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Abstract

Methylated non-CpGs (mCpHs) in mammalian cells yield weak enrichment signals and colocalize

with methylated CpGs (mCpGs), thus have been considered byproducts of hyperactive methyl-

transferases. However, mCpHs are cell type-specific and associated with epigenetic regulation,

although their dependency on mCpGs remains to be elucidated. In this study, we demonstrated

that mCpHs colocalize with mCpGs in pluripotent stem cells, but not in brain cells. In addition,

profiling genome-wide methylation patterns using a hidden Markov model revealed abundant

genomic regions in which CpGs and CpHs are differentially methylated in brain. These regions

were frequently located in putative enhancers, and mCpHs within the enhancers increased in

correlation with brain age. The enhancers with hypermethylated CpHs were associated with

genes functionally enriched in immune responses, and some of the genes were related to neuro-

inflammation and degeneration. This study provides insight into the roles of non-CpG methyla-

tion as an epigenetic code in the mammalian brain genome.
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1. Introduction

For decades, DNA methylation was thought to occur only at
CpG sites in mammalian cells. However, recent studies using ad-
vanced genome-wide sequencing show that non-CpG sites are
also methylated in several types of mammalian cells.1–3

Methylated non-CpGs (mCpHs; H indicates A, C, or T), which
are highly cell type specific1,2 and associated with the transcrip-
tion of nearby genes,3 have emerged as important epigenetic
markers.

The mCpHs have been studied widely in pluripotent stem cells
(PSCs) and brain cells4–7; they are more abundant in these cells than

in other cell types8 and exhibit unique enrichment patterns, including
colocalization with histone modifications,9 depletion in regulatory
regions,10 and accumulation in gene-body regions and transposons.5

These patterns are highly distinct between the PSCs and brain and
are potentially linked to cell type-specific functions. For example, the
CAG motif tends to be methylated in PSCs, whereas the CAC motif
is preferentially methylated in brain tissues.8 Methylated CACs in
brain tissues are the binding target of MECP2, the mutation of which
causes a neurological disorder, Rett syndrome.11 In addition, mCpH
enrichment in PSCs is positively correlated with cell differentiation
capacity.12
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The mCpHs are often positioned near methylated CpGs
(mCpGs), and they show lower methylation levels.4 Because they
colocalize with mCpGs, whether mCpHs alone affect cellular pro-
cesses remains unclear. In mammalian cells, CpHs are methylated by
de novo DNA methyltransferases DNMT3a and DNMT3b, which
methylate CpGs preferentially.7,13 Because these enzymes are highly
expressed in PSCs and brain cells,8 mCpHs are considered byprod-
ucts of enzyme hyperactivity.7,14,15

In this study, we investigated the functional relevance of mCpHs
in PSCs and brain cells. To this end, we conducted a large-scale
analysis using publicly available datasets encompassing 26 whole-
genome bisulfite sequencing (WGBS) samples and 368 microarray
samples, including DNMT-knockout samples, to elucidate the func-
tional involvement of the enzymes. In addition, we developed a hid-
den Markov model (HMM) to systematically detect genomic regions
in which CpG and CpH are differentially methylated, providing an
opportunity to infer the functional importance of non-CpG
methylation.

2. Materials and methods

2.1. Analysis of WGBS samples

WGBS data from human PSCs, human tissue cells (brain, lung, and
spleen), and mouse ESCs (mESCs) were downloaded from Gene
Expression Omnibus (GEO). We found 15 datasets of 5 independent
studies that assayed postnatal non-neuro-disordered brains. Among
them, 14 datasets of 4 studies provided bisulfite-non conversion
rates. We collected 9 datasets of 3 studies1–3 in which more than
50% of cytosines were detected (Supplementary Table S1). To our
knowledge, this preparation of 9 datasets is the best effort to conduct
analyses at this study with the available relevant WGBS samples in
GEO (as of October 2016).

