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Natural phytotoxins are valuable starting points for agrochemical design. Acting as a
jasmonate agonist, coronatine represents an attractive herbicidal lead with novel mode of
action, and has been an important synthetic target for agrochemical development. However,
both restricted access to quantities of coronatine and a lack of a suitably scalable and flexible
synthetic approach to its constituent natural product components, coronafacic and coronamic
acids, has frustrated development of this target. Here, we report gram-scale production of
coronafacic acid that allows a comprehensive structure-activity relationship study of this
target. Biological assessment of a >120 member library combined with computational studies
have revealed the key determinants of potency, rationalising hypotheses held for decades,
and allowing future rational design of new herbicidal leads based on this template.

TDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G11XL, UK. 2 Syngenta, Jealott's Hill International
Research Centre, Bracknell, Berkshire RG42 6EY, UK. 3 EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
Correspondence and requests for materials should be addressed to A.J.B.W. (email: aw260@st-andrews.ac.uk)

| (2018)9:1105 | DOI: 10.1038/541467-018-03443-1 | www.nature.com/naturecommunications 1


mailto:aw260@st-andrews.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ood security is recognised as a global concern due to a

growing population increasing food consumption and

various factors that diminish production, such as arable land
desertification and infestation by pests'. The requirement for
effective herbicides for improved weed control and crop yield is
essential to meet global food demand?. Resistance to traditionally
used herbicides is an increasing problem and there is increasing
regulatory pressure on the current crop protection products
available to the farmer®, which has resulted in a pressing need for
the develoi)ment of novel and safe agrochemicals with new modes
of action “. In this regard, natural products are valuable starting
points for agrochemical design as they often allow the targeting of
distinct biological space;>® mesotrione is a pertinent example of
how natural assets can be leveraged to new herbicidal agents’.

Coronatine (COR, 1; Fig. 1a) is produced by several strains
of Pseudomonas syringae and has attracted attention both
synthetically and biologically due to its chemical structure® and
promising phytotoxic properties”. Known to be a non-host
specific agonist of the active plant hormone (+)-7-iso-jasmonoyl-
L-isoleucine (JA-Ile; Fig. 1a)19, 1 has been found to induce a
range of stress-response and defence-related activity in plants by
interaction with the jasmonate receptor COR-insensitive 1
(COI1), and inducing {)hytotoxic effects through activation of the
JA-signalling pathway'!. Through this biological pathway, COR
has been reported to exhibit a range of phytotoxic activity across
several plant species, including leaf tissue chlorosis'? and senes-
cence!®, root stunting!®!, increased ethylene production'®,
production of defence-related secondar?f metabolites'”, induction
of hypertrophy'® and stomatal opening'®. The jasmonate receptor
represents a novel mode of action not currently exploited
by commercial phytotoxins, and as such the development of a
COR-based herbicide is highly desirable*.

COR (1) is composed of two constituent natural products: the
cis-fused 5,6-bicyclic polyketide core unit, coronafacic acid (CFA,
2), coupled to an isoleucine (Ile)-derived amino acid, coronamic
acid (CMA, 3), through an amide linkage (Fig. 1a)8. Since the
discovery of COR 40 years ago®, considerable synthetic efforts
have been directed towards the synthesis of both 2 and 32°.
However, access to useful quantities of 1 either by bacterial
fermentation or synthetically, has been challenging and has
afforded only relatively limited structure-activity relationship
(SAR) studies (Fig. 1b; vide infra)21=33. In addition, 2 has long
been viewed as a principal component from which the bioactivity
of 1 is derived; however, to date, the reported cumulative
production of 2 by chemical synthesis is less than 1 g over nine
separate synthesis campaigns. Moreover, hydrolysis of natural 1 is
both atom inefficient and prohibitively costly?®2°, Lastly, there is
no substantive quantitative biological data across the intended
targets (weed species).

