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The effects of organic solvents on 
the folding pathway and associated 
thermodynamics of proteins: a 
microscopic view
Yuqi Yu1, Jinan Wang1, Qiang Shao1, Jiye Shi2 & Weiliang Zhu1

Protein folding is subject to the effects of solvation environment. A variety of organic solvents are 
used as additives for in vitro refolding of denatured proteins. Examination of the solvent effects on 
protein folding could be of fundamental importance to understand the molecular interactions in 
determining protein structure. This article investigated the folding of α-helix and β-hairpin structures 
in water and the solutions of two representative refolding additives (methanol (MeOH) and 1-Ethyl-
3-methylimidazolium chloride (EMIM-Cl) ionic liquid) using REMD simulations. For both α-helix and 
β-hairpin in MeOH/water solution or α-helix in EMIM-Cl/water solution, the transient structures along 
the folding pathway are consistent with the counterparts in water but the relative statistical weights are 
changed, leading to the decrease in the overall folding free energy barrier. Accordingly, MeOH promotes 
the folding of both α-helix and β-hairpin but EMIM-Cl ionic liquid only promotes the folding of α-helix, 
consistent with experimental observations. The present study reveals for the first time the trivial effects 
on folding route but significant effects on folding thermodynamics from MeOH and EMIM-Cl, explaining 
the function of protein refolding additives and testifying the validity of the folding mechanism revealed 
by in vitro protein folding study using refolding additives.

Protein folding is a molecular self-assembly process in which a disordered polypeptide collapses to form a 
well-defined three-dimensional biologically functional structure. Understanding the molecular mechanism 
underlying protein folding is of fundamental importance to biology. A widely held view is that the evolution 
has selected a protein’s sequence in which the molecular interactions in native structure are mutually supportive 
and cooperatively lead to the functional structure, meaning that a given sequence is only consistent with a single 
native structure. The native structure of protein, as stated in free energy theory1,2, has the lowest energy in the 
vast protein conformational space. In this scenario, the energy landscape of protein folding is funnel-shaped and 
biased towards a single attractive basin of the native structure1,2. Any “trapping” protein conformations along the 
folding pathway have energetic depth smaller than the overall bias to the native structure, which guarantees that 
the native structure is both thermodynamically favorable and kinetically accessible.

Besides intrinsic properties of intra-protein interactions, protein folding is affected by extrinsic factors such as 
solvation environment as well. Any change in solvent condition might lead to the changes in several key aspects 
of protein stability and folding3,4. A conspicuous example is that water-soluble proteins can still fold into their 
native structures in specific organic solvents but the folding rates vary depending on the organic solvents used 
for protein solvation. Accordingly, protein folding is often investigated through in vitro refolding of denatured 
protein structure in various organic solvent solutions instead of pure water5,6. While the changes in thermody-
namic and kinetic aspects of protein folding induced by organic solvents can be measured using the currently 
available experimental techniques, it is still a great challenge to monitor the folding process of protein in real time 
at the level of a single protein molecule. As a result, whether the folding route of protein is changed as a result 
of the change in solvation environment remains elusive, which may call into question the validity of the folding 
mechanism of protein revealed by in vitro experiments using organic solvents as refolding additives. A systematic 
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investigation of the effects of organic solvents (working as refolding additives) on not only folding thermodynam-
ics/kinetics but also detailed folding route becomes much necessary.

Alcohols such as methanol (MeOH) and trifluoroethanol (TFE) are typical organic solvents which enhances 
the stabilization of α -helical and β -hairpin secondary structures but meanwhile destabilizes the tertiary struc-
ture, generating a “molten globule” like state (a common folding intermediate state for small globular proteins)5,7. 
Multiple experiments and simulations8–12 further showed that MeOH and TFE promote the in vitro refolding 
of denatured α -helices and β -structures as well. Ionic liquids (ILs), molten salts usually composed of large-size 
organic cations (e.g., alkylsubstituted imidazolium, ammonium) and compact counterions, are another repre-
sentative “organic solvent” which exert significant influence on protein folding, protein structural stability, and 
enzymatic activity. A great number of experiments have indicated that given suitable anions (e.g., BF4

