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Abstract
The cosmopolitan flea beetle genera Phyllotreta and Psylliodes (Galerucinae, Alticini) are mainly associated 
with host plants in the family Brassicaceae and include economically important pests of crucifer crops. 
In this review, the host plant associations and geographical distributions of known species in these gen-
era are summarised from the literature, and their proposed phylogenetic relationships to other Alticini 
analysed from published molecular phylogenetic studies of Galerucinae. Almost all Phyllotreta species are 
specialised on Brassicaceae and related plant families in the order Brassicales, whereas Psylliodes species are 
associated with host plants in approximately 24 different plant families, and 50% are specialised to feed 
on Brassicaceae. The current knowledge on how Phyllotreta and Psylliodes are adapted to the characteristic 
chemical defence in Brassicaceae is reviewed. Based on our findings we postulate that Phyllotreta and Psyl-
liodes colonised Brassicaceae independently from each other.
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Introduction

Plant-feeding insects are often classified as specialists or generalists according to their 
food plant range. While generalist insect herbivores are able to feed on plants that 
belong to distantly related plant families, specialist insect herbivores feed selectively 
on one or a few closely related plant species (Schoonhoven et al. 2005). Many phy-
tophagous insects, including numerous leaf beetle species, have a narrow food plant 
range (Jolivet and Hawkeswood 1995; Forister et al. 2015), which is at least partially 
determined by toxic and deterrent plant secondary metabolites. Plants produce more 
than 200,000 different secondary metabolites, and many of them are involved in de-
fence against herbivores (Mithöfer and Boland 2012). The distribution of secondary 
metabolites in related plant species often correlates with the food plant range of spe-
cialised insect herbivores, which evolved strategies to avoid, tolerate, or detoxify these 
defence compounds (Heckel 2014). Such adaptations presumably played an important 
role in the species diversification of plant-feeding insects (Ehrlich and Raven 1964; 
Futuyma and Agrawal 2009), but the specific molecular mechanisms underlying host 
plant adaptation, and their role in insect ecology and speciation, are largely unknown.

Several genera in the family Chrysomelidae include species that are specialised to 
feed on plants in the family Brassicaceae (Table 1). In the subfamily Chrysomelinae, 
the genera Colaphellus, Entomoscelis, and Microtheca feed primarily on Brassicaceae 
(Jolivet and Petitpierre 1976b; Nielsen 1988), whereas the genus Phaedon is associated 
with several different plant families, e.g. Asteraceae, Brassicaceae, Scrophulariaceae, 
and Ranunculaceae (Table 1). In the subfamily Galerucinae, the flea beetle genera 
Phyllotreta, Psylliodes, Leptophysa, Caeporis, and Hemiglyptus utilise Brassicaceae as host 
plants (Furth 1979; Nielsen 1988; Jolivet 1991; Nadein 2010). In addition, many 
other polyphagous chrysomelid genera feed occasionally on this plant family. How-
ever, within Chrysomelidae, the genera Psylliodes and Phyllotreta comprise the highest 
number of crucifer specialists.

Glucosinolates are the characteristic secondary metabolites of Brassicaceae and 
other families in the order Brassicales (Agerbirk and Olsen 2012). Upon herbivory, 
glucosinolates are hydrolysed by β-thioglucosidase enzymes (myrosinases) to unstable 
aglucones, which can generate various hydrolysis products such as isothiocyanates, 
thiocyanates, and nitriles (Wittstock et al. 2016). Isothiocyanates, the most toxic glu-
cosinolate hydrolysis products, are primarily reactive towards thiol- (-SH) and amino- 
(-NH2) groups in peptides and proteins (Brown and Hampton 2011). Previous stud-
ies revealed that insects developed different strategies to overcome this plant defence 
(reviewed in Winde and Wittstock (2011) and Jeschke et al. (2016)). For example, 
Plutella xylostella larvae (Lepidoptera, Plutellidae) prevent glucosinolate breakdown by 
rapidly converting ingested glucosinolates to stable desulfo-glucosinolates (Ratzka et al. 
2002), while Pieris rapae larvae (Lepidoptera, Pieridae) express a nitrile specifier protein 
(NSP) in their gut, which promotes the formation of less toxic nitriles instead of iso-
thiocyanates (Wittstock et al. 2004). The evolution of NSP activity in Pierinae butter-
flies is regarded as an evolutionary key innovation that enabled a host shift from Fabales 
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plants to the glucosinolate-containing Brassicales. As predicted by the coevolutionary 
'escape and radiate' hypothesis, speciation rates were higher in the clade that colonised 
Brassicales plants compared to their sister taxon (Wheat et al. 2007; Edger et al. 2015). 
In contrast, the host shift of Ceutorhynchini weevils from the plant family Lamiaceae 
to Brassicaeae was not associated with a speciation rate shift (Letsch et al. 2018).