To summarise reported SAR data (Fig. 1b, c), both CFA and
CMA moieties confer phytotoxic activity separately, however, this
is greatly enhanced when the components are coupled to give the
parent structure’*. With regard to the core moiety, it is known
that the cis-stereochemistry of the ring junction is important for
biolo§ical activity, mimicking the side chain configuration of JA-
Te!%#34 Substitution at the C® position has also been shown to
be required for activity in potato tuber-inducing assays>’.
Reduction of the carbonyl moiety has been reported to lead to
reduced volatile inducing activity in rice leaves with respect to
COR?, however; there have been reports of retained activity of
this compound. The analogue where the o,p-unsaturated amide
has been reduced to afford the fully saturated 6,5-bicycle has been
reported and found to be highly active in volatile emission
assays®’. With regard to the amino acid portion, it has been
widely reported that the free carboxyl terminus of the amino acid
is required for maximal activity?%, and substitution which retains
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the S-stereochemistry of CMA at the a-carbon is important for
activity, as has been demonstrated through the synthesis of other
COR stereoisomers®?. Tolerance for alternative amino acid
substitution with both natural and non-natural amino acids has
been demonstrated, however, at the outset of this study, a
complete SAR for this portion of the molecule was unclear*3.

To enable a comprehensive SAR exploration, a scalable,
tractable and flexible synthesis of 2 is required. Herein, we report
a collaborative industry-academia approach that has provided a
practical, gram-scale synthesis of (+)-2, enabling the subsequent
preparation of a >120 member library of analogues of 1. Access to
grams of (+)-2 has allowed array synthesis of amide analogues of
1 to explore the binding region around the CMA motif and the
flexibility of the synthetic route has allowed SAR charting around
the CFA unit, both through single point changes to the bicyclic
structure and more significant structural modifications of the core
scaffold. This library has been assessed for herbicidal activity
against several weed species and, using computational modelling
of the active site, has allowed the principal drivers of potency
to be revealed, allowing a more rational approach to herbicide
discovery using this template.

Results

Synthetic strategy. The synthetic strategy of our collaborative
approach?®> was focussed on scalability, to enable preparation of a
library of amide analogues of 1 (i.e. variation of the CMA region),
and flexibility, to allow SAR interrogation of 1 (i.e. the CFA
region). It was our intention that the synthetic campaign and
subsequent biological evaluation of COR analogues would inform
the design and synthesis of structurally less complex COR deri-
vatives, ideally with the retention or enhancement of phytotoxic
potency. Based on the lack of robust SAR data, as the largest
fragment, 2 has been assumed to be the key driver of the potency
of 1. With the total production of synthetic 2 less than one gram
over decades of investigation, access to quantities of this fragment
suitable for SAR interrogation has been the most significant
challenge in developing COR as an agrochemical lead. As such,
our approach had synthetic expediency and flexibility embedded
from the outset.

The cyclohexene scaffold of 2 clearly codifies for an
intramolecular Diels-Alder (IMDA) disconnection (Fig. 1a) and,
indeed, this approach has been used in previous syntheses of
()-2%6738, The requisite diene would be accessed by the aldol
disconnection employed by Charette®. This ultimately provides a
convergent synthesis using two fragments that are readily
modifiable, and, therefore, impart the flexibility required of the
SAR objectives. The flexibility and mapping strategy of the
fragment approach is shown in Fig. 1d. Access to 3 was not
problematic and was generated via a modified variant of an
established dialkylation process (Fig. 1a)°.

It has been reported that (4)-1 is significantly more potent
than (—)-1 with respect to stomatal opening activity*. Accord-
ingly, the SAR associated with each of the stereoisomers was an
important aspect of the investigation; however, investment into
asymmetric routes at this stage was an inefficient use of resource
where the SAR was largely unknown*!. Based on this, we elected
to prepare all compounds as racemates to enable expedient
analogue synthesis and, after initial triage in the biological assays,
assess single enantiomers by separation of the racemic material.

Our optimised scalable route to (+)-2 is shown in Fig. 2. The
aldehyde fragment required for the aldol addition (7) was
obtained in five steps and 37% overall yield from the readily
available 1,4-butane diol 4*2. Mono-protection of 4 with
dihydropyran proceeded in high yield, allowing isolation of
alcohol 5. Swern oxidation afforded the corresponding aldehyde,
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Fig. 1 Structure, current SAR and route design plan for (+)-7-iso-JA-L-lle (JA-lle) and coronatine (1). a Structural similarities between the natural bioactive
ligand JA-lle and 1 are highlighted. Coronatine can be considered as comprising of two component parts; the bicyclic core, coronafacic acid 2, amino acid
moiety, and coronamic acid 3. b, ¢ A summary of the known SAR at the outset of this work. d Retrosynthesis and route design plan for SAR interrogation

which was immediately reacted with vinylmagnesium bromide
and quenched with acetic anhydride to give 6 in 63% over 2 steps.
THP deprotection followed by further Swern oxidation gave
access to aldehyde 7 on multigram scale. The route to this
fragment generated in excess of 44 g of 7 for this campaign.

