the concept of a resident 
population of dormant microbes (45, 47, 48), and may indeed 
be seen in terms of a coevolution or mutualistic association 
(696, 697). Some specific mechanisms are becoming established, 
e.g., the variation by microbes of their danger signal to promote 
host defense (698). Others, such as the difference in the host 
metabolomes [that we reviewed (44)] as induced by resistance 
vs. tolerance responses (690) may allow one to infer the relative 
importance of each. At all events, it is clear from the concept of 
dormancy that we do not kill all the intracellular microbes that 
our bodies harbor, and that almost by definition we must then 
tolerate them. As well as the established maternal immunotoler-
ance of pregnancy, tolerance of microbes seems to be another 
hallmark of pregnancy.

seQUeLae oF a roLe oF inFeCtion  
in pe: MiCroBes, MoLeCULes and 
proCesses

The chief line taken in our previous review (44) and herein is 
that this should be detectable by various means. Those three 
chief means involve detecting the microbes themselves, detect-
ing molecules whose concentration changes as a result of the 
microbes (and their inflammatory components) being present, 
and detecting host processes whose activities have been changed 
by the presence of the microbes.

Previously (44), updated here (Table 2), we provided consid-
erable evidence for the presence of microbes within the mother 

as part of PE. Here we have adduced the equally considerable 
evidence that in many cases semen is very far from being sterile, 
and that the source of the originating infection may actually be 
the father. Equally, we showed (44) that a long list of proteins 
that were raised (or less commonly lowered) in PE were equally 
changed by known infections, consistent with the view that PE 
also involved such infections, albeit at a lower level at which their 
overt presence could be kept in check. One protein we did not 
discuss was Placental Protein 13 (PP13) or galectin 1, so we now 
discuss this briefly.

pp13 (Galectin 13)
Galectins are glycan-binding proteins that regulate innate and 
adaptive immune responses. Three of the five human cluster 
galectins are solely expressed in the placenta (699). One of these, 
encoded by the LGALS13 gene (700, 701), is known as galectin-13 
or PP13 (702). Its β-sheet-rich “jelly-roll” structure places it 
strongly as a galectin homolog (701). It has a MW of ~16 kDa 
[32 kDa dimer (703)] and is expressed solely in the placenta (700, 
704) (and see http://www.proteinatlas.org/ENSG00000105198-
LGALS13/tissue). A decreased placental expression of PP13 
and its low concentrations in first trimester maternal sera are 
associated with elevated risk of PE (699, 705–707), plausibly 
reflecting poor placentation. By contrast, and consistent with the 
usual oxidative stress, there is increased trophoblastic shedding of 
PP13-immunopositive microvesicles in PE, starting in the second 
trimester, which leads to high maternal blood PP13 concentra-
tions (699, 708). Certain alleles such as promoter variant 98A-C 
predispose strongly to PE (709).

Galectin-1 is also highly overexpressed in PE (710). However, 
as with all the other proteomic biomarkers surveyed previously 
(44), galectins (including galectin-13 #http://amp.pharm.mssm.
edu/Harmonizome/gene/LGALS13) are clear biomarkers of 
infection (711).

toll-Like receptors
Toll-like receptors are among the best known receptors for 
“DAMPs” such as LPS from Gram-negatives [TLR4 (156, 712–714)],  
LTAs from Gram-positives [TLR2 (715–726)] and viral DNA 
and its mimics (TLR3) (727). Note, however, that TLRs are not 
expressed solely at the cell surface, and that pathogens (and their 
DNA) may also be recognized intracellularly (728–733), often via 
a pathway involving an AIM2 (“absent in melanoma 2”) inflam-
masome and or STING (“stimulator of interferon genes”).

As expected, they are intimately involved in disorders of preg-
nancy such as PE (185, 727, 734–745). Indeed the animal model 
for PE developed by Faas et al. (746) actually involves injecting 
an ultralow dose of LPS into pregnant rat on day 14 of gestation. 
Overall, such data are fully consistent with the view that infection 
is a significant part of PE. In view of our suggestions surrounding 
the role of semen infection in PE it would be of interest to know if 
these markers were also raised in the semen of partners of women 
who later manifest PE. Sperm cells are well endowed with TLRs 
(498, 747–749). However, we can find only one study showing 
that increased semen expression of TLRs is indeed observed 
during inflammation and oxidative stress such as occurs during 
infection and infertility (750). A more wide-ranging assessment 
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of TLR expression in sperm cells as a function of fertility seems 
warranted.