Glucosinolates and their hydrolysis products are well known to affect the behav-
ior of crucifer-feeding Chrysomelidae (reviewed in Mitchell (1988, 1994), and Nielsen 
(1988)). Volatile isothiocyanates, for example, attracted high numbers of Phyllotreta spp. 
and Psylliodes chrysocephala in field trapping experiments, indicating that isothiocyanates 
might play a role in host plant localisation (Görnitz 1956; Bartlet et al. 1992; Pivnick 
et al. 1992; Tóth et al. 2007). Glucosinolates, on the other hand, stimulated feeding 
of Phyllotreta spp., Ps. chrysocephala, Phaedon cochleariae, and Entomoscelis americana in 
laboratory experiments (Hicks 1974; Mitchell 1978; Nielsen 1978; Bartlet et al. 1994; 
Reifenrath and Müller 2008). Although these specialists are adapted to the glucosinolate-

Table 1. Overview of Chrysomelidae genera that are associated with Brassicaceae hosts plants.

Genus Approx. no. 
of species

 Major host plant 
families

Known species feeding 
on Brassicaceae 

References

Subfamily Chrysomelinae
Chrysolina 
Motschulsky, 
1860

450 Lamiaceae C. cavigera, C. colasi Jolivet and Petitpierre 1976a, 1976b; Clark 
et al. 2004; Jurado-Rivera and Petitpierre 

2015
Colaphellus 
Weise, 1916

15 Brassicaceae C. bowringi, C. hoeftii, 
C. sophiae

Döberl 2010; Gavrilović et al. 2014; 
Bieńkowski and Orlova-Bienkowskaja 2015; 

Rheinheimer and Hassler 2018
Entomoscelis 
Chevrolat, 1836

14 Brassicaceae E. adonidis, E. americana, 
E. berytensis, E. nigriventris, 

E. orientalis, E. pilula

Mohr 1966; Gerber 1994; Ge et al. 2009

Microtheca 
Dejean, 1835

15 Brassicaceae M. ochroloma, M. picea, 
M. punctigera, 
M. semilaevis

Jolivet 1951; Balsbaugh 1978; Jolivet and 
Hawkeswood 1995; Ameen 1996; Clark 

et al. 2004; Menezes et al. 2005; Balusu et 
al. 2017

Phaedon 
Latreille, 1829

80 Brassicaceae, 
Ranunculaceae, 
Plantaginaceae, 

Asteraceae

P. brassicae, P. cochleariae, 
P. laevigatus, P. prasinellus, 

P. viridis

Ge et al. 2003, 2013, 2015; Clark et al. 
2004; Lopatin 2005; Rheinheimer and 

Hassler 2018

Timarcha 
Latreille, 1829

316 Rubiaceae, 
Plantaginaceae

T. intermedia, T. lugens, 
T. strangulata

Jolivet and Petitpierre 1973; Gómez-Zurita 
et al. 2000a, 2000b; González-Megías and 

