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ABSTRACT

Background. Acute kidney injury (AKI) carries a poor prognosis. Its incidence is increasing in the intensive care unit (ICU).
Our purpose in this study is to develop and externally validate a model for predicting AKI in the ICU using patient data
present prior to ICU admission.

Methods. We used data of 98 472 adult ICU admissions at Mayo Clinic between 1 January 2005 and 31 December 2017 and
51 801 encounters from Medical Information Mart for Intensive Care III (MIMIC-III) cohort. A gradient-boosting model was
trained on 80% of the Mayo Clinic cohort using a set of features to predict AKI acquired in the ICU.

Results. AKI was identified in 39 307 (39.9%) encounters in the Mayo Clinic cohort. Patients who developed AKI in the ICU
were older and had higher ICU and in-hospital mortality compared to patients without AKI. A 30-feature model yielded an
area under the receiver operating curve of 0.690 [95% confidence interval (CI) 0.682–0.697] in the Mayo Clinic cohort set and
0.656 (95% CI 0.648–0.664) in the MIMIC-III cohort.

Conclusions. Using machine learning, AKI among ICU patients can be predicted using information available prior to
admission. This model is independent of ICU information, making it valuable for stratifying patients at admission.
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INTRODUCTION

The prevalence of acute kidney injury (AKI) among patients ad-
mitted to intensive care units (ICUs) continues to increase [1].
The incidence of AKI requiring dialysis has increased by 10%/year
over a decade [2, 3]. Being recognized as a serious event, AKI con-
tinued to correlate with adverse outcomes [4–8]. These include in-
creased length of stay in the ICU or hospital, chronic and end-

stage kidney disease, need for renal replacement therapy (RRT) at
discharge or death [6, 9, 10]. While there are no effective treat-
ments available for AKI, prediction and early detection can poten-
tially help with primary and secondary prevention of AKI,
respectively. In the Prevention of AKI Study, patients at high risk
of AKI were identified using urinary biomarkers and were ran-
domized to receive either standard care or implementation of the
Kidney Disease: Improving Global outcomes (KDIGO) bundle [11].
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The occurrence of AKI in the intervention group was significantly
lower (55.1% versus 71.7%; P¼ 0.004) compared with the control
group. In patients who underwent major elective noncardiac sur-
gery, those randomized to the KDIGO care bundle had a lower in-
cidence of moderate or severe AKI compared with the control
group (6.7% versus 19.7%; P¼ 0.04) [12].

There are several risk factors for the development of AKI, in-
cluding older age [13], exposure to nephrotoxins, need for me-
chanical ventilation or vasopressor support, sepsis, volume
overload and presence of comorbid medical conditions [14–16].
There have been efforts to identify patients at high risk of devel-
oping AKI through both designing simple clinical scores that
can inform clinicians of potential risk and the use of data avail-
able in electronic health records (EHRs) to generate automated
alerts for use by treating clinicians [17–23]. Although several AKI
prediction systems have been published, none of these risk
scores has been universally adopted in clinical practice [24]. The
use of machine learning in predicting AKI has been increasing
in recent publications. Kate et al. [25] developed two models to
predict AKI within 24 h of admission and later during the hospi-
tal stay. In another study using fuzzy logic systems,
Argyropoulos et al. [26] developed a model to predict AKI within
7 days of admission. A more recent study by Koyner et al. used a
gradient-boosting model to predict the risk of Stage 2 AKI, with
an area under the receiver operating curve (AUROC) of 0.90 for
predicting Stage 2 AKI within 24 h and 0.87 within 48 h [27].

Most of the above-named models rely heavily on ICU data
that are unlikely to be available on admission. Frequently, the
performance of the models improves over the course of ICU ad-
mission, but is suboptimal within the first few hours of admis-
sion when the volume and availability of data are lowest.

In this study, we aimed to utilize machine learning to develop a
model that only relies on comorbid medical conditions available
before ICU admission to predict the risk of ICU-acquired AKI.

MATERIALS AND METHODS
Study design

This was a retrospective analysis of adult patients admitted to
ICU at Mayo Clinic in Rochester, MN from 1 January 2005 to 31
December 2017. All adult (age >18 years), nonpregnant subjects
who provided research authorization were included. This study
was reviewed and approved by the Mayo Clinic Institutional
Review Board and the Philips Internal ethical review board, and
the need for informed consent was waived due to minimal risk.
We excluded patients who received RRT before or during ICU
stay. It was difficult to ascertain the timing of RRT in relation to
AKI occurrence, especially since the KDIGO guidelines assign
Stage 3 for patients undergoing RRT (irrespective of urine or cre-
atinine values). We also excluded patients who had a baseline
creatinine >5 mg/dL, or did not have more than one creatinine
measurements or urine output documentation.