−, PF6
−, and 

Tf2N−), ILs stabilize the native structures of proteins13–17, promote the refolding process6,18,19, and improve the 
catalytic activity of enzymes of widely diverging types20–27. Examination of the effects of abovementioned organic 
solvents on protein folding can serve as a useful model system for understanding the various molecular interac-
tions in determining protein structures.
α -Helices and β -hairpins are the most common structural motifs in protein and the detailed study could 

shed lights on the mechanism of protein folding. A typical β -hairpin is characterized by a hydrophobic core 
cluster packed by hydrophobic side-chains from anti-parallel strands as well as the backbone hydrogen bond 
assembly along the strands. This complex balance of local and nonlocal interactions makes β -hairpins resem-
ble the folding of globular proteins, and the relevant study provides information about early events in protein 
folding. Therefore, short polypeptides adopting either α -helix or β -hairpin or the combination of both struc-
tural motifs have attracted great attention in the last several decades. In the present study, using Trp-cage and 
the C-terminal β -hairpin (residues 41-56) from the B1 domain of protein G (GB1p) as protein models, we ran 
explicit solvent replica-exchange molecular dynamics (REMD) simulations to investigate atomically the folding of 
α -helix and β -hairpin structures in not only water but also ~45% (v/v) MeOH/water solution and ~3M 1-Ethyl-
3-methylimidazolium chloride (EMIM-Cl) ionic liquid solution. The accuracy of multiple physics based force 
fields was first assessed in the simulations of proteins in water to determine the force field with best balance of the 
α -helix and β -hairpin tendencies. The structural characterization and energetics of the folding of Trp-cage and 
GB1p were then measured in all three abovementioned solutions, which provides comprehensive, atomic-level 
picture of the solvent effects on protein folding pathway as well as the associated folding thermodynamics.

Results
Force field assessment for the folding of α-helix and β-hairpin structures in water.  A variety 
of force fields have been developed to measure the structural and dynamic properties of protein. Bias favoring 

Figure 1.  (a,b) NMR structures of GB1p and Trp-cage (the side-chains involved in the hydrophobic core 
cluster of protein are shown with yellow colored licorice representation). (c) One-dimensional free energy 
profile at 300 K as the function of the backbone RMSD with respect to the experimentally determined folded 
structure for GB1p in water measured by FF99SB-ILDN and FF96 force fields. (d) One-dimensional free energy 
profile at 300 K as the function of the backbone RMSD with respect to the experimentally determined folded 
structure for Trp-cage in water measured by FF99SB-ILDN and FF94 force fields.
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either α -helical or β -hairpin secondary structure, however, has been observed among the force fields. The use of 
different force fields may produce different folding-related properties of protein. Multiple literatures have criti-
cally evaluated the performance of commonly used force fields in protein folding simulations, focusing on how 
accurately they reproduce the native structure and the dynamics of proteins, the experimental quantities relevant 
to protein folding28–31. In the present study, we chose several widely used AMBER force fields (namely AMBER 
FF94, FF96, and FF99SB-ILDN) to simulate the folding of GB1p and Trp-cage polypeptides in water solution. 
The most suitable force field for both α -helix and β -hairpin structures was determined through the comparison 
of the conformational landscapes, which was then used for the subsequent investigation of solvent effects on 
protein folding.

In REMD simulation, random walk in temperature space is essential for replicas to escape local minima so as 
to make a sufficient sampling for protein configuration space. For each simulation system under study, the repre-
sentative replica is ergodic for every temperature in the desired temperature range (from 300 K to 550 K) during 
the simulation, showing the efficiency of REMD search (see Supplementary Figs S1 and S2 online). In addition, 
as shown in Supplementary Figs S3 and S4 online, the fraction of folded structure at room-temperature (300 K) 
keeps increasing from the very beginning of each simulation and reaches a maximum plateau eventually. Taking 
the simulation systems of GB1p and Trp-cage in water as examples, we calculated the time series of the fraction 
of all populated structures of GB1p and Trp-cage at 300 K. As shown in Supplementary Figs S5 and S6 online, 
all the fractions reach the plateau. All the information (Figs S1–S6) indicates the convergence of REMD simula-
tions in the present study. It is noteworthy that under FF99SB-ILDN force field, the folded β -hairpin structure 
of GB1p is most populated in the equilibrium conformational ensemble in water and its population (~36% at 
300 K) (Figs S3a and S5a) is very close to the experimentally measured population of ~45% by Munoz et al.32 and 
30% by Fesinmeyer et al.33 On the other hand, the population of Trp-cage folded structure in water simulated by 
FF99SB-ILDN force field is consistent with the counterpart generated by the recent extensive conventional MD 
simulation of Lindorff-Larsen et al.34 using CHARMM22* force field. Both simulated population of Trp-cage are, 
however, relatively lower than the experimental data35,36. The discrepancy between simulations and experiments 
might be attributed to the small residual errors in the force field parameterization of two plentiful residues of 
proline and glycine in Trp-cage, which have an unusually large effect on the stability of this fold34.