Lps Mimics
An interesting and striking feature of PE is the common 
appearance (2–7  weeks before the onset of clinical disease) of 
inositolphosphoglycan-P type (IPG-P) in the urine of patients 
destined to manifest PE (20, 751–762). These molecules are 
second messegers of insulin, and hence related to gestational dia-
betes. Robillard et al. (20) comment “These carbohydrate–lipid 
long-chain molecules mimic exactly endotoxins (such as E. coli or 
Plasmodium falciparum membranes). In theory, these compounds 
could circulate as endotoxins floating around in the bloodstream 
for weeks (before and during the appearance of clinical signs of 
PE). Would these greatly augment the systemic and more specific 
endothelial inflammation in the mother? This area needs urgent 
further research as anti-IPG-Pdrugs (or others, monoclonal 
antibodies, etc.) are intellectually conceivable.” In view of the 
arguments raised here about the role of other endotoxins such 
as LPS, we consider these observations as providing potentially 
significant clues. Surprisingly, little is known of changes in their 
levels that might accompany genuine infection.

CoaGULopatHies

Although we discussed this in the previous review (44), some 
further brief rehearsal is warranted, since coagulopathies are 
such a common feature of PE (44). Specifically, our finding 
that very low concentrations of cell wall products can induce 
amyloid formation during blood clotting (476, 478) has been 
further extended to recognize the ubiquity of the phenomenon in 
chronic, inflammatory diseases (477, 478, 648, 763–766). Often, 
an extreme example gives strong pointers, and the syndrome 

with the highest likelihood of developing PE is antiphospholipid 
syndrome (APS) (767–771), which is also caused by infection 
(772–777) and where the coagulopathies are also especially 
noteworthy (778–782). Consequently, the recognition of PE as 
an amyloidogenic coagulopathy (44, 783–785) is significant.

aps and CardioLipin

Antiphospholipid syndrome is an autoimmune disorder defined 
in particular by the presence high circulating titers of what are 
referred to as antiphospholipid antibodies (aPL) [e.g., Ref. (786)]. 
Given that every human cell’s plasma membrane contains phos-
pholipids, one might wonder how “antiphospholipid antibodies” 
do not simply attack every cell. The answer, most interestingly, 
is that, despite the name, anticardiolipin antibodies, anti-β2-
glycoprotein-I, and lupus anticoagulant are the main autoanti-
bodies found in APS (787).

In contrast to common phospholipids such as phosphatidyl-
choline, phosphatidylserine, and phosphatidylethanolamine, 
cardiolipins [1,3-bis(sn-3′-phosphatidyl)-sn-glycerol deriva-
tives] (see Figure  6 for some structures) are synthesized in  
(Ref. (788–790)) and essentially confined to mitochondria, and in 
particular the inner mitochondrial membrane. While heart failure 
is a separate clinical condition, we note that such phospholipids 
can serve important functions in oxidative phosphorylation, 
apoptosis, and heart failure development (790–797).

Overall, there seems to be little doubt that APS and aPL are 
the result of infection (773–777, 798–800), and that, as with RA 
(645–648, 801), the autoimmune responses are essentially due to 
molecular mimicry.

Now, of course, from an evolutionary point of view, mito-
chondria are considered to have evolved from (α-proteo)bacteria 
(802–808) that were engulfed by a protoeukaryote (809), and 
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bacteria might consequently be expected to possess cardiolipin. 
This is very much the case for both Gram-negative and Gram-
positive strains (810–814), with Gram-positive organisms typi-
cally having the greater content. Particularly significant, from our 
point of view, is that the relative content of cardiolipin among 
phospholipids increases enormously as (at least Gram-positive) 
bacterial cells become dormant (815).

Thus, the cardiolipin can come from two main sources: (i) host 
cell death that liberates mitochondrial products or (ii) invading 
bacteria (especially those that lay dormant and awaken). Serum 
ferritin is a cell death marker (816), and some evidence for the 
former source (817) [and see Ref. (818)] is that hyperferritine-
mia was present in 9% vs. 0% of APS patients and controls, 
respectively (P < 0.001), and that hyperferritinemia was present 
in 71% of catastrophic APS (cAPS) patients, and ferritin levels 
among this subgroup were significantly higher compared with 
APS-non-cAPS patients (816–847 vs. 120–230 ng/ml, P < 0.001). 
One easy hypothesis is that both are due to invading bacteria, but 
cAPS patients also exhibit comparatively large amounts of host 
cell death (Figure 7).

treatMent options Based on  
(or Consistent WitH) tHe ideas 
presented Here

Although often unwritten or implicit, the purposes of much of 
fundamental biomedical science are to find better diagnostics 
and treatments for diseases (a combination sometimes referred 

to as theranostics). Consequently, our purposes here are to 
rehearse some of those areas where appropriate tests (in the 
form, ultimately, of randomized clinical trials) may be per-
formed. Clearly, as before (44), and recognizing the issues of 
antimicrobial resistance, one avenue would exploit antibiotics 
much more commonly than now. We note that pharmaceutical 
drugs are prescribed or taken during 50% or more of pregnancies 
(819–828). Anti-infectives are the most common such drugs, 
and some 20–25% of women or more are prescribed one or 
more antibiotics during their pregnancies (820, 821, 824, 826, 
828–832).