We collected patient demographics and baseline serum cre-
atinine. Baseline creatinine was defined as the mean of all cre-
atinine measurements in the 180–7 days before hospital
admission [28, 29]. When baseline creatinine was not available,
the Modification of Diet in Renal Disease (MDRD) equation [30]
was used to estimate it. We also collected diagnosis codes based
on the International Classifications of Disease (ICD) 9 and 10. To
identify AKI, we collected data on hourly urine outputs, serum
creatinine and weight measurements over each patient’s ICU
stay. AKI stages were calculated using an existing electronic im-
plementation of the KDIGO criteria [31, 32]. This tool uses urine

and creatinine criteria to define AKI. The maximum AKI stage
during an encounter was used as the final AKI stage.

Feature processing and model training

We used demographics, comorbidities and admission diagnoses
to build a classifier for AKI prediction. We standardized continu-
ous features (e.g. age, height and weight) as described in the
Supplementary data. Categorical features (i.e. diagnoses) were
converted into binary variables based on domain knowledge (de-
scribed in Supplementary data). The ICD-9/10 codes were grouped
into 258 categories. Only diagnoses indicating chronic conditions
or admission diagnoses were selected as features. Chronic kidney
disease (CKD) was defined based on the diagnosis codes.

The dataset from Mayo Clinic cohort was split into 80% for
training and 20% test. The training data were split into 6-folds.
Five gradient-boosting models were trained on five of these
folds. Features that were selected by all five models were
retained, this resulted in 41 features.

Hyperparameters. Tree depth and minimum samples per split
were optimized by grid search. Next, the effect of the number of
features on model performance was evaluated. Models were
trained using optimized hyperparameters and a varying num-
ber of features. Five models were trained with 56, 41, 30, 20 and
10 features, respectively. Model performance was evaluated us-
ing the AUROC, area under the precision-recall curve (AUPRC)
and F1 score. The F1 score, as a combined measure of precision
and recall, is used to evaluate the success of a binary classifier
when one class is rare [33]. The performance of these models is
shown in Supplementary data, Figure S1. The gradient-boosting
model was implemented using the open-source python package
Scikit-learn [34] for all the models. We used the Shapley Python
package to calculate SHapley Additive exPlanations (SHAP) val-
ues, a measure of feature importance that explores the nature
of the relationship between the feature and the outcome [35].

Model validation using MIMIC

In addition to internal validation, we externally validated the
model using the Medical Information Mart for Intensive Care III
(MIMIC-III) dataset [36]. MIMIC-III is a publicly available critical
care database from Beth Israel Deaconess Medical Center,
Boston containing records of all ICU admissions from 2001 to
2012. All eligible patient records were extracted using the same
exclusion criteria as the Mayo Clinic dataset.

RESULTS

Following the initial screening of 131 873 ICU admissions at
Mayo Clinic, 98 472 encounters met all the eligibility criteria
(Supplementary data, Figure S2). There were 39 307 (39.9%)
encounters that developed AKI in the Mayo Clinic group. Out of
51 801 included patients from the MIMIC-III cohort, 18 529
(46.2%) met eligibility criteria. AKI by urine criteria was met in
29 004 (29.5%) encounters in the Mayo Clinic cohort and 6757
(36.5%) encounters in the MIMIC-III cohort. AKI by creatinine cri-
teria was met in 21 162 (21.5%) encounters in the Mayo Clinic co-
hort and 4798 (25.9%) encounters in the MIMIC-III cohort. In
both groups, patients who developed AKI in the ICU were older,
had higher weights, and had higher ICU and in-hospital mortal-
ity compared with patients who did not develop AKI (Table 1).
In the Mayo Clinic cohort, patients who did not develop AKI had
a median hospital stay before ICU admission of 5.8 h versus
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5.9 h in patients who developed AKI. Also, patients who later de-
veloped higher stages of AKI spent less time on a general ward
care before ICU admission. There were some differences be-
tween the two datasets; a more substantial proportion of
patients in MIMIC-III did not have available admission weight
(56% versus 10% in the Mayo Clinic cohort).