Using backbone root-mean-square deviation (RMSD) with respect to the experimentally determined native 
structure as the reaction coordinate, the one-dimensional free energy profiles were depicted in Fig. 1 for the fold-
ing of GB1p and Trp-cage in water. The free energy landscape was calculated with the normalized probability, 
( ) = β− − ( )P x Z e W x1  from a histogram analysis,  where x  is  any set of reaction coordinate(s). 
( ) − ( ) = −

β
( )
( )

W x W x ln P x
P x2 1

1 2

1
 is the relative free energy or potential of mean force. It is noteworthy that all 

free energy profiles including Fig. 1 and the others hereinafter were calculated on the basis of the simulation data 
at 300 K. Accordingly, the investigation of protein folding focuses on the temperature of 300 K. For GB1p (Fig. 1c), 
the FF99SB-ILDN force field generates a lowest-energy basin located at the smallest RMSD (~1.0 Å) whereas the 
FF96 force field makes the lowest-energy basin deviate to larger RMSD (~2.2 Å). Therefore, within the similar 
simulation time, FF99SB-ILDN force field is better than FF96 at constructing the conformational landscape of 
GB1p in which the native structure is supposed to have the lowest free energy level.

Meanwhile, the folding free energy profile of Trp-cage in water under FF99SB-ILDN force field (Fig. 1d) has 
the same shape as that generated by previous MD simulation of Lindorff-Larsen et al.34: the local minima cor-
responding to the folded and unfolded states are separated by a transition state (at RMSD ≈ 2.8 Å), implying 
that the folding of Trp-cage is a two-state transition (see the comparison of the folding free energy profiles in 
Supplementary Fig. S7 online). Ensembles of native structures of Trp-cage have been identified by previous NMR 
experiment, with the difference mainly at the N-terminal region: the N-terminus is flexible and the N-terminal 
backbone hydrogen bond (Asn1O-Gln5H) is either formed or broken37. Intriguingly, the low RMSD region  
(<2.0 Å) in the free energy profile generated by FF99SB-ILDN (Fig. 1d) is separated into two local minima. The 

Figure 2.  Comparison of the representative conformations (cyan colored) corresponding to the two local 
minima located at the low RMSD region in the free energy profile generated by FF99SB-ILDN force field 
(Fig. 1d) and the representative conformations of NMR structure ensembles of Trp-cage (blue colored). 
N-terminal backbone hydrogen bond (Asn1O-Gln5H) is highlighted with yellow square.
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representative conformations of the corresponding native-like structures are close to each other except that the 
N-terminal backbone hydrogen bond is formed in one conformation but broken in the other, perfectly reproduc-
ing the experimentally observed trivial difference among structure ensembles of Trp-cage in water (Fig. 2). On 
the other hand, while the free energy profile of Trp-cage generated by FF94 force field also reflects a two-state 
transition of protein folding, the free energy barrier from the unfolded to folded state is significantly smaller than 
the counterpart under FF99SB-ILDN. In addition, the free energy profile under FF94 is limited in much narrower 
RMSD range than the free energy profile under FF99SB-ILDN. All the information suggests that the former force 
field has greater bias favoring α -helix structure than the latter.

