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Purpose: We aimed to demonstrate the use of jackknife residuals to take advantage of the longitudinal
nature of available growth data in assessing potential biologically implausible values and outliers.
Methods: Artificial errors were induced in 5% of length, weight, and head circumference measurements,
measured on 1211 participants from the Maternal Vitamin D for Infant Growth (MDIG) trial from birth to
24 months of age. Each child's sex- and age-standardized z-score or raw measurements were regressed
as a function of age in child-specific models. Each error responsible for a biologically implausible
decrease between a consecutive pair of measurements was identified based on the higher of the two
absolute values of jackknife residuals in each pair. In further analyses, outliers were identified as those
values beyond fixed cutoffs of the jackknife residuals (e.g., greater than þ5 or less than �5 in primary
analyses). Kappa, sensitivity, and specificity were calculated over 1000 simulations to assess the ability of
the jackknife residual method to detect induced errors and to compare these methods with the use of
conditional growth percentiles and conventional cross-sectional methods.
Results: Among the induced errors that resulted in a biologically implausible decrease in measurement
between two consecutive values, the jackknife residual method identified the correct value in 84.3%
e91.5% of these instances when applied to the sex- and age-standardized z-scores, with kappa values
ranging from 0.685 to 0.795. Sensitivity and specificity of the jackknife method were higher than those of
the conditional growth percentile method, but specificity was lower than for conventional cross-
sectional methods.
Conclusions: Using jackknife residuals provides a simple method to identify biologically implausible
values and outliers in longitudinal child growth data sets in which each child contributes at least 4 serial
measurements.
Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Introduction

Child growth in stature and body dimensions is a continuous
and dynamic process that is optimally studied through longitudinal
follow-up. As such, many epidemiologic studies are designed to
collect repeated anthropometric measures of each child across
successive time points to describe growth patterns, identify pre-
dictors, and assess associations with later health outcomes [1e3].
Standardized procedures for the measurement and collection of
anthropometry data have been established to maximize data
quality [4,5], and advanced analytical strategies are employed to
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accommodate the longitudinal nature of the data collected in such
studies [6]; similarly, rigorous quality control procedures during
data cleaning are warranted to identify outliers and implausible
values.

For cross-sectional studies in which each child only contributes
one set of measurements, identification of outliers and implausible
values is limited to the use of fixed cutoffs that were derived from a
reference population, such as those established for the WHO Child
Growth Standards [7] or from the observed distributional proper-
ties of the study population. However, with serial anthropometric
measurements collected in the same individual, the growth tra-
jectory of each individual provides another basis upon which to
assess the biological plausibility of any given measurement for that
individual. For example, a decrease in length or height between two
successive time points is biologically implausible and thus indicates
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.0/
mailto:daniel.roth@sickkids.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annepidem.2018.01.007&domain=pdf
www.sciencedirect.com/science/journal/10472797
www.annalsofepidemiology.org
https://doi.org/10.1016/j.annepidem.2018.01.007
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.annepidem.2018.01.007
https://doi.org/10.1016/j.annepidem.2018.01.007


J. Shi et al. / Annals of Epidemiology 28 (2018) 204e211 205
that at least one of the values was incorrectly measured or recor-
ded. However, without additional information, it is often chal-
lenging to determine which of the two values induced the
implausible trajectory. Many longitudinal studies use only con-
ventional cross-sectional approaches to identify outliers; when the
longitudinal nature of the data is taken into consideration, the
methods used to identify these implausible values are often not
described, or exclusions are made on a case-by-case basis [8].

Yang et al. [9] recently described the application of conditional
growth percentiles for systematically identifying outliers and
implausible values in longitudinal childhood anthropometric data.
In their example, a hierarchical model of serial weight measure-
ments as a function of age was constructed to estimate an in-
dividual's weight percentile at time t, while conditioning on the
individual's weight percentile at time t�1. This approach implies
that the plausibility of a given measurement is solely based on the
preceding measurement (and therefore cannot be applied to an
individual's first measurement), yet the expected value is contin-
gent on the overall growth trajectory of the study population.

We propose an alternative longitudinal approach to assess for
outliers and implausible values using growth trajectories that are fit
to each individual's anthropometric data, in which the identifica-
tion of outliers and implausible values does not depend on the
distribution of measurements in the whole study population. In
this study, we aimed to use a longitudinal growth data set with
artificially induced errors to demonstrate how jackknife residuals
of linear models of z-scores or raw growth data as a function of age
can be used to identify biologically implausible values and outliers.
We further aimed to compare the sensitivity and specificity of
jackknife residuals to alternative methods of data cleaning,
including conditional growth percentiles and conventional cross-
sectional approaches.

Methods

Data source

Anthropometric data collected from infants enrolled in the
Maternal Vitamin D for Infant Growth (MDIG) trial were used. Data
collection including anthropometry is ongoing; therefore, data
available up to January 26, 2017 were used for this study. The MDIG
trial methods have been previously described [10]. In brief, the
MDIG trial is a randomized placebo-controlled dose-ranging trial of
vitamin D supplementation during pregnancy and lactation in
Dhaka, Bangladesh. Length, weight, and head circumference mea-
surements are scheduled in tri-monthly intervals from birth to
24 months of age, plus an additional measurement taken at 2, 4, 6,
or 8 weeks of age chosen through random assignment, with some
variability between infants in actual timing of measurement
collection. Age- and sex-standardized z-scores for length, weight,
and head circumference measurements were generated using a
combination of growth references: the Intergrowth-21st Newborn
Size standards; the Intergrowth-21st International Postnatal
Growth Standards for Preterm Infants; and the World Health Or-
ganization (WHO) Child Growth Standards (Supplementary
Material Methods). Data cleaning of any natural occurring errors
in the data set was not conducted to preclude biasing the results in
favor of one method over another.