Of the final five models that were trained, the 30-feature
model had the best trade-off between minimizing the number
of features and minimizing the drop in performance.
Supplementary data, Figure S1 shows the AUROC curve and
AUPRC curves for the five models on the Mayo Clinic dataset.
Similar results were observed in the MIMIC-III dataset.

The relative importance of features in the model, calculated
using GINI (mean decrease in impurity, is a metric used in deci-
sion trees to determine the relative importance of a feature in
predicting a specific outcome) importance for the 30 feature
model is shown in Figure 1.

The 30-feature model had an acceptable performance in the
test dataset (20% of Mayo Clinic dataset) with an AUROC of 0.690
[95% confidence interval (CI) 0.682–0.697] (Figure 2A) and F1 score
of 0.611 (Figure 2B). For comparison, the model with 41 features
had only a slight improvement in performance (AUROC of 0.692
and F1 score of 0.614) (Supplementary data, Figure S1). Table 2
shows additional performance metrics for the Mayo Clinic and
MIMIC datasets. At optimal threshold (chosen based on

precision-recall threshold), the specificity of the model in the
Mayo Clinic test dataset was 0.71 and 0.64 in the MIMIC-III data-
set for ICU acquired AKI based on the comorbid medical
conditions.

We also used SHAP values to estimate feature importance as
it additionally provides importance for feature values. As with
the GINI importance, higher body mass index (BMI) at hospital
admission, the presence of CKD, presence of congestive heart
failure (CHF), coagulation and hemorrhagic disorders, and pres-
ence of cardiac dysrhythmias were key drivers of increased risk
of ICU acquired AKI (Figure 3).

The distribution of the 30 features differed between the
Mayo Clinic and MIMIC-III datasets (Supplementary data, Figure
S3), also the model performed slightly worse in the MIMIC-III
dataset [AUROC of 0.656 (95% CI 0.648–0.664) and F1 score of
0.634] (Figure 2). The importance of the features and their rela-
tionship with the risk of developing AKI was similar between
the two datasets as well (data not shown).

DISCUSSION

In this study, we used a large, comprehensive dataset from the
Mayo Clinic to develop a gradient-boosting model that only
uses pre-ICU-admission information to predict AKI in patients
admitted to the ICU. Our final model used 30 features, and

Ranked feature list

Feature importance
0 0.025 0.050 0.075 0.100 0.1500.125 0.175

Hospital Admit BMI
Chronic kidney disease

Congestive heart failure; nonhypertensive
Coagulation and hemorrhagic disorders

Cardiac dysrhythmias
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Cardiac arrest and ventricular fibrillation

Cancer of brain and nervous system
admitdiagnosis_Heart valve disorders

Baseline creatinine combined

baseline creatinine available

Pulmonary heart disease
admitdiagnosis_Septicemia (except in labor)

admitdiagnosis_Respiratory failure; insufficiency; arrest (adult)
admitdiagnosis_Other and unspecified benign neoplasm

admitdiagnosis_Other fractures

Chronic ulcer of skin
Acute myocardial infarction

Weight increase

Other nutritional, endocrine, and metabolic disorders

Chronic obstructive pulmonary disease and bronchiectasis
Disorders of lipid metabolism

Nephritis; nephrosis; renal sclerosis
Hypertension with complications and secondary hypertension

Diseases of white blood cells

Other endocrine disorders
Diabetes mellitus with complications

Coronary atherosclerosis and other heart disease

BMI increase

FIGURE 1: Feature importance. Feature importance is ranked in a descending order based on GINI importance for the 30 feature model. Feature importance was calcu-

lated on the Mayo Clinic dataset.
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demonstrated acceptable performance both on a held-out test
set from the Mayo Clinic and an external validation set from
MIMIC-III dataset. In both the Mayo Clinic and the MIMIC-III
cohorts, known risk factors for AKI were found to be predictive
of AKI, particularly a prior diagnosis of CKD.

The performances of currently available models vary
depending on the population of interest and data resolution,
and improve with increased volume and resolution of the avail-
able data. While information regarding the susceptibilities for
AKI development is often available at the time of ICU

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1.0

A  Receiver operating characteristic curve – 30 features

Mayo – train
Mayo – test
MIMIC

0 0.2 0.4

0.4

0.6

0.6

0.8

0.8

0.5

0.7

0.9

1.0
Recall

Pr
ec

is
io

n

1.0

B  Precision recall curve – 30 features

Mayo – train
Mayo – test
MIMIC

FIGURE 2: Model performance in predicting AKI using (A) AUROC and (B) precision-recall for both datasets.