With a robust access to 7, we then turned our attention to the
key aldol addition using ester 8. Under the cryogenic conditions
reported by Charette®®, this reaction predominantly affords the
anti-product (87:13 anti:syn). With a view to improving the
scalability of this reaction, we observed that allowing the aldol
addition to proceed at room temperature gave reversed selectivity,
in favour of the syn-isomer (83:17 syn:anti)43. This reaction was
found to be robust on multigram scale, ultimately allowing access
to over 50 g of aldol adduct syn-9. Latterly, we found syn-9 to be
of greater utility than anti-9 in the subsequent dehydration and
IMDA reaction.

We had initially viewed the IMDA reaction as being
particularly challenging with respect to the scalability of the
route. The previously reported requirement of highly elevated
temperatures and a pressure-sealed vessel to allow the cyclization
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of this class of triene (10) is well documented and limits the
practicality of carrying out such a procedure on scale0~38,
However, we found that stereospecific dehydration of syn-9 using
CuBr and DIC at moderately elevated temperature afforded the
desired Z-alkene in situ, which underwent subsequent exo-IMDA
cyclization in one-pot. While dehydration of anti-9 has been
reported>®, this process was less step efficient, requiring isolation
of triene 10 prior to the IMDA reaction. Following acyl ester
hydrolysis, over 5g of bicycle 11 was isolated as a mixture of
diastereoisomers at C!, with a trans-fused ring junction®6-38,
From 11, DMP oxidation of the alcohol and acid hydrolysis of the
ester, with concurrent epimerization of C’3, conclude the gram-
scale synthesis of (+)-2 in 10 steps and in 9.9% overall yield.
Overall, this route afforded 2.7 g of (+)-2 to enable the desired
analogue synthesis and SAR investigations.

The flexibility offered by this synthetic sequence allowed
single point changes to allow the synthesis of a series of CFA
analogues (Fig. 1d). Variation of the ester used in the aldol
addition (8->14/15), permitted access to analogues bearing
structural modification at C®. Modification of the cyclopentanone
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Fig. 2 Gram-scale synthesis of (£)-CFA. Five step synthesis of aldehyde 7, followed by syn-selective room temperature aldol addition with ester 8. Aldol
addition product 9 undergoes dehydration and IMDA cyclization of the resultant triene at elevated temperature. DHP: dihydropyran, DMSO: dimethyl
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ring was achieved through use of homologated aldehyde aldol
partners (7-12/13), leading to regioisomeric and ring expanded
(decalin) cores.

Library generation. With access to sufficient quantities of (+)-2
as well as derivatives with variation of the core CFA template, we
prepared a library of analogues to prosecute the SAR objectives
(Fig. 3). It has been reported that the enzyme responsible for the
linkage of 2 and 3, coronafacate ligase*4, has a degree of tolerance
around the amino acid structure?®, as evidenced through
the isolation of several N-coronafacoyl compounds alongside
COR*~49, Accordingly, we determined it appropriate to prepare
a range of coronafacoyl amide analogues, maintaining (+)-2 as
the common core unit (Fig. 3a). To ensure breadth in our SAR
study, a variety of natural and non-natural amino acids were
incorporated using straightforward HATU-mediated coupling on
the amino acid methyl esters, followed by hydrolysis under basic
conditions to afford the desired carboxylic acid compounds
(16-37)32. For the CFA analogues with single point changes and
variation of the carbonyl unit, we prepared both the CMA- and L-
Ile-derived N-coronafacoyl amides using the same amidation
procedure (38-45), including the decalin and aromatised analo-
gues (43-45). Stereoisomers of interest following initial triage
(vide infra) were separated by chiral preparative HPLC and
evaluated (several examples shown: 46-51). Lastly, two arrays
were generated using automated synthesis with (i) variation of
CMA to a range of non-natural amino acids on the aromatised
CFA core and (ii) variation of CFA to non-CFA acids on the
CMA residue (see Methods and Supplementary Methods).