Simulation of implausible values and outliers

Simulated outliers and implausible values were randomly
generated in the existing data set by deliberate introduction of data
errors. In primary analyses, we randomly selected 5% of all en-
counters for error induction, inwhich values were randomly shifted
upwardordownward in relation to the original observed values. The
magnitudeof theerrors (i.e. differencesbetweenoriginal andshifted
values) followed a normal distribution of mean¼ 0 with a standard
deviation based off of the derived standard deviation of the raw
anthropometric measurements in the WHO Multicentre Growth
ReferenceStudy that is thebasis for theWHOchild growth standards
[7]. As such, the standard deviation of the errors varied by type of
measurement, sex, and age of the infant. In sensitivity analyses, we
used error rates of 10% and 15%, and standard deviations of 2- and
3-times the age- and sex-specific standard deviation for the corre-
sponding anthropometric measure. A Monte Carlo approach was
used, in which each scenario for the varying error rates and error
generation methods was simulated 1000 times.
Identifying biologically implausible values

Jackknife residuals were applied to identify the incorrect mea-
surement in instances where errors introduced into the anthro-
pometric data set resulted in a biologically implausible decrease in
a child's length, weight, or head circumference from one time point
to the next. Jackknife (or externally studentized) residuals, r(-i), are
generated from regression residuals, ei, that are scaled by a function
of the mean squared error with the ith observation deleted, MSE(-i),
and the leverage, hi:

rð�iÞ ¼
eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEð�iÞð1� hiÞ
q (1)

Jackknife residuals are expected to follow a t distribution with
(neke2) degrees of freedom,where n is the number of observations
and k is the number of parameters in the fitted model, thereby
giving the distribution a mean of 0 and standard deviation slightly
greater than 1. Given that the kth observation is an outlier, the
jackknife residuals of other observations will shrink toward zero
due to an overestimation of MSE, whereas the jackknife residual of
the kth observation will not. As such, jackknife residuals respond
more strongly to the presence of a single outlier than does the
standardized residual [11].

Any decrease in raw length or head circumference measure-
ments was considered to be biologically implausible, whereas a
decrease of greater than 15% in the raw measurements for weight
was considered biologically implausible. This analysis addressed
instances in which an error in the data set could be clearly identi-
fied, but the exact time point at which the error occurred was not as
easily discerned. Therefore, these analyses were limited to children
for whom there was at least one implausible decrease induced in
anthropometric measures.

All individuals with a biologically implausible decrease between
any two measurement time points were first identified based on
the criteria listed previously. Separately for each child, linear
regression was used to fit a straight line through the individual's
sex- and age-standardized z-score of the corresponding anthro-
pometry measurement as a function of age:

Zij ¼ b0i þ bi$tij þ εij (2)

where “i” denotes the ith individual and “j” denotes the jth time
point. For raw measurements, each individual's measurements
were regressed on the square root of age (t½) to model a curvilinear
relationship in which growth rates vary with age [12]:

Yij ¼ b0i þ bi$t
1=2
ij þ εij (3)

Eachmeasurement of a given individual is assessed for adequate
fit to the modeled trajectory for that individual using jackknife



Table 1
Summary of anthropometric measurements available from the Maternal Vitamin D
for Infant Growth (MDIG) trial*

Measure Length Weight Head
circumference

Number of measurements, by agey

Birth (0e48 h) 828 835 835
Birth (>48 h) 252 251 252
2 to 8 wk 1095 1099 1100
3 mo 1125 1132 1132
6 mo 1131 1132 1133
9 mo 1126 1126 1126
12 mo 1072 1071 1071
15 mo 880 880 880
18 mo 610 609 610
21 mo 443 442 443
24 mo 306 306 306

Total number of measurements 8868 8883 8888
Number of measurements per infant
Mean ± SD 7.3 ± 2.0 7.3 ± 2.0 7.3 ± 2.0
Median (range) 7 (1, 11) 7 (1, 11) 7 (1, 11)

Number of infants with
�1 measurement 1211 1211 1211
�2 measurements, n (%) 1196 (98.8) 1196 (98.8) 1196 (98.8)
�4 measurements, n (%) 1165 (96.2) 1166 (96.3) 1166 (96.3)
�6 measurements, n (%) 1005 (83.0) 1004 (82.9) 1006 (83.1)
�8 measurements, n (%) 557 (46.0) 557 (46.0) 557 (46.0)

* Based on data available up to January 26, 2017.
y Because of variability in the timing of measurements, these ages represent the

scheduled visit time and the actual age of infants at their visit range from the
midpoints of adjacent categories (e.g., timing of 6 month measurements range from
4.5 to 7.5 months of age).
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residuals (Supplementary Material Methods). We compared the
absolute values of the jackknife residuals for the two adjacent time
points that spanned the interval across which each biologically
implausible decrease occurred. For each pair of values, the value
with the largest absolute jackknife residual was labeled as the
incorrect value, irrespective of the absolute magnitude of the
jackknife residual.

Kappa statistics were computed to assess the performance of
these approaches in identifying the correct biologically implausible
value (i.e., agreement between the classification by the jackknife
residual method vs. the true classification of values as induced er-
rors or unmodified measurements). Analyses were restricted to
infants for whom four or more measurement time points were
available, since the residual method cannot be applied to in-
dividuals with fewer than (kþ2) measurements available, where k
represents the number of parameters in the model (Supplementary
Material Methods). In addition, biologically implausible decreases
in the original MDIG data set were excluded from this analysis since
the time point at which the error occurred is unknown.

Comparison of sensitivity and specificity across methods for
identifying outliers

To assess the sensitivity and specificity of the jackknife residual
method for detecting induced errors, analyses were no longer
restricted to instances inwhich therewere implausible decreases in
size between subsequent time points, although many of the iden-
tified errors were expected to overlap with the biologically
implausible values identified in the previous analysis. The
modeling strategies were identical to those described previously.
All measurements with a jackknife residual below �5 or above þ5
were considered outliers. Sensitivity analyses were conducted in
which cutoffs of ±3 and ±7 were used instead.

The conditional growth percentile method outlined by Yang
et al. was also applied. A random-effects model of the raw
anthropometric measurement as a function of age was constructed
for the whole study population, using a restricted cubic spline with
five knots, where knot locations were based on Harrell's recom-
mendations [13]. Conditional percentiles for each measurement
were estimated, and measurements which were below �4 SD or
above þ4 SD were considered outliers, as implemented by Yang
et al. [9]. As per the demonstrations provided by Yang et al., con-
ditional growth percentiles were calculated only for raw mea-
surements and not for their corresponding z-scores because one of
its strengths is that the method can be applied even when external
standards are not available.