To further assess the force fields in describing the folding of β -hairpin structure in water, two-dimensional free 
energy landscape was projected onto the backbone RMSD and a robust “R” parameter ( = ∑ =R i

r
r1
i

i

0
, where ri

0 is 
the inter-strand Cα-Cα distance in the native structure and ri is the same distance in the simulation trajectory38,39). 
“R” parameter was chosen because of its ability of reflecting the formation status of the key structural elements in 
the folding process of β -hairpin and thus mapping the folding pathway in conformational landscape. As a com-
parison, radius of gyration (Rg) was also used in combination with RMSD to draw two-dimensional free energy 
landscapes for GB1p in all solutions under study. The distinct states which can be clearly indicated in individual 
free energy landscapes of RMSD and R are undistinguished in the corresponding free energy landscapes of RMSD 
and Rg (see Supplementary Fig. S8 online). Hierarchical clustering analyses were run using kclust algorithm avail-
able in MMTSM Toolset40 to identify the representative (most populated) conformations for all distinct states 
indicated in Fig. 3. Four distinct states are presented in the folding free energy landscape of GB1p in water simu-
lated by FF99SB-ILDN force field (Fig. 3a,b): the folded (F) state containing all native structural elements, the 
partially folded (P) state in which only the two turn-neighboring hydrophobic side-chains (Tyr5 and Phe12) are 
packed and the surrounding backbone hydrogen bonds are formed, the unfolded (U) state with relatively 
extended structure, and a state adopting mainly α -helical structure which is thus defined as Helix state here. The 
connection of these distinct states maps the folding pathway of GB1p. The free energy landscape of GB1p in water 
simulated by FF96 force field (Fig. 3c,d) is, however, much more complex: besides the folded (F) state, multiple 
misfolded β -hairpin structures (M1-M4) also exist (see the representative conformations in Fig. 3d and the cor-
responding backbone hydrogen bond assembly for all states in Supplementary Table S3 online). The formation of 
multiple β -hairpin structures could be attributed to the strong β -structure bias of FF96 force field.

The two-dimensional free energy landscape was projected onto the backbone RMSD and Rg for Trp-cage in 
water to show the force field effects on the folding of α -helix (“R” parameter is not suitable for α -helix structure). 
As shown in Fig. 4, two distinct states corresponding to the folded (F) and unfolded (U) states are presented in 
the free energy landscape simulated by FF99SB-ILDN force field. The representative conformations of the former 

Figure 3.  Two-dimensional free energy landscape as the function of the backbone RMSD and “R” parameter 
for the folding of GB1p in water and the representative conformations for all distinct states in the free energy 
landscape measured by (a,b) FF99SB-ILDN and (c,d) FF96 force fields.
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state are consistent with the NMR experimentally measured native structure ensembles (Fig. 2). In contrast, no 
secondary structure element is formed in the representative conformation of the latter state (Fig. 4b). On the 
other hand, the α -helix structure is well formed in both distinct states in the free energy landscape simulated by 
FF94 force field, making one state as the folded state and the other more likely as the partially folded (P) state, 
which, again, indicates strong α -helix bias of FF94 force field. In summary, among all force fields under study, 
FF99SB-ILDN is the most suitable force field for mimicking the folding of both α -helix and β -hairpin structures.

Methanol promoting the folding of both α-helix and β-hairpin Structures.  Next, the folding 
of GB1p and Trp-cage in ~45% (v/v) MeOH/water and 3M EMIM-Cl/water solutions was simulated using 
FF99SB-ILDN force field and REMD methodology, respectively. The one-dimensional free energy profile (see 
Supplementary Fig. S9 online) indicates that the folded state of GB1p in MeOH/water solution has the lowest 
energy level along the reaction coordinate. The transient states in the folding pathway of GB1p in MeOH/water 
have higher free energy level (relative to the folded state) than the counterparts of GB1p in water. As a result, the 
folding free energy barrier of GB1p (ΔGf*) is ~0.27 kcal/mol in MeOH/water solution, smaller than the value of 
0.40 kcal/mol in water, suggesting that methanol promotes the folding of β -hairpin structure by decreasing the 
folding free energy barrier. This result is consistent with the observations in multiple experiments. For instance, 
using circular dichroism (CD) and NMR spectra, Searle et al. found that the addition of methanol or TFE pro-
motes the native-like structure formation of the N-terminal hairpin of ferredoxin I which adopts dominantly 
random coil structure in pure water9. In addition, the NMR experiment by Platt et al.41 observed that the folding 
of the β -hairpin structure of a mutant of yeast ubiquitin is accelerated in low-concentrated methanol and particu-
larly TFE aqueous solutions.