Biological assessment. Overall, 127 analogues of COR were
successfully prepared and assessed using a raft of phenotypic
assessments against several weed species. A selection of this
library is presented in Table 1.
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The obtained biological data has allowed mapping of
SAR around the natural product scaffold (see Supplementary
Tables 7-9 for the full data set):

With regard to the amino acid substituent, there appears to be
little tolerance for structural modification away from the CMA
motif; variation of this region produced inactive compounds or
analogues of significantly reduced potency (e.g., compare 1 vs. 16,
21, 32, 35, and 36). This is likely due to the increased bulk in the
amino acid region preventing binding to the COI1-JAZ co-
receptor’2. Typically, moderate levels of phytotoxicity were
observed with quaternary substituted amino acids, e.g., 32,
aligning this portion of the molecule more closely to the
structural features of CMA. In agreement with previous reports,
we observed that S-stereochemistry at the a-carbon is important
for activity, as demonstrated through comparison of 32 and the
respective R-configured analogue (31) which is inactive?*2%.
These results point towards the importance of the amino acid
residue to achieve significant levels of potency, and more
specifically the importance of a structurally intact CMA unit.

Several of our core-modified CMA-conjugates showed sig-
nificant phytotoxic activity. As previously mentioned, it is known
that the cis-stereochemistry of the fused ring junction is
important for biological activity!%?%34, Compound 43a, featuring
the cis-decalin core, showed good levels of activity, however the
trans-decalin structure 44a was inactive, implying that the
cyclopentenone ring is tolerant of variation but that the cis-ring
junction is required; however, we cannot rule out that the lack of
activity is due to the alternative carbonyl placement (vide infra)?°.
Substitution at the C® position is required for activity (41a vs.
42a)>. The alcohol derivative, 38a, showed good levels of activity,
while oxime compound 39b was weakly active, suggesting that
variation to the ketone moiety is tolerated; however, this could be
a function of metabolism to the ketone in planta. The CMA
analogue with aromatic core, 45a, showed significant levels of
activity (Table 1). The activity of this compound also demon-
strates the importance of the CMA moiety, as our array analogue
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Table 1 Biological data. Scoring of active compounds from SAR screening

Post-emergence Pre-emergence
Compound AMARE LOLPE STEME DIGSA Symptom AMARE LOLPE STEME DIGSA Symptom
-1 90 60 NT 90 ST/DS 80 90 NT 100 ST/DS
()1 40 0 50 60 NC/ST 70 40 70 80 NC/ST
(+)-2 0 0 0 0 — 0 0 0 0 —
(#)-3 0 0 0 0 — 0 0 0 0 —
16 0 0 0 0 ST 0 0 50 0 ST
21 0 0 70 20 NC/ST 0 0 0 0 NC/ST
32 0 0 0 0 ST 50 0 80 0 ST
35 0 0 0 0 ST 20 0 50 50 ST
36" 50 40 0 60 ST 40 30 50 50 ST
38a* 70 70 70 80 NC/ST 80 60 80 80 NC/ST
41a 30 20 30 60 Gl/ST 0 20 80 0 Gl/ST
43a* 30 10 0 50 GIl/ST 30 60 40 80 Gl/ST
45a 30 20 10 100 NC/ST 20 20 20 40 NC/ST
39b* 20 0 40 0 ST 30 40 70 0 ST
In initial greenhouse screening (GH1), compounds are assessed for pre- and post-emergence activity against four weed species, and scored visually for % phytotoxicity (0-100, where 100 is complete
control of the target and O is no control). Key compounds are designated with asterisks
AMARE Amaranthus retroflexus, LOLPE Lolium perenne, STEME Stellaria media, DIGSA Digitaria sanguinalis, DS desiccation, G/ germination inhibition, NC necrosis, NT not tested, ST stunting

synthesis maintaining the aromatic core moiety failed to deliver
analogues of significant activity. This result demonstrates the
potential for CFA simplification with the retention of phytotoxic
activity if the CMA moiety is maintained, a highly desirable
outcome of our SAR study as it renders the preparation of 2
unnecessary and replaceable with simpler analogues. The general
inactivity of our L-Ile conjugates (38-45b) with CFA analogues in
comparison with their CMA substituted counterparts again
bolsters importance of the CMA residue. Further attempts to
simplify the CFA scaffold with significant structural modifications
and with retention of the CMA amino acid were largely
unsuccessful.