Finally, two traditional cross-sectional approaches to identify
outliers and biologically implausible values were applied: (1) using
the cutoffs for biologically implausible values that were derived
from the WHO Child Growth Standards (<�6 SD or >6 SD for LAZ,
<�6 SD or >5 SD for WAZ, and <�5 SD or >5 SD for HCAZ) [7] and
(2) using cutoffs of 4 SD below or above the observed population
average at the given time point.

For each method, the sensitivity and specificity of the approach
was assessed, whereby knowledge of which errors were artificially
introduced into the data set was considered the “gold standard”.
Sensitivities and specificities were calculated for thewhole data set,
regardless of the limitations of each method with respect to the
detection of errors under certain conditions (e.g., residual method
cannot be applied to individuals with fewer than 4 measurements;
conditional growth percentile method cannot be applied to an in-
dividual's first measurement) and regardless of whether a given
measurement was a suspected outlier in the original data set. As
such, the sensitivity and specificity of any of these methods were
not expected to be 100%. Sensitivity analyses also calculated
sensitivity and specificity of these approaches after stratifying by
time point or by number of measurement points per individual.
Results

A total of 8868 length measurements, 8883 weight measure-
ments and 8888 head circumference measurements were available
from 1211 infants in the MDIG trial (Table 1). Because data collec-
tion is still ongoing, there were fewer measurements available at
later time points.

After inducing errors at a 5% rate, applying the jackknife residual
method to either sex- and age-standardized z-scores or raw mea-
surements performed comparably for both length and weight; the
induced errors within each pair were correctly identified in an
average of 88%e92% of pairs and kappa statistics ranged from 0.760
to 0.795 (Table 2). For head circumference, applying the jackknife
residual method to the sex- and age-standardized z-scores per-
formed better than when applied to the raw measurements
(Table 2).

When using the jackknife residuals method to identify any
induced error, sensitivities ranged from 10.7% to 14.1% and speci-
ficities ranged from 97.4% to 97.6% when applied to sex- and age-
standardized z-scores for length, weight, and head circumference
(Table 3). Sensitivity estimates were lower when the jackknife re-
sidual method was used for raw length, weight, or head circum-
ference measurements, although specificities were similar to the
models based on z-scores (Table 3). Alternative methods to identify
induced errors in length, weight, and head circumference mea-
surements had much lower sensitivities (Table 3). The conditional
growth percentile method had specificities that were slightly lower
than the jackknife residual approach, whereas the conventional
cross-sectional methods were very insensitive (<1%) but had nearly
perfect specificities (>99%) (Table 3).

As expected, sensitivity decreased and specificity increasedwith
increasing absolute values of cutoffs used for the jackknife residual



Table 2
Comparison of using jackknife residuals from linear versus nonlinear models of
z-scores or raw growth data, respectively, as a function of age to identify biologically
implausible decreases in length, weight, and head circumference measurements
over 1000 simulations with an induced error rate of 5%

Model Number of pairs of
adjacent values
with a biologically
implausible decrease*,
mean ± SD

Percent of pairs in
which the error
was correctly
identified (%),
mean ± SD

Kappa statisticy,
mean ± SD

Length
Model 1z 62.5 ± 7.9 88.2 ± 4.0 0.760 ± 0.081
Model 2x 62.5 ± 7.9 89.6 ± 3.9 0.788 ± 0.080

Weight
Model 1z 26.0 ± 5.3 91.5 ± 5.2 0.795 ± 0.127
Model 2x 26.0 ± 5.3 91.2 ± 5.4 0.789 ± 0.129

Head circumference
Model 1z 123.3 ± 10.8 84.3 ± 3.1 0.685 ± 0.062
Model 2x 123.3 ± 10.8 73.2 ± 3.9 0.462 ± 0.079

* Any decrease in raw length or head circumference measurements were
considered to be biologically implausible, whereas a decrease of greater than 15% in
the raw measurements for weight were considered biologically implausible.

y Agreement between the jackknife residual method and truth in the classifica-
tion of induced plausible values.

z Linear equation of sex- and age-standardized z-score as a function of age
(Zij ¼ b0i þ bi tij þ εij).

x Raw anthropometric measurement as a function of square root age (Yij ¼ b0i þ
bi tij

½ þ εij).
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method (Fig. 1, Supplementary Material Table S1). When stratified
by the number of measurements available per infant, both the re-
sidual method and the conditional growth percentile method had
higher sensitivities and lower specificities among participants for
whom there were fewer numbers of measurement encounters
(Supplementary Material Table S2). When stratified by timing of
themeasurement, higher sensitivity and lower specificity were also
generally observed when the residual method was applied to the
first measurement taken for a given individual compared with
midtrajectory visits or last visits, although the pattern of differences
in sensitivities was not evident for raw measurements
(Supplementary Material Table S3). Substantial differences in
sensitivity and specificity were not observed between mid-
trajectory visits and last visits when the conditional growth
percentile method was applied. Increasing the overall induced er-
ror rate to 10% or 15% resulted in a decrease in sensitivity for the
residual method, but specificity was largely unchanged
(Supplementary Material Table S4). In contrast, doubling or tripling
the width of the distribution of the magnitudes of errors resulted in
increased sensitivity, but specificity remained fairly constant
Table 3
Comparison of alternativemethods to identify induced errors in length, weight, and head

Measure Jackknife residuals
(model 1) with
>5 or < �5 cutoff*

Jackknife residuals
(model 2) with
>5 or < �5 cutoffy

Length
Sensitivity (%), mean ± SD 11.9 ± 1.5 10.2 ± 1.4
Specificity (%), mean ± SD 97.4 ± 0.1 97.4 ± 0.1

Weight
Sensitivity (%), mean ± SD 14.1 ± 1.6 9.7 ± 1.4
Specificity (%), mean ± SD 97.4 ± 0.1 98.0 ± 0.1

Head circumference
Sensitivity (%), mean ± SD 10.7 ± 1.4 4.1 ± 0.9
Specificity (%), mean ± SD 97.6 ± 0.1 98.1 ± 0.1

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi
z Based on a random effects restricted cubic spline (with 5 knots) model.
x For LAZ, <�6 SD or >6 SD; for WAZ, <�6 SD or >5 SD; and for HCAZ, <�5 SD or >5
(Supplementary Material Table S4). For the alternative methods,
changes in the error rate had smaller effects on sensitivities and
specificities (Supplementary Material Table S4).