The four distinct states (F, P, U, and Helix states) which are presented in the two-dimensional folding free 
energy landscape of GB1p in water (Fig. 3a,b) can be also seen in the free energy landscape of GB1p in MeOH/
water solution (Fig. 5a,b). The representative conformations of abovementioned states in MeOH/water solution 
are superposed onto the counterparts in water, respectively (Fig. 6). One can see that the structure of each state 
is largely consistent in the two solutions (e.g., the F state has only trivial difference in the orientation of Trp3 
side-chain, the P state has the structure difference only in the flapping terminal regions, the U and Helix states 
have the structure difference mainly in the central region). In addition, another partially folded (P’) state is also 
presented, which has structural feature even closer to the native state than the P state. The presence of the P’ state 
might be attributed to methanol induced stabilization of native-like structure of β -hairpin.

Figure 4.  Two-dimensional free energy landscape as the function of the backbone RMSD and Rg for the folding 
of Trp-cage in water and the representative conformations for all distinct states in the free energy landscape 
measured by (a,b) FF99SB-ILDN and (c,d) FF94 force fields.
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On the other hand, the two-dimensional free energy landscape for Trp-cage in MeOH/water solution (Fig. 7a) 
has similar feature as that for Trp-cage in water except that the folding free energy barrier between the folded and 
unfolded states is smaller (ΔGf* is 2.44 kcal/mol in MeOH/water solution and 2.66 kcal/mol in water), suggesting 
that methanol could promote the folding of α -helix structure as well. The representative conformation of the 
unfolded state in MeOH/water is similar to that in water except that the N-terminal region is pointed to opposite 
direction relative to the C-terminus (see Supplementary Fig. S10 online). Interestingly, the representative confor-
mation of the folded state of Trp-cage in MeOH/water has the N-terminal backbone hydrogen bond well formed, 
indicating that methanol enhances the stability of native structure of Trp-cage.

EMIM-Cl ionic liquid promoting the folding of α-helix but not β-hairpin.  Multiple ionic liquids 
have been reported to effectively promote the in vitro refolding of denatured proteins. Buchfink et al. tested a 
series of EMIM+ salts as protein refolding enhancers and observed that the recombinant plasminogen activator 
rPA has the highest refolding yield in 3 M EMIM-Cl ionic liquid solution6. The CD spectroscopy experiment by 
Huang et al. observed that the α -helix structured short peptides AKA2 and Trp-cage can fold into their native 
structures in neat ionic liquid of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfony)imide (C4mpy-Tf2N) 
and the formed native structures persist to very high temperature (up to 96 °C) whereas the β -hairpin structured 
peptide TRPZIP4 is largely destabilized in the same ionic liquid medium42.

The two-dimensional free energy landscape of Fig. 5c indicates that various structures from fully extended 
to compact ones consist of the equilibrium conformational ensemble of GB1p in EMIM-Cl/water solution. 
Nevertheless, even the compact structure which has the lowest RMSD in the free energy landscape (state 1 in 
Fig. 5c,d) is deviated from the native β -hairpin structure of GB1p: although the native β -turn configuration is 
formed, neither the cross-strand hydrophobic core cluster is well packed nor the backbone hydrogen bond assem-
bly along the anti-parallel strands is formed in state 1. As a result, GB1p cannot fold spontaneously into its exact 
native structure in EMIM-Cl ionic liquid solution.

Unlike GB1p, Trp-cage can fold into its native-like structure in the same ionic liquid solution. In comparison 
to the native-like structures adopted in water and MeOH/water, the native-like structure adopted in EMIM-Cl/
water solution is more deviated from the NMR experimentally measured native structure. Nevertheless, the key 