Gómez 2001
Subfamily Galerucinae, Alticini
Caeporis 
Dejean, 1837

1 Brassicaceae C. stigmula Jolivet and Hawkeswood 1995; Cabrera and 
Rocca 2012; Nadein 2012

Hemiglyptus 
Horn, 1889

1 Brassicaceae, 
Hydrophyllaceae

H. basalis Clark et al. 2004; Nadein 2012

Leptophysa 
Baly, 1877

15 Brassicaceae, 
Cleomaceae

L. batesi, L. bordoni, 
L. littoralis

Jolivet 1991; Jolivet and Hawkeswood 1995; 
Bechyné 1997; Flowers and Janzen 1997

Phyllotreta 
Chevrolat, 1836

242 Brassicaceae see Suppl. material 3 This study; Heikertinger 1943; Furth 1979; 
Smith 1985; Clark et al. 2004

Psylliodes 
Latreille, 1829

207 Brassicaceae, 
Poaceae

see Suppl. material 1 This study; Furth 1983; Cox 1998; Clark 
et al. 2004; Nadein 2010; Baviera and 

Biondi 2015



Matilda W. Gikonyo et al.  /  ZooKeys 856: 51–73 (2019)54

myrosinase defence system, both glucosinolate levels and myrosinase activity affected her-
bivory by Phyllotreta cruciferae in the field. The highest flea beetle damage was observed 
on Brassica rapa plants with intermediate glucosinolate levels (Siemens and Mitchell-
Olds 1996), and B. rapa lines selected for high myrosinase activity displayed significantly 
less feeding damage (ca. 10%) than those with low enzyme activity (Mitchell-Olds et 
al. 1996). In contrast, studies with Ps. chrysocephala did not reveal a correlation between 
glucosinolate levels and feeding damage (Bartlet et al. 1996; Bartlet et al. 1999).

Here, we provide an overview on the host plants, diet breadth, and geographic 
distribution of known Phyllotreta and Psylliodes species, as well as their proposed rela-
tionships to other genera of Alticini. Diet breadth was classified according to Biondi 
(1996). Species feeding on one or two closely related botanical genera are considered 
as monophagous, species feeding on more plant genera of one or two closely related 
families are defined as oligophagous, and species feeding on many distantly related 
plant species are considered as polyphagous. For species with limited information on 
food plants, we did not specify the diet breadth. Data on the geographical distribu-
tion of the Palearctic Psylliodes and Phyllotreta species was primarily obtained from 
Döberl (2010) and is described according to Löbl and Smetana (2010). The zooge-
ographical regions are abbreviated as follows: Afrotropical Region (AFR), Australian 
Region (AUR), Nearctic Region (NAR), Neotropical Region (NTR), Oriental Region 
(ORR), Palearctic Region (PAR). In the second part of this review, we summarise the 
knowledge on the adaptations of Phyllotreta and Psylliodes spp. to the glucosinolate-
myrosinase defence system and other defences in their host plants.

Host plant associations of Psylliodes and Phyllotreta flea beetles

The genus Psylliodes Latreille, 1829 comprises over 200 species (Suppl. material 1). Adult 
Psylliodes beetles are distinguished from other flea beetle genera based on their 10-seg-
mented antennae and tarsi inserted pre-apically on the metatibia of the hind legs. Most 
other Alticini genera have 11-segmented antennae except for Psylliodes, Decaria, and 
Monotalla with ten segments and Nonarthra with nine segments (Konstantinov and Van-
denberg 1996; Nadein and Bezděk 2014). The genus comprises five subgenera: Psylliodes 
s. str. (194 species), Semicnema Weise (5 species), Eupus Wollaston (5 species), Minic-
nema Nadein (2 species) and Psyllobactra Lopatin (1 species) (Nadein 2007a, 2010). A 
subdivision of the subgenus Psylliodes s. str. based on morphological features was pro-
posed by Leonardi (1970) and Nadein (2006, 2007a, 2007b) (Suppl. material 2).