After filtering out low-quality reads using the FASTX-toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/) and duplicate reads using
Samtools,16 the reads were mapped to the reference genomes (hg19
and mm10) using three bisulfite-read mappers: Bismark, 17 BSMAP,
18 and BS-seeker2.19 Then, cytosine bases in which more than five
reads were aligned by at least two mappers were identified.20

2.2. Identification of methylated cytosine

We identified methylated cytosines from the CpG and CpH contexts
using different thresholds because their average methylation levels
are significantly different.4,5 In the CpG context, the methylation
level Mei at the i-th cytosine base was calculated as follows:

Mei ¼
P

jmi;jP
jni;j
� R;

where j stands for one of the three mappers, R is the non-conversion
rate based on the spiked-in of fully unmethylated DNA of lambda
phage (Supplementary Table S1), and m and n represent the number
of methylated (i.e. unconverted) reads and the total number of
mapped reads, respectively. The CpGs were defined as methylated if
Me > 0.8. For DNMT1-, DNMT3a-, and DNMT3b-reintroduced
mESCs; however, CpGs were defined as methylated if Me > 0.5 be-
cause of the generally decreased methylation level. In the CpH con-

text, the i-th cytosine base was defined as methylated by the
significance of the binomial test, which was defined as follows:

Pr mijni;Rð Þ ¼ ni

mi

� �
Rmið1� RÞni�mi ;

where m and n represent the number of methylated reads and the to-
tal number of mapped reads, respectively, and R stands for the non-
conversion rate. Then, methylated reads were randomly generated
from a binomial distribution given by R and ni (null data), and the

false discovery rate (FDR) i:e: mCs in null data
mCs in real data

� �
was calculated for

the mC sets defined by different P-values (1.0e-2–1.0e-6). Finally, the
P-value threshold was set as 1.0e-5, which allows an FDR < 0.01 in
all samples. The mCpG level in a genomic region is defined as aver-
age Me at CpGs in the region, and mCpH level is defined as number
of mCpHs divided by number of CpHs in the region. The X and Y
chromosomes were removed from the methylome to eliminate poten-
tial bias derived from gender.

2.3. Analysis of DNA methylation microarray data

The methylation profiles generated from Illumina Human
Methylation450 BeadChip were analyzed to reproduce the differen-
tial mCpH distribution between the human brain and PSCs. We
downloaded 177 brain samples from BrainSpan (http://www.brain
span.org/) and 191 PSC samples from GSE59091.21 Among 3,091
CpH sites in the arrays, 1,079 sites had no CpGs within 100 bp
(CpG-distal), and an average of 26 sites had >1 mCpG (mCpG-
proximal).

2.4. Designing an HMM

An empirical HMM was designed to detect the differentially methyl-
ated regions (DMRs) of CpG and CpH (CpG-CpH DMRs) in each
human sample. Specifically, the whole genome was segmented into
180-bp-long bins and the emission probability E for a state j at the i-
th bin was calculated as follows:

Ei;j ¼ Pr mijni; hi;j
� �

� Bin mijni; hi;j
� �

,

where mi and ni are the number of methylated reads and the total
reads aligned to the cytosine at i-th bin, respectively. The state j con-
sists of P, N, and U, representing the correlation state of methylation
levels at each bin: P, positive correlation between CpH and mCpG
methylation; N, negative correlation between CpH and CpG methyl-
ation; and U, uncorrelated.

The probabilities of the three states were differentiated by
optimizing hi, j (�̂ i;j). In the U-state, the CpH methylation is not
correlated to the CpG methylation; thus, �̂ i;U is the ratio of
mCpH reads over total reads at CpHs in the whole-genome w as
follows:

�̂i;U ¼ �̂w ¼
P

imiP
ini

:

Then, �̂ i;j for the P and N states, j ¼ fP, Ng, is estimated by maxi-
mizing the posteriori estimation, where a prior probability Pr is mod-
eled as a beta distribution as follows:
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ĥi;j ¼ argmaxhi;jPrðhi;jjmi;niÞ / argmaxhi;jPrðmi; nijhi;jÞPrðhi;jÞ

¼ argmaxhi;jhi;j
ðmiþai;jÞð1� hi;jÞðni�miþbi;jÞ

¼ mi þ ai;j

niþ ai;j þ bi;j

Here, a and b are used as pseudo-counts to reflect the CpG meth-
ylation status at each bin. a and b are regulated by adjusting the
mean M of the distribution at the i-th bin as follows:

Mi;P ¼ ĥU þ SDmH �
mGi �MEDmG

SDmG
;

Mi;N ¼ ĥU � SDmH �
mGi �MEDmG

SDmG
;

where mGi is the mCpG reads over all reads at CpGs in the i-th bin.
SDmG and MEDmG are the standard deviation and median of the
mGs in the whole genome, respectively. SDmH is the standard devia-
tion of the mCpH reads over all reads at CpHs in each bin among
whole genome. In brief, if the CpG methylation level at the i-th bin is
higher than the genome-wide average, Mi;A is higher than �̂U ,
whereas Mi;B is lower than �̂U . Because M ¼ a

aþb, we defined a and b

as follows:

ai;j ¼ ni �Mi;j;

bi;j ¼ ni � ai;j;

where ni is the number of reads at all CpGs in the i-th bin.
The E for bins in which the number of reads aligned at CpGs and

CpHs was >10 was calculated. In addition, to ensure the continuity
of the Markov model, the genomic region was divided if the continu-
ous undetected bins were longer than 100,000 bp, and the HMM
was applied separately. The probability of state transition was esti-
mated using an expectation-maximization (EM) algorithm that
repeats the EM steps until the difference between the previous and
current transition probabilities of all state transactions is <5e-4.22

Then, the Viterbi algorithm that finds an optimal path among the
states was applied, and the bins were re-defined to P-, N-, or U-state.
The consecutive bins were linked if they were in the same state and
the distance between them was <3 bins (540 bp). Finally, the N-state
regions were defined as CpG–CpH DMRs.

2.5. Preparation of a simulated dataset

To validate the performance of the HMM, we generated an artifi-
cially methylated human chromosome 19 with randomly generated
N states (equivalent to CpG-CpH DMRs) and compared the preci-
sion and recall rate of the N state defined by emission probability
only and by transition probability learning and Viterbi decoding.
Specifically, pseudo-bisulfite–treated reads were uniformly distrib-
uted with the average read depth of 10 to the human chromosome
19. Then, the read numbers at cytosine bases of each 180 bp bin
were added. For the i-th bin, the number of unmethylated reads
un_m at the CpG or CpH site j was randomly chosen from a bino-
mial distribution provided by the total read number n and a modeled
methylation level Me as follows:

Bin unmi; jjni;j;Mei;j
� �

;

where Mei,CpG is a uniform random number distributed between 0
and 1. The Mei,CpH in P-state is MeCpG � 0.1, and that in N state is

(1�MeCpG) � 0.1, reflecting the lower methylation level at CpHs
relative to CpGs.

We generated 500 artificial sets containing 10–10,000 randomly
distributed N-state regions, the length of which varied randomly
from 1 to 100 bins. Then, whether the HMM could properly detect
the N state by precision and recall rates was determined as follows:

Precision ¼ TP
TPþ FP

Recall ¼ TP
TPþ FN

;

where TP is the true-positive, FP the false-positive, and FN the false-
negative rates of the detected N-state region.

2.6. Preparation of genome annotation

The annotation for hg19 was downloaded from a previous study23

including Enhancer (FANTOM5 robust enhancer),24

SuperEnhancer,25 WeakEnhancer CTCF,26 and Conserved.27 The
promoter (65,000 bp from the transcription start site), 50-untrans-
lated (50-UTR), 30-UTR, coding, CpG island (CGI), and CGI shore
(6200 bp from CGI) regions were downloaded from the UCSC ge-
nome browser (https://genome.ucsc.edu/). The enhancers were
obtained from a broad range of cell types and were not specific to
brain tissues.