Given the role of male semen infection, we suggest that more 
common testing of semen for infection is warranted, especially 
using molecular tests. Our analyses suggest that antibiotics might 
also be of benefit to those males presenting with high microbial 
semen loads or poor fertility (833). Another strategy might 
involve stimulating the production of AMPs in semen.

Of the list of bacteria given in Table 2 as being associated with 
PE, H. pylori stands out as the most frequent. One may wonder 
why a vaccine against it has not been developed, but it seems 
to be less straightforward than for other infections (834, 835), 
probably because—consistent with its ability to persist within its 
hosts—it elicits only a poor immune response (836, 837). Our 
own experience (838) is that many small molecules can improve 
the ability of other agents to increase the primary mechanisms 
that are the target assay, while having no direct effects on them 
themselves. Although “combinatorial” strategies often lead to 
quite unexpected beneficial effects [e.g., Ref. (839, 840)], this 
“binary weapon” strategy is both novel and untried.
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As also rehearsed in more detail previously [e.g., Ref. (841, 
842)] many polyphenolic antioxidants act through their ability to 
chelate unliganded iron, and thereby keep it from doing damage 
or acting as a source of iron for microbial proliferation. Such 
molecules may also be expected to be beneficial. Other strategies 
may be useful for inhibiting the downstream sequelae of latent 
infections, such as targeting inflammation or coagulopathies.

ConCLUsion, sUMMary, and open 
QUestions

We consider that our previous review (44) made a very convinc-
ing case for the role of (mostly dormant) microbes in the etiology 
of PE. However, we there paid relatively scant attention to two 
elements, viz (i) the importance of the immune system (164), 
especially in maternal immunotolerance and (ii) the idea that 
possibly the commonest cause of the microbes providing the 
initial infection was actually infected semen from the father. We 
also recognize that epigenetic information (389, 843–845) can be 
provided by the father and this can be hard to discriminate from 
infection (if not measured), at least in the F1 generation. This said, 
microbiological testing of semen seems to be a key discrimina-
tor if applied. The “danger model” (175, 177–180), in which it is 
recognized that immune activation owes more to the detection of 
specific damage signals than to “non-self,” thus seems to be highly 
relevant to PE (182).

Overall, we think the most important ideas and facts that we 
have rehearsed here include the following:

• Following Medawar’s recognition of the potential conundrum 
of paternal alloantigens in pregnancy, most thinking has 
focused on the role of maternal immunotolerance, and the role 
of Tregs therein.

• Many examples show that sexual familiarity with the father 
helps protect against PE; however, this does not explain why in 
many cases exposure to paternal antigens is actually protective 
(and not even merely neutral).

• Semen contains many protective and immune-tolerance- 
inducing substances such as TGF-β.

• However, semen is rarely sterile, and contains many microbes, 
some of which are not at all benign, and can be transferred to 
the mother during copulation.

• If one accepts that there is often a microbial component to 
the development of PE, and we and others have rehearsed 
the considerable evidence that it is so, then semen seems to 
a substantial, and previous largely unconsidered source of 
microbes.

• Some determinands, such as complement factor Bb, seem to 
reflect microbial infection and not just general inflammation 
that can have many other causes, and may therefore be of value 
in untangling the mechanisms involved.

• An improved understanding of the microbiology of semen, 
and the role of antibiotics and vaccination in the father, seems 
particularly worthwhile; novel antioxidants may also hold 
promise (846–848).

• Coagulopathies are a somewhat underappreciated accompani-
ment to PE and may contribute to its etiology.

• The “danger model” of immune response seems much better 
suited to describing events in pregnancy and PE than is the 
classical self/non-self analysis.

• The features of PE are not at all well recapitulated in animal 
models (26), and certainly not in rodents. However, it seems 
likely that they still have much to contribute (849–851).

Open questions and further research agenda items include the 
following:

• There is a need for improved molecular and culture-based 
methods of detecting microbes in blood and tissues in which 
they are normally considered to be absent, both in the mother 
and the father.

• Notwithstanding the promise of metabolomics [see e.g., Ref. 
(852, 853)], there remains a need for better diagnostics, espe-
cially early in pregnancy.

• Issues of antimicrobial resistance are well known [e.g., Ref. 
(854–856)], and most antibiotics work only on growing cells, 
so there is a significant role for those that work on persisters 
and other non-replicating forms (857–859).

• As increasing numbers of infectious diseases are seen to be 
associated with diseases previously considered noncommu-
nicable [e.g., tuberculosis and Parkinson’s disease (860–862)], 
we may anticipate more careful study of such an association 
between overt infection and PE.

• In these discussions, we have largely avoided discriminating 
between early-onset (<34 weeks) and late-onset (>34 weeks) 
PE, but recognize both the distinctions and their varying 
prevalences (20, 863–867).

• The increasing online availability of patient information 
will permit greater exploitation to assess these ideas from 
an epidemiological point of view; in this sense, an improved 
understanding of the basis for the widely varying geograph-
ical incidence of PE (20) is also likely to offer important  
clues.
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