According to the literature, host plants of 107 Psylliodes species have been reported, 
and these belong to 24 plant families (Suppl. material 1). Most Psylliodes species have 
a restricted host plant range (35% are monophagous and 51% are oligophagous), and 
only 14% are polyphagous. For instance, Psylliodes toelgi feeds only on Biscutella laevi-
gata (Brassicaceae), whereas Psylliodes luteola has been recorded on Poaceae, Fagaceae, 
Salicaceae, Ulmaceae, and Solanaceae.
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Of all Psylliodes species with known host plants, 50% are specialised on Brassicace-
ae, followed by 13% feeding on Poaceae, 10% on Solanaceae and 10% on Fagaceae 
(Fig. 1A). Previous surveys of host plant associations of Psylliodes spp. focused on spe-
cific countries or regions and thus included a much smaller total number of Psylliodes 
species (Furth 1983; Cox 1998; Döberl 2010; Baviera and Biondi 2015). Interestingly, 
host plant use often correlates with the proposed Psylliodes s. str. species groups, which 
indicates that presumably closely related Psylliodes species feed on closely related host 
plants (Suppl. material 2). For example, Psylliodes species in the chrysocephala and py-
ritosa groups are specialised to feed on Brassicaceae, while species in the luteola group 
are mainly associated with Fagaceae.

The genus Phyllotreta Chevrolat, 1836 comprises about 242 species and host plant 
information is available for 117 species (Suppl. material 3). Most Phyllotreta species 
are specialised on glucosinolate-containing plants in the order Brassicales (Fig. 1B). An 
analysis of the diet breadth of Phyllotreta species revealed that 31% are monophagous, 
64% are oligophagous, and 5% are polyphagous. In Phyllotreta, 63% are specialised on 
Brassicaceae, whereas 18% feed on plants in more than one family in the order Brassi-
cales (Fig. 1B).Very few Phyllotreta species feed on plant families, which do not contain 
glucosinolates, for instance, Phyllotreta cruralis is specialised on Amaranthaceae.

Several Psylliodes and Phyllotreta species are of economic importance. The cabbage 
stem flea beetle, Ps. chrysocephala is a serious pest of winter oilseed rape in Northern 
Europe (Zimmer et al. 2014), whereas Phyllotreta striolata and Ph. cruciferae are oilseed 
rape pests in Canada where their damage causes losses of tens of millions of US dollars 
annually (Lamb 1989; Hill 2008; Knodel 2017). On the other hand, the Palearctic 
species Psylliodes chalcomera (feeding on Asteraceae) was introduced to North America 
in 1997 as a control agent for the invasive weed Carduus nutans (musk thistle), but it 
likely did not establish in the Nearctic region (Antonini et al. 2008).

Geographic distribution of Psylliodes and Phyllotreta flea beetles

The genus Psylliodes has a worldwide distribution (Biondi and D’Alessandro 2018). The 
highest number of species occurs in the Palearctic region (160 species, 145 endemic 
species), followed by the Oriental region (27 species, 19 endemic species), the Nearctic 
region (13 species, 4 endemic species), the Afrotropical region (13 species, 9 endemic 
species), the Neotropical region (8 species, 4 endemic species), and the Australian re-
gion (8 species, 7 endemic species; Suppl. material 1). A graphical overview of the spe-
cies distribution is shown in Figure 2A; the host plant associations of all species and en-
demic species in each zoogeographical region are shown in Figure 2B. Some species are 
wide-spread in more than one zoogeographical region such as Ps. brettinghami (feeding 
on Solanaceae), which is found in the Australian, Oriental, and Palearctic regions, while 
others are strictly endemic to very limited areas, e.g. Ps. tarsata, which is only found on 
Madeira (Portugal). Psylliodes species that are endemic to the Palearctic region account 
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Figure 1. Host plant associations of the genera Psylliodes (A) and Phyllotreta (B). The host plants of 107 
Psylliodes species and 117 Phyllotreta species have been reported in the literature. The numbers of species 
which feed on plants in one plant family (monophagous and oligophagous), and the number of polyphago-
us species are given as percentages. 18% of the Phyllotreta species feed on more than one family in the order 
Brassicales (Brassic., Brassicaceae; Cappar., Capparaceae; Cleom., Cleomaceae; Resed., Resedaceae; Tro-
paeol., Tropaeolaceae). For detailed information, refer to Suppl. material 1 (Psylliodes) and 3 (Phyllotreta).

for 83% of those associated with Brassicaceae. All other Brassicaceae-feeding species are 
found in other zoogeographical regions except for Australia (Fig. 2B).