Table 1. Baseline demographics

Mayo clinic cohort MIMIC-III cohort

Variable AKI (n ¼ 39 307) No AKI (n¼ 59 165) P-value AKI (n¼ 8560) No AKI (n¼ 9969) P-value

Male, n (%) 16 372 (41.7) 24 735 (41.8) 0.63 3556 (41.5) 4176 (41.9) 0.63
African American, n (%) 567 (1.4) 806 (1.4) 0.29 572 (6.7) 668 (6.7) 0.98
Readmissions, n (%) 3098 (7.9) 3686 (6.2) <0.001 Not available Not available
ICU mortality, n (%) 1961 (5.0) 583 (1.0) <0.001 954 (11.1) 332 (3.3) <0.001
In-hospital mortality, n (%) 3588 (9.1) 1585 (2.7) <0.001 1286 (15.0) 569 (5.7) <0.001
Age, mean (SD), years 65.43 (16.3) 61.96 (17.12) <0.001 66.3 (15.8) 61.1 (17.9) <0.001
Weight, mean (SD), kg 89.14 (26.59) 82.14 (21.93) <0.001 84.2 (23.3) 77.4 (19.2) <0.001
Baseline serum creatinine, mean (SD), mg/dL 1.13 (0.52) 1.04 (0.43) <0.001 1.29 (0.91) 1.08 (0.58) <0.001
Baseline serum creatinine available 23 717 (60.3) 33 741 (57) <0.001 2363 (27.6) 2483 (24.9) <0.001
Reasons for ICU admission

Sepsis 2680 (6.8) 2282 (3.85) <0.001
Heart valve surgery 2598 (6.6) 4368 (7.4) <0.001
Myocardial infarction 2284 (5.8) 3125 (5.3) <0.001

Table 2. Model performance

Dataset AUROC AUPRC F1 score Accuracy Threshold Precision Recall Specificity NPV

MayoClinic
Train 0.707 0.607 0.613 0.669 0.430 0.575 0.575 0.719 0.718
Test 0.690 0.585 0.611 0.652 0.430 0.569 0.562 0.711 0.710
MIMIC-III
All 0.656 0.602 0.634 0.581 0.347 0.583 0.583 0.642 0.642

NPV, negative predictive value.
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admission, data on exposures, laboratory results and hemody-
namics are scarce. When these data become available after a
few hours in ICU, current machine learning models start per-
forming better [23]. Using KDIGO criteria, 57% of patients met
the criteria for AKI on Day 1 of ICU stay [10]. In the Mayo Clinic
cohort, the median time to development of ICU-acquired AKI
was 16 h. This gives a short window of opportunity for identify-
ing high-risk AKI patients in ICU, and the first few hours of ICU
are particularly critical for such determinations. Hence, having
access to a model to identify high-risk patients within the first
few hours of ICU admission, whether alone or in conjunction
with other models, can identify high-risk patients earlier and
provide better opportunities to implement appropriate preven-
tive measures.

The use of machine learning in predicting AKI (or its progno-
sis) has increased in recent publications [15, 23, 25–27]. These
studies are either small, do not include advanced CKD, include
older patients, are not specific to AKI acquired in the ICU, or re-
cruit patients from a single medical center. In addition, the pre-
vious models were rarely validated externally. Unlike the
previous studies, we chose to focus on information that was
known at the time of ICU admission and included only preva-
lent comorbid conditions that are easily obtained from the

electronic health records. While trying to optimize precision
and recall, based on the thresholds chosen, we were able to
have a specificity of 71% in the Mayo Clinic cohort.