Figure 5.  (a,b) Two-dimensional free energy landscape as the function of the backbone RMSD and “R” 
parameter for the folding of GB1p in MeOH/water solution measured by FF99SB-ILDN force field and the 
representative conformations for all distinct states in the free energy landscape. (c,d) Two-dimensional 
free energy landscape as the function of the backbone RMSD and “R” parameter for the folding of GB1p in 
EMIM-Cl/water solution measured by FF99SB-ILDN force field and the representative conformations for all 
distinct states in the free energy landscape.
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native structural elements of Trp-cage are still formed: the N-terminal helix is well folded, the C-terminal poly-
proline II region (including Pro18 and Pro19) is properly packed against Leu2, Tyr3, and Trp6 at the N-terminus 
(see the representative conformation of F state in Fig. 7d). The main deviation of the native-like structure in 
EMIM-Cl/water solution is that Pro12 within the 310-helix (residues of Gly11-Ser14) is failed to pack with Trp6. 
In addition, the unfolded state of Trp-cage in EMIM-Cl/water solution has similar structure feature as the coun-
terparts in water and MeOH/water solution. An additional state is presented between the folded and unfolded 
states, which contains no secondary structure content and is composed by mainly non-native intra-protein inter-
actions as well as a small fraction of native hydrophobic contacts (Tyr3-Pro19 and Trp6-Pro18) (Fig. 8). As a 
result, this state is treated as a misfolded state here. The similar misfolded structure can be also seen in the equi-
librium conformational ensembles in water and MeOH/water solution but with extremely low population. The 
overall folding free energy landscape of Trp-cage in the EMIM-Cl/water solution is flatter than that of Trp-cage in 
water and the folding free energy barrier from unfolded to folded state in the former case is lower than the latter 
(Δ Gf* is 1.65 kcal/mol in EMIM-Cl/water solution and 2.66 kcal/mol in water).

Combining Figs 3–8, one can see that methanol and EMIM-Cl ionic liquid have different influence on 
the folding of α -helix and β -hairpin structures: while methanol promotes the folding of both α -helix and 
β -hairpin structures, EMIM-Cl ionic liquid can only promote the folding of α -helix but hinder the folding of 
β -hairpin indeed. In the case of the protein folding promoted by either solvent, the folding free energy barrier 
is decreased and meanwhile the detailed folding pathway is not significantly influenced. As shown in Fig. 9a, 
along the folding pathway of GB1p, the unfolded structure folds into a partially folded structure (or multiple 
partially folded structures in MeOH/water solution) in which the cross-strand hydrophobic core cluster is 
partially packed and the neighboring backbone hydrogen bonds are formed. The further folding of GB1p 
to the native β -hairpin structure includes the well packing of cross-strand hydrophobic core cluster and the 
complete formation of all backbone hydrogen bonds. The folding of β -hairpin thus consists of the sequential 
formation of native structural elements. In contrast, for α -helical structure with a lower degree of cooperativ-
ity such as Trp-cage, the folding is a typical two-state transition. All native structural elements are formed in 

Figure 6.  Comparison of the representative conformations of all distinct states of GB1p in MeOH/water 
solution and water. For each state, the regions of GB1p sharing similar conformations in two solutions are 
shown in green color whereas the regions having different structural features are shown in pink and grey colors 
in MeOH/water and water, respectively.
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single transition from the unfolded to folded states. An insignificant “misfolding” seems to hide behind exper-
imentally detectable folding of Trp-cage and the presence of EMIM-Cl ionic liquid could slightly increase the 
probability of such misfolding.

Figure 7.  (a,b) Two-dimensional free energy landscape as the function of the backbone RMSD and Rg for the 
folding of Trp-cage in MeOH/water solution measured by FF99SB-ILDN force field and the representative 
conformations for all distinct states in the free energy landscape. (c,d) Two-dimensional free energy landscape 
as the function of the backbone RMSD and Rg for the folding of Trp-cage in EMIM-Cl/water solution measured 
by FF99SB-ILDN force field and the representative conformations for all distinct states in the free energy 
landscape.

Figure 8.  Representative conformations of the misfolded state observed in the simulations of Trp-cage in  
(a) water and (b) EMIM-Cl ionic liquid solution, along with the population in the equilibrium conformational 
ensembles in the corresponding solutions.
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Discussion
Protein folding is a consequence of complex inter-residue interactions, which should be mutually supportive and 
cooperatively lead to thermodynamically stable native structure2. A variety of experiments have indicated that 
the composition of the equilibrium conformational ensemble of protein folding is complex: not only the unfolded 
and folded states but also transiently populated “trapping” states (e.g., intermediate state) could exist43–46. By 
rapidly forming compact intermediate states, proteins could be driven along a preferred folding route toward 
their native structures and thus avoid time consuming long-range conformational search47. Discriminating the 
structural and energetic properties of various “trapping” conformations in the folding conformational ensemble 
sheds light on the molecular mechanism of protein folding.