In light of these results, compounds 43a and 45a were
separated into their component enantiomers by chiral HPLC and
the single enantiomers were assessed for phytotoxicity. Moderate
activity levels were observed; however, in both cases activity levels
obtained were weaker than (4)-1. The activity observed from
(+)-45a in comparison with the complete inactivity of (—)-45a
demonstrates that the potency of 45a is derived from only one
enantiomer?. This is further demonstrated in the variation of
activity levels from the enantiomers of 43a. Of the stereoisomers
with the homologated core (48-51), none were more effective
than (+)-1, with trends as expected40.

Molecular modelling and toxicophore development. To ratio-
nalise these observations, we undertook molecular modelling of
COR in the active site of COI1 (Fig. 4). Both the crystal struc-
ture®® and the computational calculations indicate that the
binding of COR is chiefly driven by the formation of strong H-
bonding interactions with three arginine residues in the active site
(ARG85, ARG348, and ARG409) from the amide carbonyl and
CMA-based carboxylate group. Favourable interactions also come
from the formation of a H-bond with the CFA cyclopentanone
carbonyl group and TYR444, as well as a number of hydrophobic
interactions, including the ethyl unit of CFA with the lipophilic
region consisting of LEU91, PHE89, and ALAS86, and insertion of
the cyclopropyl-ethane tail into a hydrophobic pocket consisting
of ALA384, VAL385, and TYR386.

To rationalise the observed generally detrimental impact of
variation of CMA to L-Ile (and the majority of other amino
acids), we compared the docking of 1 and 16 (Fig. 4). Docking
calculations were performed against the binding site of subunit B
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from PDB’! structure 30GK>’, using the programme Glide®>>3

in “standard precision” mode. In this approach, the receptor was
treated as rigid, while ligands were docked with full conforma-
tional flexibility, including sampling of ring conformations, and
an additional energy penalty was included to discourage
formation of non-planar amide bonds. Following the initial
docking, the five highest-scoring poses for each ligand were
identified using the Glide “docking score”, a metric that accounts
for both the ligand-receptor molecular mechanics interaction
energy and the ligand strain energy: these five poses were then
subjected to a full force-field minimisation, with the resulting,
minimised, poses re-scored and only the single highest-scoring
docked pose for each ligand retained for analysis. This model
indicates that inserting the branched alkyl chain of the Ile unit of
16 into the hydrophobic pocket formed by ALA384, VAL385, and
TYR386 is much less favourable than for the CMA unit of 1. The
unfavourable binding observed results from multiple steric
clashes between the alkyl chain of the Ile unit and the protein.
In addition, we expect that the increased flexibility found in Ile vs.
CMA would result in a higher entropic cost of binding, negatively
impacting on affinity.

With regards to the more tolerant CFA region, the principal
interactions are the H-bonding from the CFA cyclopentanone
carbonyl group and TYR444 and the hydrophobic interactions
from the ethyl unit of CFA with the lipophilic region consisting of
LEU91, PHER9, and ALA86. In addition, ARG496 is proximal to
the carbonyl of the CFA cyclopentanone; examination of the
crystal structure suggests that this is not at a range to form a H-
bond; however, we believe the proximity allows this interaction in
the dynamic setting. Aromatised compounds (45a) are effective
since this placement of functional groups and key interactions are
conserved. Removal of either/both of these functional groups
induces penalties but so long as they are maintained, there is
considerable flexibility in this region, explaining the activity of the
decalin and stereoisomeric compounds (38a, 41a, 45a).