The features retained in the final model were diverse; some
were comorbid medical conditions (such as CKD and CHF),
others were diagnoses that were acquired during the index hos-
pital admission (such as sepsis and respiratory failure). Similar
to other studies, CKD was a common feature that predicted ICU-
acquired AKI. While we did find increased BMI or weight to be
associated with the risk of AKI, only Kate et al. have evaluated
BMI, and they did not find an increased risk with AKI [25]. Any
explanation of the association is only speculative, but it could
be that fluid overload on admission was contributing to the
heavier weight or higher BMI on admission. This is especially
relevant as the increase in these two parameters (included as
independent variables) were also associated with increased risk
of AKI. Fluid overload is known to be associated with AKI [37–
40]. It is challenging to make further comparison between the
features retained in our study with other published studies
given the nature of the features included (diagnoses versus clin-
ical and laboratory information). However, several features in
the other published studies might share a similar theme; for ex-
ample, ‘shock’ and ‘septicemia’ in our study share a similar

Chronic kidney disease
(diagnosis)

Congestive heart failure;
nonhypertensive (diagnosis)

Coagulation and hemorrhagic
disorders (diagnosis)

Cardiac dysrhythmias
(diagnosis)

Age at ICU admission

BMI at hospital admission

Weight (kg) at hospital
admission

Cardiac arrest and ventricular
fibrillation (diagnosis)

Cancer of brain and nervous
system (diagnosis)

Heart valve disorders
(admission diagnosis)

Baseline creatinine value

baseline creatinine available

Pulmonary heart disease
(diagnosis)

Septicemia (except in labor)
(admission diagnosis)

Respiratory failure; insufficiency;
arrest (adult) (admission diagnosis)

Other and unspecified benign
neoplasm (admission diagnosis)

Other fractures
(admission diagnosis)

Chronic ulcer of skin
(diagnosis)

Acute myocardial
infarction (diagnosis)

Weight increase

Other nutritional, endocrine, and
metabolic disorders (diagnosis)

COPD and bronchiectasis
(diagnosis)

Disorders of lipid
metabolism (diagnosis)

Nephritis; nephrosis; renal
sclerosis (diagnosis)

Hypertension with complications and
secondary hypertension (diagnosis)

Diseases of white blood cells
(diagnosis)

Other endocrine disorders
(diagnosis)

Diabetes mellitus with
complications (diagnosis)

Coronary atherosclerosis and
other heart disease (diagnosis)

BMI increase

–1.0 –0.5 0 0.5
SHAP value

–1.0 –0.5 0 0.5
SHAP value

Feature
value

Min

Max

FIGURE 3: Relationship between each feature and risk of AKI. This analysis was performed on data from the Mayo Clinic test cohort. The horizontal axis shows the rela-

tionship between the feature and risk of AKI in the ICU. A positive value means increased risk of AKI and a negative means less risk of AKI. The color indicates the

value of the feature where high value (or presence of that feature in case of categorical features) is coded in red and a low value (or absence of that feature in case of

categorical features) is coded in blue.
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clinical significance to ‘severe infection/sepsis’ in the study by
Malhotra et al. [22] along with the three other features, i.e. ‘low-
est systolic pressure’, ’highest heart rate’ and ‘current weight
count’ [27]. Similar to Argyropoulos et al., age was also associ-
ated with increased risk of AKI [26]. In the study by Kate et al.
age was not associated with an increased risk with AKI [25]. CHF
was also found to be a risk factor for ICU-acquired AKI, which is
in accordance with published literature [14, 22]. The differences
in the risk factors for AKI among different studies have to do
with the setting AKI is being defined in and the factors investi-
gated. In our cohort, we looked at demographic information and
diagnoses; however, other studies looked at laboratory values.
The interaction between the underlying comorbid conditions
likely set the right milieu for AKI when fluid and hemodynamic
derangement occurs later during the ICU stay. While baseline
creatinine was not a significant factor in the model, the rela-
tionship between higher baseline creatinine and lower risk of
subsequent AKI was intriguing. Some potential explanation is
that patients with CKD often receive kidney-protective inter-
ventions like angiotensin-converting enzyme inhibitors or an-
giotensin receptor blocker. In the ICU, these medications are
often held, and therefore patients’ serum creatinine levels de-
crease due to the intraglomerular hemodynamic changes.
Similarly, in the mild AKI setting, serum creatinine may not in-
crease (balances out). Another potential explanation is that
patients with CKD are generally treated differently in ICU. For
example, the treating team might be more cautious when con-
sidering medications with potential nephrotoxic medications
(hesitation in the use of contrast, for example), and this could
have resulted in our observation. This observation, however,
needs to be studied more closely in future studies, as it may
have additional clinical implications.