2.7. Identification of hyper- and hypo-mCpH DMRs

The mCpH level for each DMR was calculated, and DMRs in which
CpHs were hyper- or hypo-methylated were identified using the fol-
lowing criteria: >2 fold-change (FC) relative to the mCpH level in
the whole genome (hyper-mCpH-DMR), and <0.5 FC relative to the
mCpH level in the whole genome (hypo-mCpH-DMR). The overlap
between the DMRs and the annotated genomic regions was
extracted using Bedtools intersect.28

2.8. Analysis of transcription factor binding sites

The transcription factors (TFs) binding to the hyper- and hypo-
mCpH DMRs overlapping with transcription regulatory regions (i.e.
promoter and enhancer) were analyzed. First, genomic regions in
which enhancers and promoters overlapped with the hyper- or hypo-
mCpH-DMRs in each sample were extracted. Then, the regions
overlapped in at least two brain samples were selected for further
analysis. Then the enriched TF binding sites in the regions common
in at least two samples were analyzed using Homer29; the peak size
was set at 200 bp (default) and repeated regions were filtered out.
The input sequence was extracted from the transcribed strand for the
promoter regions and from both strands for the enhancer regions. In
addition, the sequences in all promoter and enhancer regions were
used as background sequence. Significantly enriched binding motifs
of known TFs were extracted from knownResults.txt with a
Benjamini-Hochberg FDR < 0.01.

2.9. Analysis of gene ontology and pathway enrichment

Enrichment of gene ontology (GO) terms (Biological Process,
Molecular Function, and Cellular Component) and pathways [Kyoto
Encyclopedia of Genes and Genomes (KEGG)] among genes targeted
by the hyper- and hypo-mCpH-promoters and enhancers was ana-
lyzed. First, common hyper-/hypo-mCpH promoters and enhancers
in 2–8 brain samples were extracted. Then, gene sets regulated by the
promoter sets (derived from the different number of brain samples)
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were extracted from the RefSeq database (https://www.ncbi.nlm.nih.
gov/refseq/) and gene sets regulated by the enhancer sets were
extracted from Fantom5 human enhancer track (http://slidebase.
binf.ku.dk/human_enhancers/presets). Of note, the linkage between
genes and enhancers was derived from their co-expression in multi-
ple cell and tissue types captured by CAGE-seq.24 In addition, the
gene sets consisting of >3,000 genes were removed. Then, the
enriched GO terms and KEGG pathways were analyzed using
DAVID30; the background gene set was all genes in hg19, and the
terms with Benjamini–Hochberg FDR < 0.01 were selected as signifi-
cantly enriched.

3. Results

3.1. Differential distribution of mCpGs and mCpHs in

PSCs and brain cells

To capture the genome-wide methylation status at each CpG and
CpH site, human WGBS datasets were prepared from PSCs and
brain cells, which contain abundant mCpHs, as well as from lung
and spleen cells as controls (Supplementary Table S1). WGBS reads
were analyzed using our statistical method, which integrates the out-
comes from three tools; Bismark, BSMAP, and BS-seeker2.
Methylation levels were quantified for up to 73% of CpGs and up to
96% of CpHs throughout the genome (Supplementary Table S1).

The positional correlation between mCpHs and mCpGs was in-
vestigated. As shown in Fig. 1a and b, CpHs in PSCs were hyperme-
thylated near mCpGs, whereas those in brain cells were
hypomethylated near mCpGs. Because the position of mCpGs in the
two cell types may determine the distinctive distribution of mCpHs,
we focused on mCpGs present in both PSCs and brain cells and
obtained consistent results (Supplementary Fig. S1a and b). In addi-
tion, a different mCpH pattern was observed at the CAC and CAG
motifs (Supplementary Fig. S1c–e), which showed preferential meth-
ylation in PSCs and brain tissue, respectively.11. This suggests that
the observed pattern was not caused by a positional difference of the
preferentially methylated CpHs in the two cell types. To confirm the
differential distribution of mCpHs, we analyzed 368 microarray-
based DNA methylation datasets and compared the mCpH levels in
mCpG-proximal sites (within 100 bp of mCpG) with the mCpH lev-
els in CpG-distal sites (>100 bp away from CpG). The average CpH
methylation level from the microarray data was higher than that
from the sequencing data, as reported in a previous study,10 because
the array includes CpHs identified as preferentially methylated in hu-
man stem cells. As shown in Fig. 1c, mCpG-proximal mCpH levels
were significantly higher than CpG-distal mCpH levels in PSCs, but
not in brain cells. These results indicate that mCpHs colocalize with
mCpGs in PSCs, but not in brain tissue.