Considering all of these data, key potential lead structures that
could form the basis of an optimisation programme are 32, 36,
38a, 43a, and 39b (Table 1). The SAR information codified by
structures is aligned with the ligand-based toxicophore model
described in Fig. 4c, below based on consideration of the
biological data obtained. The ligand-based toxicophore model
was constructed using Biovia Discovery Studio Visualizer V4.5
(Dassault Systemes, Vélizy-Villacoublay, France). Briefly, the
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COR input molecule was energy minimised using a CHARMm
force field, and toxicophoric elements were added using relevant
point/vector features and constraints based on consideration of
the SAR data generated and the available homology modelling
information described above.

Discussion

In conclusion, an extensive SAR investigation around the phy-
totoxic natural product COR has been carried out. The
multigram-scale synthesis of (+)-CFA enabled array synthesis of a
broad scoped amino acid screen, using CFA as the common core
unit. Investigation of CFA modifications through alterations to
the bicyclic structure has allowed for a mapping of SAR around
the core-motif. Typically, we have observed that although
incorporation of alternative amino acids onto the CFA core can
result in low levels of phytotoxic activity, the key convenor of
potency appears to be the CMA moiety and a greater tolerance
for modification has been observed around the CFA core.
These results demonstrate that further studies featuring the CMA
unit and CFA replacements may be beneficial, and we would
suggest that future research efforts in the area focus on these
derivatives.

Methods

General methods. See Supplementary Methods for further details supporting
experiments, Supplementary Tables 1-9 for additional data, and Supplementary
Figs. 1-339 for spectra.

Synthesis of 5. To a round bottom flask was added butane-1,4-diol (4) (27.3 g,
302.93 mmol, 5 equiv.) and anhydrous AlCl; (79 mg, 0.59 mmol, 1 mol%).
3,4-Dihydro-2H-pyran (5.42 mL, 59.41 mmol, 1 equiv.) was added slowly and the
resulting mixture was warmed to 30 °C for 30 minutes, before being allowed to cool
to room temperature. The colourless, crude material was loaded directly in a
solution of 40% EtOAc/petroleum ether and purified by flash silica column
chromatography, eluent 30—60% EtOAc/petroleum ether to afford 4 as a colourless
liquid (9.86 g, 95%).

Preparation of 6. To a three-necked flask under an atmosphere of nitrogen was
added oxalyl chloride (7.91 mL, 93.48 mmol, 1.5 equiv.) and anhydrous CH,Cl,
(140 mL). The reaction was cooled to —78 °C and DMSO (13.26 mL, 186.69 mmol,
3 equiv.) added dropwise. The reaction was stirred for 15 minutes at —78 °C before
a solution of alcohol 5 (9.81 g, 56.27 mmol, 1 equiv.) in CH,Cl, (20 mL) was added
dropwise. The reaction was stirred at —78 °C for a further 30 minutes before being
quenched slowly with triethylamine (39.6 mL, 284.12 mmol, 5 equiv.). The reaction
was allowed to warm to room temperature over 1 h. The pale orange suspension
was then diluted with water (40 mL) and extracted with CH,Cl, (3 x 30 mL).
The organics were combined, washed with brine (20 mL), dried over Na,SO,,
filtered, and evaporated to afford a pale orange liquid. The crude material
was loaded directly in a solution of CH,Cl, and purified by flash silica column
chromatography, eluent 10-20% EtOAc/petroleum ether to afford a pale yellow
liquid (7.78 g, 45.00 mmol), which was used immediately in the following step.
Vinylmagnesium bromide (1 M in THF, 45 mL, 45.00 mmol, 1 equiv.) was
added dropwise to a stirring solution of the isolated material in anhydrous THF
(100 mL) at 0°C in a three-necked flask under an atmosphere of N,. The resulting
solution was allowed to rise to room temperature and stirred for 1.5 h. The reaction
was quenched by dropwise addition of acetic anhydride (8.5 mL, 90.09 mmol, 2
equiv.) at room temperature and stirred for a further 1.5h. The yellow reaction
mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL).
The organics were combined, washed with brine (20 mL), dried over Na,SO,,
filtered, and evaporated to afford a pale orange oil. The crude material was purified
by flash silica column chromatography, eluent 20% EtOAc/petroleum ether to
afford 6 as a colourless liquid (8.65 g, 63%).