AKI in critically ill patients continues to be independently
associated with mortality [6, 9, 10]. There have been multiple
studies showing that nephrology services are often requested
later in the course of AKI, where management is limited to pro-
viding renal replacement therapies [41]. There has been a call to
adopt a more proactive role in the prevention and management
of AKI [41]. The main preventive interventions are the optimiza-
tion of effective blood volume, maintaining mean arterial pres-
sure and avoiding nephrotoxins, all of which are very time
sensitive [41]. These efforts are aimed at detecting such patients
early in order to provide potentially preventive measures.
Currently, outside of prevention and management strategies,
there are no therapeutic options available for AKI. Since the use
of EHR has been prevalent in the USA, several studies have
demonstrated that using electronic alert systems improves pa-
tient outcomes, including lowering AKI incidence and progres-
sion [42, 43]. In a quality improvement project, Park et al.
implemented an electronic alert to the primary service to con-
sult nephrology based on an established AKI in order to mini-
mize overlooked AKI [44]. Patients in the alert group had fewer
odds of a severe AKI event than those under usual care [44].
Incorporation of risk prediction tools in electronic databases
can provide a window of opportunity to detect high-risk
patients that might benefit from surveillance, further directed
testing with biomarkers and thus help in the early management
and individualization of treatment for AKI [22]. With more ad-
vancement in technology, these risk prediction tools may utilize
machine learning approach to provide an individualized risk
score and allow for delivery of care through precision medicine.

Our study has several strengths. We utilized machine learn-
ing to identify risk factors for ICU-acquired AKI using informa-
tion available at the time of ICU admission. This information is
easily obtainable, as we used the standardized ICD-9 and -10
codes. While the trade-off of using fewer features comes at the
expense of the predictive ability of the model, we were still able
to obtain an acceptable AUROC that was comparable to previ-
ously published models that utilized more information. In addi-
tion, we used a more clinically relevant definition of AKI by
employing both urine and creatinine criteria. Indeed, in the
Mayo Clinic cohort where urine output was not missing, we
found that the definition of AKI by urine criteria was more prev-
alent than by creatinine criteria. This increases the validity of
our model as it can potentially identify patients that eventually
develop AKI by urine criteria but otherwise would go undetected
entirely or be detected later when creatinine levels rise. Lastly,
we validated our model externally using the MIMIC-III dataset.
Although there were differences between the Mayo Clinic and
the MIMIC-III cohorts in terms of demographics and data avail-
ability for the staging of AKI, the prevalence of comorbidities
the model used was similar. The performance of the model on
data from these two hospitals shows that the model might po-
tentially be generalizable and be applied to different cohorts.

Our study also has several limitations. First, we defined AKI
at any point during the ICU stay rather than trying to predict
AKI onset at a particular time. We also excluded patients who
required RRT in the ICU as it was difficult to ascertain the timing
of RRT in relation to AKI occurrence, especially since the KDIGO
guidelines assign Stage 3 for patients undergoing RRT (irrespec-
tive of urine or creatinine values). This might not always be re-
producible when performing external validation, as many
patients receive RRT soon after ICU admission. In any clinical
practice, including the cohorts included in this study, a percent-
age of patients do not have measured baseline serum creatinine
levels, which could result in a bias. During the derivation and
validation of our electronic tool, we showed the detection of AKI
using a combination of baseline measured serum creatinine,
and back-calculated creatinine using MDRD (when measured
serum creatinine was not available) was able to provide a sensi-
tivity of 88% and specificity of 96% [31]. We used MDRD back cal-
culation for 60 mL/min/body surface area to increase the
specificity of the detection of AKI. Being aware of this limitation,
unfortunately, our results reflect the current practice as there
are a substantial number of patients who do not have available
baseline serum creatinine. Unfortunately, the information re-
garding the causes of CKD was not available in the majority of
patients. In a systematic review using different sources, the
agreement between data sources on disease etiology ranged be-
tween 59% and 89% [45]. This shortcoming is not uncommon as
patients’ causes of CKD are often inferred or likely multifacto-
rial. Lastly, although we evaluated exposure to nephrotoxic
drugs prior to hospital admission, we did not include in the
model as the information was not reproducible in the external
validation cohort.

AKI is a complex syndrome that cannot be identified
through solely relying on statistical models or biomarkers.
Despite no available therapies for AKI, identifying patients at
high risk for AKI might allow targeted preventive interventions
that can potentially decrease the burden of the disease. With
the advent and progressively higher capabilities of electronic
health records, deployment of a machine-learning algorithm
that can predict AKI would help provide an individualized risk
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score and allow for a window of opportunity where tailored in-
tervention can be delivered.
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