As a case study, the jackknife residual methodwas applied to the
original MDIG data set without induced errors. For length, 21 pairs
of measurements with biologically implausible decreases were
identified from the data set. An example of an individual with such
a pair of measurements is presented in Figure 2, where applying the
jackknife residual method to LAZ and raw measurements were
consistent in identifying the incorrect measurement time point, as
represented by the red marker.

To reduce the probability of labeling true measurements as er-
rors/outliers by this process, a cutoff of ±5was used in general, with
a more extreme cutoff of ±6 applied to individuals with only 4 to 5
measurements, or if it was an individual's first measurement. As
such, of the 8868 available length measurements, the residual
method identified 133 (1.50%) outliers when applied to LAZ, and
139 (1.57%) outliers when applied to the raw measurements, with
an overlap of 43 (0.48%)measurements that were identified by both
methods. A total of 85 (0.96%) measurements could not be evalu-
ated using this method, as these individuals had fewer than 4
separate measurements taken. An example of an outlier identified
by both methods is presented in Figure 3.

Discussion

We demonstrated the use of a novel, simple, and objective
approach to identify outliers and biologically implausible values in
longitudinal growth data. Although the regression models chosen
may provide a crude fit to the data, relative to more sophisticated
modeling strategies, this was done intentionally to preclude over-
fitting the data and biasing the residuals toward the null. The
simplicity of the models chosen to assess the jackknife residuals of
given measurements will allow this method to be easily applied,
especially for large data sets in which manual inspection may not
be feasible.

In assessing the application of the jackknife residual method to
identify the incorrect measurement within pairs of adjacent values
with a biologically implausible decrease, incorrectly labeling an
unmodified value as an error or failing to correctly identify an
induced error was largely due to instances in which errors were
introduced in both measurements within the pair or if the partic-
ipant had many errors introduced at other measurement
time points. As such, the use of the jackknife residual method to
identify the incorrect measurement in instances of a biologically
implausible decrease is predicated on the assumption that one
measurement is correct whereas the other is notdthis method is
circumferencemeasurements over 1000 simulations with an induced error rate of 5%

Conditional growth
percentile with
>4 or < �4 cutoffz

Recommended cutoffs
from the WHO child
growth standardsx

>4 or < �4 SD from
population average

0.2 ± 0.2 0.1 ± 0.1 0.4 ± 0.3
86.2 ± 0.1 100.0 ± 0.0 99.9 ± 0.0

0.1 ± 0.2 0.9 ± 0.5 0.6 ± 0.3
86.3 ± 0.1 99.9 ± 0.0 99.9 ± 0.0

0.2 ± 0.2 0.4 ± 0.3 0.5 ± 0.3
86.3 ± 0.1 99.8 ± 0.0 99.8 ± 0.0

bi tij þ εij).
tij
½ þ εij).

SD [7].
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Fig. 1. Sensitivity and specificity of the jackknife residual method for detection of outliers in child (A) raw length, (B) length-for-age z-score, (C) raw weight, (D) weight-for-age
z-score, (E) raw head circumference, and (F) head circumference-for-age z-score data using cutoffs from ±3 to ± 8.
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unable to identify instances in which errors occurred at both time
points. In addition, increased number and magnitude of errors per
individual will distort growth trajectories fit to each individual's
measurements and thereby reduce the utility of this approach.
Errors in head circumference measurements were more difficult to
identify, likely due to the smaller absolute change in head
circumference that occurs during development, relative to length
and weight. Errors which were large enough to cause a biologically
implausible decrease in measurements only caused minor changes
in the overall head circumference trajectory, making it difficult for
the jackknife residual method, as well as other methods, to discern
between correct and incorrect measurements.

The accuracy of the jackknife residual method when applied to
age- and sex-standardized z-scores versus raw measurements was
comparable, except for head circumference, where using a±5 cutoff
resulted in much higher sensitivity and slightly lower specificity
when using HCAZ rather than the raw measurements. Although
observed sensitivities may appear low, this was expected since the
magnitude of many induced errors were quite small and were very
unlikely to be detected using any available method. In addition,
since precleaning of the data set was not conducted, naturally
occurring errors could be identified as errors and would therefore
reduce estimated specificities. However, this would affect not just
the jackknife residual method but all methods that were assessed,
although likely to different extents. For example, conventional
cross-sectional methods have overall lower sensitivity, and there-
fore are less likely to detect naturally occurring errors. As such,
specificity of these methods is less likely to be reduced by naturally



A B

Fig. 2. Example of a participant for whom an error was identified within a pair of values in which there was a biologically implausible decrease in length between two adjacent
encounters (shown in hollow circles). The error was similarly identified when the jackknife residual method was applied to (A) length-for-age z-scores (LAZ) or (B) raw length
measurements. Each measurement is labeled with its corresponding jackknife residual values.
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occurring errors than for methods which have higher sensitivity
such as the jackknife residual method. The effect on estimates of
sensitivity are more difficult to predict, but given that the true
prevalence of errors in the data set is greater than how much was
induced, our estimates of sensitivity may also be an underestimate
of the true sensitivity because our sensitivity analyses have shown
that the sensitivity of these methods decreased with increasing
error rate (Table S4). We also showed that the timing of the mea-
surement as well as the number of measurements available for a
given individual has implications for the sensitivity and specificity
of the jackknife residual method, but can be accounted for by
combining a variety of different cutoffs when flagging potential
outliers.