Preparation of 7. To a round bottom flask was added compound 6 (11.51 g, 47.51
mmol, 1 equiv.) and EtOH (170 mL). PPTS (1.15 g, 4.58 mmol, 0.1 equiv.) was
added portionwise and the resulting solution heated to 65 °C and maintained at
this temperature for 3 h. The reaction was allowed to cool to room temperature and
was then evaporated onto silica gel and purified by flash silica column
chromatography, eluent 40% EtOAc/petroleum ether to afford a colourless liquid
(5.87 g, 78%).

To a three-necked flask under an atmosphere of nitrogen was added oxalyl
chloride (3.32 mL, 39.23 mmol, 1.5 equiv.) and anhydrous CH,Cl, (90 mL). The
reaction was cooled to —78 °C and DMSO (5.60 mL, 78.84 mmol, 3 equiv.) added
dropwise. The reaction was stirred for 15 minutes at —78 °C before a solution of the
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alcohol (4.15 g, 26.24 mmol, 1 equiv.) in CH,Cl, (10 mL) was added dropwise. The
reaction was stirred at —78 °C for a further 30 minutes before being quenched
slowly with triethylamine (22 mL, 157.84 mmol, 5 equiv.). The reaction was
allowed to warm to room temperature over 1 h. The pale orange suspension was
then diluted with water (40 mL) and extracted with CH,Cl, (3 x 30 mL). The
organics were combined, washed with brine (20 mL), dried over Na,SOy, filtered,
and evaporated to afford a pale orange liquid. The crude material was loaded
directly in a solution of CH,Cl, and purified by flash silica column
chromatography, eluent 10-20% EtOAc/petroleum ether to afford 7 as a pale
yellow liquid (3.26 g, 79%).

Preparation of syn-9. To a three-necked flask at room temperature under an
atmosphere of nitrogen was added ester 8 (2.72 mL, 17.12 mmol, 1.3 equiv.) in
anhydrous CH,Cl, (50 mL) and DIPEA (3.44 mL, 19.75 mmol, 1.5 equiv.).
Dibutylboryltrifluoromethanesulfonate solution (1 M in CH,Cl,) (17.1 mL, 17.1
mmol, 1.3 equiv.) was added dropwise and the resulting solution stirred at room
temperature for 30 minutes. A solution of aldehyde 7 (2.06 g, 13.16 mmol, 1 equiv.)
in CH,Cl, (10 mL) was then added dropwise and the reaction stirred at room
temperature for 1 h. The reaction was quenched with a potassium buffer solution
(pH 7.4, 26 mL), MeOH (40 mL) and H,0, (30% solution, 13 mL) which were
added sequentially. A small exotherm was observed on H,O, addition. The reac-
tion was stirred vigorously at room temperature for 16 h, diluted with water (30
mL), and extracted with CH,Cl, (3 x 40 mL). The organics were combined, washed
with brine (30 mL), dried over Na,SO,, filtered, and evaporated to afford a pale
yellow oil. The crude material loaded directly in a solution of CH,Cl, and purified
by flash silica column chromatography, eluent 20% EtOAc/petroleum ether to
afford syn-9 as a colourless liquid (2.81 g, 57%).

Preparation of 11. To a round bottom flask under an atmosphere of nitrogen was
added compound syn-9 (2.00 g, 6.71 mmol, 1 equiv. (79% purity)), CuBr (96 mg,
0.67 mmol, 10 mol%) and anhydrous toluene (1.3 mL). DIC (1.56 mL, 10.07 mmol,
1.5 equiv.) was added in one portion and the resulting solution was brought to 110
°C for 16 h. The reaction was allowed to cool to room temperature and the crude
solution was filtered through celite, eluting with EtOAc (30 mL). The organics were
washed with water (30 mL), followed by brine (30 mL), dried over Na,SO,, filtered,
and evaporated to afford a pale brown oil. The crude material was directly loaded
in a solution of 10% EtOAc/petroleum ether and purified by flash silica column
chromatography, eluent 10% EtOAc/petroleum ether to afford a pale yellow oil
(1.49 g, 5.32 mmol), which was not characterised.