In addition, a 180 bp periodicity of mCpH levels was observed in
PSCs (Fig. 1a, Supplementary Fig. S1) and brain cells
(Supplementary Fig. S1). This may reflect the nucleosome positioning
that regulates the accessibility to DNMTs31 and indicates that meth-
yltransferases move along the DNA and methylate CpGs and CpHs
simultaneously, as reported previously.32,33

3.2. Involvement of DNMT activities in the methylation

processes

CpH methylation is catalyzed by DNMT3a and DNMT3b7,13,34,
which are differentially expressed: DNMT3a is highly expressed in
brain cells, whereas DNMT3b is preferentially expressed in PSCs.8

Therefore, we hypothesized that the mCpH distribution pattern

(Fig. 1a and b) may be determined by the differential activities of
DNMT3a and DNMT3b. To test this hypothesis, we first analyzed
WGBS data from Dnmt1-KO (knockout) mESCs, in which DNA
methylation is primarily catalyzed by Dnmt3a and Dnmt3b. As
shown in Supplementary Table S1, deletion of Dnmt1 substantially
decreased mCpG levels, but not mCpH levels, which is consistent
with previous studies reporting the maintenance and de novo CpG
methylation by Dnmt1.13 In addition, the co-localization of mCpH
with mCpG was more pronounced, and mCpH levels were higher
near mCpGs and decreased with increasing distance, showing clear
180 bp periodicity (Fig. 1d). This result indicates that Dnmt3a and
Dnmt3b methylate CpGs and CpHs simultaneously.

Next, to evaluate methylation by DNMT3a and DNMT3b sepa-
rately, we used mESCs in which either Dnmt3a or Dnmt3b was re-
introduced after knocking out Dnmt1, Dnmt3a, and Dnmt3b.31

Despite the low quality of the data obtained (detected number of
CpGs and CpHs in Supplementary Table S1), higher mCpH levels
were observed near mCpGs in both Dnmt3a- and Dnmt3b-re-
introduced samples (Supplementary Fig. S2a), indicating that each of
these enzymes mediates the co-localization of mCpGs and mCpHs.
In addition, mCpGs and mCpHs were positively correlated in both
DNMT3a- and DNMT3b-KO hESCs (Pearson correlation coeffi-
cient ¼ 0.38 and 0.32, respectively; Supplementary Fig. S2b).

These results demonstrate that DNMT3a and DNMT3b can sin-
gly mediate the colocalization of mCpGs and mCpHs. This suggests
that the depletion of mCpHs near mCpGs in brain cells is not caused
by DNMT3a hyperactivity but rather is the result of the complex epi-
genetic mechanisms in the mammalian brain.

3.3. Detection of differentially methylated CpGs and

CpHs

Because both DNMT3a and DNMT3b generated a positive correla-
tion between mCpH and mCpG levels at the genome-wide scale, we
assumed that the negative correlation between mCpH and mCpG
levels in brain tissues is highly locus specific. Such genomic regions
were designated as CpG–CpH DMRs. To detect CpG–CpH DMRs,
several issues must be considered. First, because average methylation
levels differ dramatically between CpGs and CpHs, the methylation
states at CpGs and CpHs must be evaluated in different scopes.
Second, because average methylation levels also vary among cell
types (Fig. 1a and b), the methylation criteria need to be adjusted for
each cell type. Finally, the methylation data show positional continu-
ity with the 180 bp periodicity, which is useful for detecting DMRs.

To address these issues, we adopted an HMM approach in which
the whole genome was segmented into 180 bp bins, and each bin was
categorized into one of three states: P, N, and U (Fig. 2a). In P-state
regions, mCpH and mCpG levels correlated positively (P). In N-state
regions, the levels correlated negatively (N), namely, they were equiv-
alent to CpG–CpH DMRs. In U-state regions, the levels were uncor-
related (U); therefore, the mCpH level remained at the average level
and was not affected by the surrounding mCpG level.