Both sensitivity and specificity were lower when applying the
conditional growth percentile method to identify the induced er-
rors compared with the jackknife residual method. The substan-
tially reduced specificity can be attributed to the calculation of
specificity in the whole data set, rather than in the subset of
measurements to which the method can be applied. For example,
the jackknife residual method could not be applied to measure-
ments of individuals who have fewer than four total measure-
ments, which comprised approximately 1% of all measurements in
the data set, effectively reducing the observed overall sensitivity of
this method by 0.5% and specificity by 0.95% (assuming errors were
induced in 5% of those observations, as expected since they were
randomly generated). In contrast, the conditional growth percentile
A

Fig. 3. Example of a participant for whom an outlier (shown in hollow circles) was identified
raw length measurement. Each measurement is labeled with its corresponding jackknife re
method could not be applied to the first measurement time point
of each individual, which comprised approximately 13.6% of all
measurements in the data set, thus affecting the observed overall
sensitivity and specificity of the method to a much greater extent
and thereby highlighting the most consequential limitation of this
method. The reduced sensitivity of the conditional growth
percentile method may be attributed to the use of the 4 SD
threshold as recommended by Yang et al [9] to prioritize specificity.
Similarly, careful consideration of the sensitivity-specificity trade-
off is required for the jackknife residual method, and further in-
quiry and investigation into outliers flagged by this method should
be conducted.

Unsurprisingly, conventional cross-sectional methods per-
formed quite poorly in discriminating between unmodified mea-
surements and induced errors. Although they had near-perfect
specificity, a very limited number of the induced errors were
detected by these methods, resulting in extremely poor sensitivity.
Although lowered cutoffs were assessed to try to increase the
sensitivity of thesemethods (data not shown), substantial increases
in sensitivity were not observed until cutoffs were lowered to
values that would have eliminated measurements which were
likely to be plausible.

Although we demonstrated that jackknife residuals are a prac-
tical approach to identify both biologically implausible values and
outliers, assumptions were made regarding the functional forms
used to reflect the shape of the growth trajectory. Althoughwe used
B

when the jackknife residual method is applied to (A) length-for-age z-score (LAZ) or (B)
sidual values.
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linear equations of z-scores as a function of age or raw anthropo-
metric measurement as a function of square root of age, the general
shape of the growth trajectory can be described using other func-
tional forms. Our models were selected on the basis of being
generalized forms of the expected growth trajectories of infants
from birth to 2 years of age. For example, the linear equation of
z-scores as a function of age represents the expected trajectory of a
child maintaining a z-score at 0, whereas the square root equation
reflects the rapid but decelerating rate of change in raw size mea-
surements that occurs in the postnatal period. Different functional
forms may be needed to account for alternate patterns of growth
that may be expected with other types or timing of measurements.
However, caution is warranted against overfitting the data, as not
only will this increase the number of measurements needed per
individual, where (k þ 2) measurements are needed for a model
with k parameters, residuals are biased closer toward the null when
the data are overfit.

In addition, our simulations assumed an arbitrary error rate and
distribution for the magnitude of the errors, which may be
impossible to characterize in real longitudinal growth data. How-
ever, our sensitivity analyses indicated that although increasing the
error rate or magnitude of these errors has implications for the
sensitivity of the jackknife residual method, its specificity remains
relatively constant. While no single method will be able to identify
all errors in a longitudinal growth data set, a combination of ap-
proaches, such as applying the jackknife residual method using
various regression equations as well as the conditional growth
percentile method, may provide the best sensitivity without erro-
neously identifying real measurements as errors. A multitude of
factors, including type of measurement, number of measurements
available per individual, and the timing between measurements,
should be considered in deciding on a data cleaning strategy. Ul-
timately, the acceptable balance of sensitivity and specific-
itydthereby determining the parameters used to implement the
method (e.g., cutoff values, use of variable cutoff values for different
time points)dis determined by individual investigators based on
the study design and overall sample size. Flagged values should
undergo manual review and adjudication before being excluded
from further analyses; therefore, the choice of cutoffs may be
determined by available resources to undertake a manual review
process.

In conclusion, the use of jackknife residuals provides a simple
and flexible method to identify biologically implausible values and
outliers in longitudinal growth data in studies in which most
children have at least 4 serial measurements. The detection and
correction (or exclusion, if necessary) of measurement errors can
increase precision in analyses to identify determinants of growth
trajectories or the effects of child growth on later health
outcomes.
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Supplementary Stata code for calculating jackknife residuals

/* (1) Set-up:
Note that the data should be in long format and the following

numerical variables are used for this analysis:

- PartID: each child's unique identifier
- Age: age of child at time of measurement
- Length: length measurement of child
- LAZ: length-for-age z-score of child

It may be easier to rename the corresponding variables to match
the variable names used in the subsequent code. */

/* (2) Generating New Variables */
sort PartID Age
generate SqrtAge¼sqrt(Age) // square root of age
generate LAZ_Complete¼1 if LAZ!¼. // variable to indicate

whether or not a measurement was completed at a given time
point

generate Length_Complete¼1 if Length!¼.
generate LAZ_Residual¼. // creating variable to store jackknife

residual values from LAZ model
generate Length_Residual¼.
by PartID: egen LAZ_Count¼count(LAZ) // generating a count

variable that indicates how many LAZ measurements are available
per infant

by PartID: egen Length_Count¼count(Length)
/* (3) Running Model for LAZ, Storing Residuals and Flagging

Outliers*/
levels of PartID if LAZ_Count>3, local(levels) // storing all PartID

values of children who have more than 3 measurements in local
macro called 'levels'; note that this line of code needs to be run at
the same time as the following loop

foreach id of local levels{ // looping through all PartIDs

regress LAZ Age if PartID¼¼'id' // regressing LAZ on age for just
one ID
predict Residual'id' if PartID¼¼'id', rstudent // predicting jack-
knife residual
replace LAZ_Residual¼Residual'id' if PartID¼¼'id' // storing
predicted jacknknife residual into LAZ_Residual variable
drop Residual'id'

}
/* (4) Running Model for Length, Storing Residuals and Flagging

Outliers */
levels of PartID if Length_Count>3, local(levels)
foreach id of local levels{

regress Length SqrtAge if PartID¼¼'id' // regressing length on
squart root of age for just one ID
predict Residual'id' if PartID¼¼'id', rstudent
replace Length_Residual¼Residual'id' if PartID¼¼'id'
drop Residual'id'

}
/* (5) Identifying Outliers */

* a. LAZ Model, Using Cutoff of þ/- 4
generate LAZ_Outlier¼0 if abs(LAZ_Residual)<4
replace LAZ_Outlier¼1 if abs(LAZ_Residual)>4& LAZ_Residual!¼.
replace LAZ_Outlier¼9 if LAZ_Residual¼¼.