To the pale yellow oil was added EtOH (50 mL) and PTSA (mono-hydrate)
(1.52 g, 7.99 mmol, 1.5 equiv.) and the resulting solution was brought to 75 °C for 5
h. The reaction was allowed to cool to room temperature and the solvent
evaporated to afford an orange oil. The crude material was directly loaded in a
solution of 20% EtOAc/petroleum ether and minimal CH,Cl, and purified by flash
silica column chromatography, eluent 20% EtOAc/petroleum ether to afford 11 as
a colourless liquid (677 mg, 54% (2 steps)).

Preparation of (+)-2. To a round bottom flask charged with 11 (300 mg, 1.25
mmol, 1 equiv.) in anhydrous CH,Cl, (12 mL) was added DMP (794 mg, 1.86
mmol, 1.5 equiv.) in one portion under an atmosphere of nitrogen. The reaction
was stirred at room temperature for 16 h before 2 M NaOH (10 mL) was added and
the layers stirred vigorously for 10 minutes. The layers were

separated and the aqueous further extracted with CH,Cl, (2 x 20 ml). The
organics were combined, washed with brine (20 mL), dried over Na,SO,, filtered,
and evaporated to afford a colourless oil. The crude material was loaded in a
solution of 10% EtOAc/petroleum ether and purified by flash silica column
chromatography, eluent 10% EtOAc/petroleum ether to afford a colourless oil (245
mg, 83%).

To a round bottom flask was added compound S3 (1.10 g, 4.65 mmol) and 3 M
HCI (150 mL). The reaction was brought to 100 °C and maintained at this
temperature with stirring for 16 h. The reaction was allowed to cool to room
temperature and extracted with EtOAc (3 x 30 mL). The organics were combined,
washed with brine (30 mL), dried over Na,SO,, filtered, and evaporated to
afford an orange oil. The crude material was loaded directly in a solution
of 30% EtOAc/petroleum ether and purified by flash silica column
chromatography, eluent 30-60% EtOAc/petroleum ether to afford ()-2 as a white
solid (850 mg, 88%).

General procedure for synthesis of (+)-1 and analogues. To a 2-dram vial was
added (+)-2 (30 mg, 0.14 mmol, 1 equiv.) and HATU (66 mg, 0.17 mmol, 1.2
equiv.). DMF (0.7 mL) was added, followed by DIPEA (80 uL, 0.46 mmol, 3 equiv.)
and the resulting solution stirred at room temperature for 5 minutes. The amino
acid ester (0.21 mmol, 1.5 equiv.) was then added in one portion and the vial
capped with a screw top lid. The reaction was stirred for 16 h. The reaction was
then diluted with H,O (10 mL) and the organics extracted with EtOAc (3 x 5mL).
The organics were combined, washed with brine (10 mL), dried over Na,SO,,
filtered, and evaporated to afford the crude product. The crude material was loaded
directly in a solution of CH,Cl, and purified by flash silica column chromato-
graphy to afford the COR ester product.
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To a round bottom flask was added the COR ester (24 mg, 0.07 mmol, 1 equiv.)
and LiOH (5 mg, 0.20 mmol, 3 equiv.). The material was suspended in 1:1 MeOH:
H,0 (3 mL) and the resulting suspension brought to 50 °C for 16 h. The reaction
was allowed to cool to room temperature, and extracted with EtOAc (1 x 5mL),
and the organics discarded. The aqueous phase was acidified with HCI (aq.), and
extracted with EtOAc (3 x 10 mL). The organics were combined, dried over
Na,SOy, filtered, and evaporated to afford a colourless oil. The crude material was
taken up in a minimal volume of diethyl ether, and petroleum ether added until a
white precipitate formed (where precipitation did not occur spontaneously the
solvent was concentrated under a stream of compressed air until precipitation
occurred). The solvent was removed using a Pasteur pipette and the precipitate
dried under vacuum to afford the desired carboxylic acid product.

Data availability. All data generated or analysed during this study are included in
this published article (and its supplementary information files). These data are also
available from the author upon request. Accession codes: The X-ray crystal-
lographic coordinates for structures reported in this study have been deposited at
the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers
CCDC 1821484 and CCDC 1821485. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif. For NMR spectra of the compounds in this article, see Supple-
mentary Figs. 1-339.
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