We calculated the probability that a bin belongs to any of the
three states (emission probability) and the probability of state transi-
tion modeling the positional continuity between two neighboring
bins (Fig. 2b). To represent variation of mCpG and mCpH patterns
among cell types, the transition probability was trained by the EM
algorithm for each cell type. After training, the HMM assigned the
most probable state for each bin using the Viterbi algorithm
(Supplementary Fig. S3a; see Supplementary Methods). As shown in
Fig. 2, the state classification of bins using the highest emission
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probability (Fig. 2c) and the Viterbi algorithm (Fig. 2d) demon-
strated that mCpG and mCpH levels were correlated positively in
the P states and negatively in the N states. After Viterbi decoding, the
U states were absorbed by the P or N states, as the probability of
transition from U to U is lower (Supplementary Fig. S3b).

The HMM was designed to properly define the bin states by con-
sidering methylation information in and around the bin
(Supplementary Fig. S3a). To confirm its performance, we generated
an artificially methylated human chromosome 19 with randomly
generated N states and compared precision and recall rates of the N
state, defined by only emission probability or by the transition learn-
ing and Viterbi decoding (Supplementary Fig. S3c). Both precision
and recall rates increased after Viterbi decoding, indicating that defi-
nition of CpG–CpH DMRs was more accurate using whole HMM
workflows than using the emission probability alone.

3.4. Functional analysis of brain CpG–CpH DMRs

The HMM was applied to each of the WGBS samples, and the states
of all genomic regions were estimated. Approximately 20% of the

genomic bins in brain samples were defined as CpG–CpH DMRs,
which was a high proportion compared with that in other cell types
(Fig. 3a). Moreover, the DMRs were relatively conserved among
brain samples but differed from others (Supplementary Fig. S4a). In
the DMRs of the brain samples, the CAC motif, followed by the
other CA motifs and CTC motif, were mainly methylated, which is
similar to the P-state region (Supplementary Fig. S4b).

The fraction of DMRs in a subset of known genomic elements
was analyzed (Fig. 3b). The DMRs overlapped significantly with ge-
nomic regions conserved in mammals, coding regions, and enhancer
regions, whereas they overlapped less with promoter, 50-UTR,
CTCF, CpG island, and CpG island shore regions. Remarkably, the
enhancers marked by DMRs showed high mCpH levels, and the
mCpH levels largely increased with age (Fig. 3c), indicating the po-
tential role of mCpHs in the DMRs in brain aging.

In further analysis, we collected DMRs in which CpHs were hy-
per- or hypo-methylated (hyper-mCpH-DMR and hypo-mCpH-
DMR, respectively). Hyper-mCpH-DMRs largely overlapped with
enhancer regions, whereas hypo-mCpH-DMRs overlapped with

Figure 1. (a) Distribution of mCpH levels around mCpGs in human PSCs. (b) Distribution of mCpH levels around mCpGs in brain and control tissues; in the cell

identifiers, the numbers following an underscore indicate biological replicates. (c) Difference in mCpH levels at mCpG-proximal (<6100 bp) and CpG-distal

(>6100 bp) CpH sites in 177 brain tissues and 191 PSCs; the P value was calculated by the Wilcoxon signed-rank test. (d) Distribution of methylation levels around

mCpGs and unmethylated CpGs (methylation level <0.05) in DNMT1-KO mESCs. For (a), (b), and (d), the center (un) mCpG is derived from both DNA strands,

and the methylation level at CpHs (or CpGs) in the same strand of the mCpG is averaged by 50-bp window sliding. The x-coordinate follows the 50 to 30 direction,

and the relative position represents flanking 1K bp for each indicated cytosine in position zero, as used in other studies.4,5,8 Br, brain.
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promoter and coding regions (Fig. 3d), indicating distinct mCpH
density between the DMRs in distal and proximal regulatory regions.
The enrichment of TF binding motifs specific for the hyper-mCpH-
DMR and hypo-mCpH-DMR overlapped with the enhancer and
promoter regions (hyper-mCpH enhancer, hypo-mCpH enhancer,
hyper-mCpH promoter, and hypo-mCpH promoter, respectively)
was analyzed. The TF binding motifs were enriched in the hyper-
mCpH enhancers and the hypo-mCpH promoters, rather than the
hypo-mCpH enhancers or the hyper-mCpH promoters
(Supplementary Fig. S5a and b).