* b. Length Model, using Cutoff of þ/- 4
generate Length_Outlier¼0 if abs(Length_Residual)<4 // iden-
tifying outliers based on þ/- cutoff

replace Length_Outlier¼1 if abs(Length_Residual)>4 &
Length_Residual!¼.
replace Length_Outlier¼9 if LAZ_Residual¼¼.

/* Note that observations for which the jackknife residual could
not be evaluated (i.e. participant had too few observations), the
LAZ_Outlier variable will be indicated as '9', and manual review of
these observations should be conducted */

/* (6) Identifying Implausible Values
Note: This assumes that any decrease in length from one time

point to the next represents a pair of biologically implausible
values, for which an error must have occurred in at least one of the
two measurements */

/* a. Calculating Change in Length Between Successive Mea-
surements */
sort PartID Length_Complete Age
by PartID: generate Length_Change¼Length-Length[_n-1] //
calculating change between successive measurements in the
same infant
/* b. Identifying Pairs of Biologically Implausible Values */
by PartID: generate Length_BIVPair¼_n if Length_Change[_nþ1]
<0
by PartID: replace Length_BIVPair¼Length_BIVPair[_n-1] if
Length_Change<0
/* c. Determining Incorrect Value Based on Jackknife Residuals
from LAZ Model */
sort PartID Length_BIVPair
by PartID Length_BIVPair: egen LAZ_BIV_Max¼max(abs
(LAZ_Residual)) if Length_BIVPair!¼.
generate LAZ_BIV¼1 if abs(LAZ_BIV_Max)¼¼abs(LAZ_Residual)
& LAZ_BIV_Max!¼.
/* d. Determining Incorrect Value Based on Jackknife Residuals
from Length Model */
sort PartID Length_BIVPair
by PartID Length_BIVPair: egen Length_BIV_Max¼max
(abs(Length_Residual)) if Length_BIVPair!¼.
generate Length_BIV¼1 if abs(Length_BIV_Max)¼¼abs(Length_
Residual) & Length_BIV_Max!¼.



Appendix A. Supplementary methods

Generation of sex- and age-standardized z-scores for length, weight,
and head circumference measurements

(1) Sex- and age-standardized z-scores for length, weight, and
head circumference measurements were generated using the
Intergrowth-21st Newborn Size standards for length, weight, and
head circumference measurements taken within 48 hours of
birth; (2) the Intergrowth-21st International Postnatal Growth
Standards for Preterm Infants for length, weight, and head
circumference measurements taken up to 64 weeks of post-
menstrual age among preterm infants (born earlier than 37
weeks of gestation); and (3) the World Health Organization
(WHO) Child Growth Standards for length, weight, and head
circumference measurements among term infants and measure-
ments taken after 64 weeks of postmenstrual age among preterm
infants.

Models for individual sex- and age-standardized z-scores and raw
measurements for the jackknife residual method

Linear regression was used to fit a straight line through the in-
dividual's sex- and age-standardized z-score of the corresponding
anthropometry measurement as a function of age:

Zij ¼ b0i þ bi$tij þ εij (1)

where “i” denotes the ith individual and “j” denotes the jth time
point.

For raw measurements, each individual's measurements were
regressed on the square root of age (t½) to model a curvilinear
relationship:

Yij ¼ b0i þ bi$t
1=2
ij þ εij (2)

Minimum number of measurements required per individual

In both the sex- and age-standardized z-score and raw mea-
surement models, two parameters are being estimated: one for the
intercept and one for age or square root of age. Because a line fit to
two measurements is simply directly connecting one point to the
other, a minimum of three measurements is required in order for
there to be some variation (i.e., residual not equal to zero) around
the fitted trajectory. In the case of calculating jackknife residuals, a
fourth measurement is required since mean squared error is
calculated with the ith observation dropped. In general, (k þ 2)
measurements per infant are required for the jackknife residual
method, where k represents the number of parameters in the
model.

Table S1
Comparison of various cutoffs to identify induced errors in length, weight, and head circumference using the jackknife residual method over 1000 simulations with an induced
error rate of 5%

Measure Jackknife residuals: Model 1* Jackknife residuals: Model 2y

>3 or < �3
residual cutoff

>5 or < �5
residual cutoff

>7 or < �7
residual cutoff

>3 or < �3
residual cutoff

>5 or < �5
residual cutoff

>7 or < �7
residual cutoff

Length
Sensitivity (%), mean ± SD 27.8 ± 2.0 11.9 ± 1.5 5.6 ± 1.1 25.8 ± 2.1 10.2 ± 1.4 4.5 ± 1.0
Specificity (%), mean ± SD 94.4 ± 0.1 97.4 ± 0.1 98.2 ± 0.1 94.1 ± 0.1 97.4 ± 0.1 98.2 ± 0.1

Weight
Sensitivity (%), mean ± SD 29.9 ± 2.1 14.1 ± 1.6 7.4 ± 1.2 24.2 ± 1.9 9.7 ± 1.4 4.4 ± 1.0
Specificity (%), mean ± SD 94.1 ± 0.1 97.4 ± 0.1 98.3 ± 0.1 95.7 ± 0.1 98.0 ± 0.1 98.6 ± 0.0

Head circumference
Sensitivity (%), mean ± SD 25.6 ± 1.9 10.7 ± 1.4 5.1 ± 1.0 14.6 ± 1.6 4.1 ± 0.9 1.6 ± 0.6
Specificity (%), mean ± SD 94.2 ± 0.1 97.6 ± 0.1 98.4 ± 0.1 95.5 ± 0.1 98.1 ± 0.1 98.6 ± 0.0

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ bi tij þ εij).
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi tij

½ þ εij).
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Table S2
Comparison of various methods to identify induced errors in length, weight, and head circumference measurements over 1000 simulations with an induced error rate of 5%,
stratified by the number of measurements available