Through a series of REMD simulations, the conformational landscapes of two protein models (namely GB1p 
and Trp-cage) were explored for their folding in water, ~45% MeOH/water, and ~3M EMIM-Cl/water solutions 
in the present study. The concentration of hydrated EMIM-Cl ionic liquid solution was set according to the 
experimental observation that EMIM-Cl is most efficient in promoting the refolding of denatured protein at 3M 
concentration6. The concentration of methanol in aqueous solution was chosen from the concentration range 
which has been often used in the experimental studies of methanol-induced protein conformational transition in 
vitro48,49. The relative statistical weights of various structures in the folding free energy landscape were properly 
estimated, providing comprehensive information of the folding mechanism of proteins in three solutions under 
study.

It is observed that methanol promotes the folding of both α -helix and β -hairpin structures and meanwhile 
EMIM-Cl ionic liquid can only promote the folding of α -helix but not β -hairpin, which are in great agreement 

Figure 9.  Schematics of the folding pathway of (a) GB1p and (b) Trp-cage. For clarity, residues involved in the 
hydrophobic core cluster of protein are colored in yellow.
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with the experimental observation for the two organic solvents6,8–12,18,19. The detailed analysis reveals that for both 
α -helix and β -hairpin structures in MeOH/water solution or α -helix in EMIM-Cl/water solution, the transient 
structures along the folding pathway is maintained as in pure water whereas the relative statistical weights are 
changed. As a result, the folding route is maintained but the overall folding free energy barrier is decreased and 
accordingly the folding of specific proteins is promoted in MeOH/water and EMIM-Cl/water solutions. Various 
organic solvents are used as refolding additives in in vitro protein folding experiments but whether the organic 
solvents change the folding route has been not investigated deeply. The present microscopic view of the protein 
folding in the presence of representative protein refolding additives (methanol and EMIM-Cl ionic liquid) reveals 
that organic solvents can have trivial effects on folding route but significant effects on folding thermodynamics, 
supporting the use of refolding additives in protein folding investigation.

Methods
All-atom molecular dynamics simulations were performed using AMBER11 package. AMBER FF99SB-ILDN50, 
FF9651, and FF9452 force fields were used to model protein atoms, TIP3P explicit solvent model53 was used to 
mimic water molecules explicitly. In addition, the parameters of the force fields concerning methanol were taken 
from Caldwell and Kollman54 and the parameters for EMIM+ cation were taken from Canongia Lopes et al.55 For 
each simulation system, a relatively extended structure of either Trp-cage or GB1p without any native structural 
element was placed into a cubic box containing a plenty of water (and MeOH or EMIM-Cl) molecules. Suitable 
counterions were then added into each system to balance the charge of protein. The detailed simulation param-
eters including the number of solvent molecules, box size, and simulation time for all simulation systems were 
organized in Supplementary Table S1 online.

For each system, REMD simulation56 was run in the NVT ensemble. 38 ~ 40 replicas were used at temper-
atures ranging from 300 K to 550 K. The number of replicas were determined by the webserver (http://folding.
bmc.uu.se/remd/)57, and the temperature distribution along the replicas was optimized using the algorithm of 
Nadker and Hansmann58 to give a theoretical acceptance probability of 20%. The detailed temperature distribu-
tion for each system was listed in Supplementary Table S2 online. Exchanges between neighboring replicas were 
attempted every 1000 steps. The SHAKE algorithm59 was applied to constrain the bonds connecting hydrogen 
atoms, allowing us to use 2.0 fs as the time step. Particle mesh Ewald (PME) was applied to handle the long-range 
electrostatic interactions and the non-bonded cutoff of 10 Å was used60. The Langevin dynamics with a collision 
frequency of 3.0 ps−1 was adopted to control the temperature of the system. The coordinates were saved every 
1000 steps. The simulation time per simulation system is accumulated to 2.0 ~ 6.0 μ s.
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