Next, we analyzed GO and KEGG pathway enrichment of the
genes regulated by the enhancers and promoters. The hyper-mCpH
enhancers were involved in transcription by RNA polymerase II
(GO: 0045944), immune response (GO: 000955), and MHC class
II protein complex (GO: 0042613, GO: 0032395, and GO:
0002504), activating the immune response in antigen-presenting
cells35 (Fig. 4a). KEGG pathways enriched in the hyper-mCpH
enhancers included immune-related diseases and pathways, such as
inflammatory bowel disease (hsa05321), intestinal immune net-
work for IgA production (hsa04672), and virus infections
(hsa05164 and hsa05168) (Fig. 4b). The hyper-mCpH promoters
were mostly involved in DNA binding and transcription activity,
and weakly associated with axon guidance (GO: 0007411)
(Fig. 4c). In addition, the enriched KEGG pathways included neu-
roactive ligand-receptor interaction (hsa04080), although the

strongest signal corresponded to cancer-related pathways (Fig. 4d).
The GO terms enriched in hypo-mCpH enhancers and hypo-
mCpH promoters were mostly related to DNA binding and cellu-
lar housekeeping activities (Fig. 4e and f). There was no significant
KEGG term enriched in both hypo-mCpH enhancers and pro-
moters. The enhancers, promoters, corresponding genes, and DMR
status in each brain sample are described in Supplementary Tables
S3–S6.

Although there was no significantly enriched GO term or pathway
among genes marked by the hyper-mCpH enhancer in more than six
brain samples, some of the genes were associated with neurodegener-
ation via the regulation of virus infection (Supplementary Table S3).
For example, TANK Binding Kinase 1 (TBK1) is a key gene regulat-
ing infection by multiple viruses, such as herpes simplex virus 1 (has
05168) and Epstein-Barr virus (hsa05169), and mutations in TBK1
activate the pathology of amyotrophic lateral sclerosis36 and early-
onset Alzheimer’s disease.37 The putative enhancers of the gene were
marked by hyper-mCpH DMR in seven of the eight brain samples
(Fig. 5a, Supplementary Table S3). On the other hand, B-cell lym-
phoma/leukemia 11B (BCL11B) inhibits HIV transcription by
recruiting a chromatin-modifying complex,38 and its disruption may
cause Huntington’s disease and Alzheimer’s disease.39 The intronic
enhancer regions of this gene were also marked by hyper-mCpH
DMR in most of the brain samples (Supplementary Table S3,
Fig. 5b).

Figure 2. (a) Schematic representation of the three states in HMM. In the P state, both CpGs and CpHs are methylated or unmethylated, resulting in a positive cor-

relation between the mCpG and mCpH levels. In the N state, either CpGs or CpHs are methylated, resulting in a negative correlation between the levels. In the U

state, the levels are not correlated. The bin size was set to 180 bp because DNMT3a and DNMT3b methylate DNA strands with a �180 bp periodicity. The N-state

bins are considered CpG–CpH differentially methylated regions (CpG–CpH DMRs). (b) Schematic diagram of the state transition in the HMM. The transition proba-

bility between the states was estimated using the EM algorithm. (c) Distribution of the mC reads/total C reads at CpG sites (y-axis) and CpH sites (x-axis) aligned

on each bin. The states are designated by the highest emission probability. (d) Distribution of mC reads/total C reads at CpG sites (y-axis) and CpH sites (x-axis)

aligned on the P-, N-, and I-state regions designated by the Viterbi algorithm. For visualization, (c) and (d) were drawn using chromosome 19 of sample Br-81y_1.
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Taken together, these observations suggest that the hypermethyla-
tion of CpHs at CpG–CpH DMRs is involved in immune responses
and neuroactivity through the regulation of enhancer activity, and
potentially associated with neurodegeneration.

4. Discussion

The mCpGs and mCpHs tend to colocalize in mammalian cells, cast-
ing doubt on the biological relevance of mCpHs.7,14,15 However, in
this study, analysis of large-scale methylation data revealed that the
patterns of these two methylation types are distinct in PSCs and
brain cells. In particular, mCpHs were markedly depleted near
mCpG sites in brain cells, but not in PSCs. Because our analysis of
DNMT-KO samples indicated that this characteristic was not en-
tirely attributed to the activity of DNMTs, we hypothesized that the
co-methylation of CpHs with CpGs occurs in a cell type-specific
manner and that these methylation processes have an unknown func-
tional meaning.