Number of observations per infant Jackknife residuals (model 1) with
>5 or < �5 cutoff*

Jackknife residuals (model 2) with
>5 or < �5 cutoffy

Conditional growth percentile with
>4 SD or < �4 SD cutoffz

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Length
2e3 measurements per infant d d d d 1.6 ± 8.7 54.2 ± 1.4
4�5 measurements per infant 19.0 ± 6.2 92.7 ± 0.4 17.1 ± 6.2 93.1 ± 0.4 0.1 ± 0.6 79.1 ± 0.3
6�7 measurements per infant 13.3 ± 2.7 98.5 ± 0.1 10.7 ± 2.5 98.1 ± 0.1 0.1 ± 0.3 84.6 ± 0.2
�8 measurements per infant 10.2 ± 1.8 99.1 ± 0.1 9.0 ± 1.7 99.2 ± 0.1 0.2 ± 0.3 88.9 ± 0.1
Overall 11.9 ± 1.5 97.4 ± 0.1 10.2 ± 1.4 97.4 ± 0.1 0.2 ± 0.2 86.2 ± 0.1

Weight
2�3 measurements per infant d d d d 0.1 ± 1.7 56.4 ± 1.4
4�5 measurements per infant 21.0 ± 6.3 94.5 ± 0.4 15.7 ± 6.1 95.1 ± 0.4 0.1 ± 0.5 79.3 ± 0.3
6�7 measurements per infant 15.6 ± 3.0 97.9 ± 0.1 10.3 ± 2.5 98.7 ± 0.1 0.1 ± 0.3 84.7 ± 0.2
�8 measurements per infant 12.4 ± 2.1 99.2 ± 0.1 8.6 ± 1.8 99.8 ± 0.0 0.1 ± 0.2 89.0 ± 0.1
Overall 14.1 ± 1.6 97.4 ± 0.1 9.7 ± 1.4 98.0 ± 0.1 0.1 ± 0.2 86.3 ± 0.1

Head circumference
2�3 measurements per infant d d d d 0.2 ± 2.8 57.0 ± 1.4
4�5 measurements per infant 20.0 ± 6.5 95.1 ± 0.4 14.2 ± 5.3 94.9 ± 0.4 0.2 ± 0.7 79.3 ± 0.3
6�7 measurements per infant 12.4 ± 2.7 98.4 ± 0.1 5.2 ± 1.8 99.2 ± 0.1 0.3 ± 0.4 84.6 ± 0.2
�8 measurements per infant 8.4 ± 1.7 99.1 ± 0.1 2.0 ± 0.9 99.6 ± 0.1 0.3 ± 0.3 88.9 ± 0.1
Overall 10.7 ± 1.4 97.6 ± 0.1 4.1 ± 0.9 98.1 ± 0.1 0.3 ± 0.2 86.3 ± 0.1

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ bi tij þ εij).
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi tij

½ þ εij).
z Based on a random effects restricted cubic spline (with 5 knots) model.

Table S3
Comparison of various methods to identify induced errors in length, weight, and head circumference measurements among infants with at least 2 measurements over 1000
simulations with an induced error rate of 5%, stratified by visit at which error was induced

Timing of visit Jackknife residuals (model 1) with
>5 or < �5 cutoff*

Jackknife residuals (model 2) with
>5 or < �5 cutoffy

Conditional growth percentile with
>4 SD or < �4 SD cutoffz

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Length
First visit 17.6 ± 4.8 91.7 ± 0.4 11.2 ± 4.1 90.9 ± 0.4 d d

Middle visit 11.5 ± 1.8 98.9 ± 0.1 9.8 ± 1.7 99.0 ± 0.1 0.2 ± 0.3 99.8 ± 0.0
Last visit 8.1 ± 3.4 96.4 ± 0.2 11.7 ± 4.2 96.5 ± 0.2 0.2 ± 0.5 99.8 ± 0.0
Overall 11.9 ± 1.5 97.4 ± 0.1 10.2 ± 1.4 97.4 ± 0.1 0.2 ± 0.2 86.2 ± 0.1

Weight
First visit 21.9 ± 5.5 90.0 ± 0.4 5.9 ± 3.0 93.5 ± 0.3 d d

Middle visit 13.3 ± 1.9 99.2 ± 0.1 9.5 ± 1.6 99.4 ± 0.0 0.2 ± 0.2 99.9 ± 0.0
Last visit 11.1 ± 4.1 96.7 ± 0.2 14.8 ± 4.6 96.6 ± 0.2 0.0 ± 0.2 100.0 ± 0.0
Overall 14.1 ± 1.6 97.4 ± 0.1 9.7 ± 1.4 98.0 ± 0.1 0.1 ± 0.2 86.3 ± 0.1

Head circumference
First visit 17.5 ± 5.1 91.6 ± 0.4 6.2 ± 3.2 94.6 ± 0.3 d d

Middle visit 10.2 ± 1.6 99.0 ± 0.1 3.0 ± 0.9 99.5 ± 0.0 0.4 ± 0.3 99.8 ± 0.0
Last visit 6.3 ± 3.1 97.2 ± 0.2 8.1 ± 3.6 95.5 ± 0.3 0.1 ± 0.4 99.9 ± 0.0
Overall 10.7 ± 1.4 97.6 ± 0.1 4.1 ± 0.9 98.1 ± 0.1 0.3 ± 0.2 86.3 ± 0.1

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ bi tij þ εij).
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi tij

½ þ εij).
z Based on a random effects restricted cubic spline (with 5 knots) model.
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Table S4
Comparison of various methods to identify induced errors in length, weight, and head circumference measurements over 1000 simulations with induced error rates of 5%, 10%,
and 15%

Error rate Jackknife residuals (model 1)
with >5 or
< �5 cutoff*

Jackknife residuals (model 2)
with >5 or
< �5 cutoffy

Conditional growth percentile
with >4 SD or < �4 SD cutoffz

Recommended cutoffs from
the WHO child growth
standards

>4 or < �4 SD from
population average

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity
(%),
mean ± SD

Specificity
(%),
mean ± SD

Length
5% error rate 11.9 ± 1.5 97.4 ± 0.1 10.2 ± 1.4 97.4 ± 0.1 0.2 ± 0.2 86.2 ± 0.1 0.1 ± 0.1 100.0 ± 0.0 0.4 ± 0.3 99.9 ± 0.0
10% error rate 2.3 ± 0.7 96.7 ± 0.1 2.2 ± 0.7 96.8 ± 0.1 0.1 ± 0.2 86.2 ± 0.1 0.1 ± 0.1 100.0 ± 0.0 0.2 ± 0.2 99.9 ± 0.0
15% error rate 2.4 ± 0.7 96.7 ± 0.1 2.3 ± 0.7 96.8 ± 0.1 0.1 ± 0.1 86.2 ± 0.1 0.1 ± 0.1 99.9 ± 0.0 0.1 ± 0.2 99.9 ± 0.0

Weight
5% error rate 14.1 ± 1.6 97.4 ± 0.1 9.7 ± 1.4 98.0 ± 0.1 0.1 ± 0.2 86.3 ± 0.1 0.2 ± 0.2 99.9 ± 0.0 0.6 ± 0.3 99.9 ± 0.0
10% error rate 2.5 ± 0.8 96.6 ± 0.1 1.6 ± 0.6 97.4 ± 0.1 0.1 ± 0.1 86.3 ± 0.1 0.1 ± 0.1 99.9 ± 0.0 0.1 ± 0.2 99.8 ± 0.0
15% error rate 2.6 ± 0.8 96.5 ± 0.1 1.8 ± 0.7 97.2 ± 0.1 0.1 ± 0.1 86.3 ± 0.1 0.1 ± 0.1 99.9 ± 0.0 0.1 ± 0.2 99.9 ± 0.0

Head circumference
5% error rate 10.7 ± 1.4 97.6 ± 0.1 4.1 ± 0.9 98.1 ± 0.1 0.3 ± 0.2 86.3 ± 0.1 0.4 ± 0.3 99.8 ± 0.0 0.5 ± 0.3 99.8 ± 0.0
10% error rate 2.1 ± 0.7 97.0 ± 0.1 1.2 ± 0.5 97.9 ± 0.1 0.1 ± 0.2 86.3 ± 0.1 0.2 ± 0.2 99.8 ± 0.0 0.2 ± 0.2 99.8 ± 0.0
15% error rate 2.2 ± 0.7 96.9 ± 0.1 1.3 ± 0.5 97.8 ± 0.1 0.1 ± 0.1 86.3 ± 0.1 0.2 ± 0.2 99.8 ± 0.0 0.2 ± 0.2 99.8 ± 0.0

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ bi tij þ εij).
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi tij

½ þ εij).
z Based on a random effects restricted cubic spline (with 5 knots) model.

Table S5
Comparison of various methods to identify induced errors in length, weight, and head circumference measurements over 1000 simulations in which magnitude of induced
errors have standard deviations of 1, 2, and 3

Jackknife residuals (model 1)
with >5 or < �5 cutoff*

Jackknife residuals (model 2)
with >5 or < �5 cutoffy

Conditional growth percentile
with >4 SD or < �4 SD cutoffz

Recommended cutoffs from
the WHO child growth
standards

>4 or <�4 SD from population
average

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Sensitivity (%),
mean ± SD

Specificity (%),
mean ± SD

Length
SD 1 11.9 ± 1.5 97.4 ± 0.1 10.2 ± 1.4 97.4 ± 0.1 0.2 ± 0.2 86.2 ± 0.1 0.1 ± 0.1 100.0 ± 0.0 0.4 ± 0.3 99.9 ± 0.0
SD 2 29.3 ± 2.2 97.5 ± 0.1 26.9 ± 2.1 97.5 ± 0.1 2.8 ± 0.7 86.3 ± 0.1 1.4 ± 0.6 100.0 ± 0.0 3.5 ± 0.8 99.9 ± 0.0
SD 3 41.0 ± 2.3 97.5 ± 0.1 38.9 ± 2.3 97.5 ± 0.1 9.1 ± 1.2 86.3 ± 0.1 6.6 ± 1.2 100.0 ± 0.0 10.0 ± 1.2 99.9 ± 0.0

Weight
SD 1 14.1 ± 1.6 97.4 ± 0.1 9.7 ± 1.4 98.0 ± 0.1 0.1 ± 0.2 86.3 ± 0.1 0.2 ± 0.2 99.9 ± 0.0 0.6 ± 0.3 99.9 ± 0.0
SD 2 30.7 ± 2.2 97.5 ± 0.1 25.2 ± 2.1 98.1 ± 0.1 3.1 ± 0.8 86.3 ± 0.1 3.8 ± 0.9 99.9 ± 0.0 5.0 ± 0.9 99.9 ± 0.0
SD 3 41.9 ± 2.3 97.6 ± 0.1 36.5 ± 2.2 98.1 ± 0.1 9.7 ± 1.1 86.3 ± 0.1 11.2 ± 1.5 99.9 ± 0.0 12.5 ± 1.2 99.9 ± 0.0

Head circumference
SD 1 10.7 ± 1.4 97.6 ± 0.1 4.1 ± 0.9 98.1 ± 0.1 0.3 ± 0.2 86.3 ± 0.1 0.4 ± 0.3 99.8 ± 0.0 0.5 ± 0.3 99.8 ± 0.0
SD 2 26.9 ± 2.1 97.7 ± 0.1 14.3 ± 1.6 98.1 ± 0.1 4.2 ± 0.9 86.3 ± 0.1 4.1 ± 1.0 99.8 ± 0.0 4.3 ± 0.9 99.8 ± 0.0
SD 3 38.7 ± 2.3 97.7 ± 0.1 25.4 ± 2.1 98.2 ± 0.1 10.7 ± 1.2 86.3 ± 0.1 12.9 ± 1.6 99.8 ± 0.0 11.3 ± 1.2 99.8 ± 0.0

* Linear equation of sex- and age-standardized z-score as a function of age (Zij ¼ b0i þ bi tij þ εij).
y Raw anthropometric measurement as a function of square root of age (Yij ¼ b0i þ bi tij

½ þ εij).
z Based on a random effects restricted cubic spline (with 5 knots) model.
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