To systematically detect the DMRs of CpGs and CpHs, we
designed an HMM that was successfully applied in previous stud-
ies.13,22,33 The results showed that the DMRs are remarkably abun-
dant in brain tissue compared with other tissue types (Fig. 3a), and
relatively conserved among brain samples. The CpH methylation
level in the DMR with the putative enhancer region increased with
brain age (Fig. 3c), indicating its potential role in brain aging. A

DMR is a genomic region in which either mCpH or mCpG levels are
intensified. Thus, to confirm the mCpH depletion near mCpGs, we
investigated the DMRs marked by hyper- and hypomethylation of
CpHs. The hypo-mCpH DMRs occupied a larger portion of the
whole genome than the hyper-mCpH DMRs, and were especially
enriched in the promoter and coding regions (Fig. 3d). However, the
hyper-mCpH DMRs considerably overlapped with enhancer regions,
and the putative target genes of these enhancers are specifically in-
volved in the immune response, the disruption of which in the brain
increases the risk of neurodegenerative disorders.40

The present in-silico analyses provide evidence supporting the ex-
istence of mCpHs that are uncorrelated with mCpGs in the brain, as
well as the potential functional association of mCpHs with neurode-
generation via the regulation of immune activity. However, the study
had several limitations and issues that need to be solved. First, the
mechanisms underlying the mutually exclusive methylation at CpGs
and CpHs in the brain remain unclear. The mechanisms may involve
complex DNA methylation and demethylation processes that orches-
trate gene regulation, which are not completely understood.34,41

Especially, the involvement of demethylases in the formation of cell
type-specific CpG-CpH methylation patterns should be addressed us-
ing additional data. Second, the corresponding transcriptome should
be analyzed to investigate the effect of mCpHs on gene expression.
Last, WGBS of brain samples at single-cell resolution may help eluci-
date the distribution and function of DMRs in detail. Thus, to better

Figure 3. (a) Fractions of the P-, N-, and U-state regions detected by the highest emission probability (left) and the Viterbi algorithm (right). (b) Fractions of the

whole-genome and of the annotated regions that are overlapped with DMRs in brain samples. (c) Distribution of mCpH levels in P- and N-state regions that are

overlapped with the annotated regions in brain samples. (d) Fractions of the whole-genome and of the annotated regions that are overlapped with hyper- and

hypo-mCpH-DMRs. The bars indicate standard error. The P values obtained with the Student’s t-test are denoted as *P < 0.01, **P < 0.001. EP, emission

probability.
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Figure 4. Results of GO and KEGG pathway enrichment analysis of genes regulated by the enhancers and promoters overlapped with hyper- and hypo-mCpH

DMRs [hyper-mCpH enhancer (a and b), hyper-mCpH promoter (c and d), hypo-mCpH enhancer (e), and hypo-mCpH promoter (f)]. Because the hyper- and hypo-

mCpH DMRs are distinct among brain samples, the promoters and enhancers overlapped with the DMRs in N samples and the corresponding gene sets (x-axis)

were extracted. The GO terms and pathways (y-axis) are sorted by the sum of the -log(BH) from the gene sets, and the top 15 are shown. Only gene sets with at

least one significant term or pathway are included. For example, there was no significant GO term for the enhancers overlapped with hyper-mCpH DMR in one,

seven, and eight brains samples in common (a).
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Figure 5. The Integrative Genomics Viewer capture shows examples of mCpH levels in the DMRs around TBK1 (a) and BCL11B (b) in brain samples. Color indi-

cates log-FC of the mCpH level þ0.0001 (to avoid log0) against the genome-wide average. The grey regions indicate P-state, U-state, or undetected bins.
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understand the roles of non-CpG methylation, future studies should
incorporate genomic and epigenomic assays in various cell types
along with comprehensive computational analyses.

Supplementary data

Supplementary data are available at http://DNARES online.
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