The geographic distribution of the genus Phyllotreta shows the highest number 
of species in the Palearctic region (137 species, 118 endemic species) followed by the 
Afrotropical region (49 species, 39 endemic species), the Nearctic region (49 species, 
40 endemic species), the Oriental region (25 species, 18 endemic species), the Neo-
tropical Region (5 species, 3 endemic species), and the Australian Region (4 species, 
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3 endemic species; Suppl. material 3). The species distribution is shown in Figure 3A, 
and the host plant associations of all species and endemic species in each zoogeographi-
cal region are shown in Figure 3B. In general, a high percentage of endemic Phyl-
lotreta species is found in all geographical regions (≥ 60%) with highest values in the 
Palearctic, Afrotropical, and Nearctic regions (≥ 80%). In some areas, especially in the 
Nearctic region, several species of Phyllotreta are not native and have been introduced 
from other regions (Milliron 1953; Smith 1985). Most species feeding on Brassicaceae 
are found in the Palearctic and Nearctic regions. The host plants of a large proportion 
of the species endemic to the Afrotropical, Australian, and Neotropical regions are 
unknown (Fig. 3B; Suppl. material 3).

Phylogenetic relationships of Psylliodes and Phyllotreta to other Alticini

The most comprehensive phylogenetic analyses of the subfamily Galerucinae sensu lato 
are those of Ge et al. (2011, 2012) and Nie et al. (2018), which included about 80 
and 70 genera of Alticini (including problematic genera), respectively. Ge et al. (2011, 
2012) used two mitochondrial (16S rRNA and cytochrome oxidase (cox) 1) and two 
nuclear genes (18S and 28S rRNA) to infer phylogenetic relationships, while Nie et al. 
(2018) used the mitochondrial genome and nuclear rRNA genes. In these analyses, 
Psylliodes and Phyllotreta were never retrieved as sister genera, but instead clustered 
in distinct clades with other Alticini as summarised in Table 2. All three studies sug-
gest a close phylogenetic relationship of Psylliodes to Chaetocnema and Crepidodera 
(see Table 2 for Bayesian posterior probability values and/or Maximum Likelihood 
bootstrap support values). Surprisingly, two different Crepidodera species included in 

Figure 2. Distribution of 207 Psylliodes species in the different zoogeographical regions (A), and host 
plant associations of all species (As) and endemic species (Es) for each zoogeographical region (B). For 
detailed information, refer to Suppl. material 1.
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Figure 3. Distribution of 242 Phyllotreta species in the different zoogeographical regions (A), and host 
plant associations of all species (As) and endemic species (Es) for each zoogeographical region (B). For 
detailed information, refer to Suppl. material 3.

the analysis of Nie et al. (2018) were not monophyletic. Crepidodera pluta clustered 
in the Chaetocnema group with Psylliodes, while the second Crepidodera sp. clustered 
together with two Phyllotreta species in a distant clade. However, the proposed rela-
tionships of Phyllotreta to other Alticini differ among the studies, and are usually less 
supported than those suggested for Psylliodes. None of the genera with proposed close 
phylogenetic relationships to Phyllotreta and Psylliodes are associated with Brassicaceae 
plants (Table 2).

Adaptations of crucifer-feeding flea beetles to chemical plant defences

An unexpected observation revealed that Ph. striolata adults emit low amounts of toxic 
isothiocyanates, which are derived from glucosinolates that are stored at high concen-
trations of up to 50 µmol/g fresh weight (ca. 2% of the body weight) in adults (Beran 
2011; Beran et al. 2014). When adults were transferred to different crucifer species, 
they selectively accumulated mainly aliphatic glucosinolates from their food plants, 
e.g. allyl glucosinolate from Brassica juncea, and 4-methylsulfinylbutyl (4MSOB) glu-
cosinolate from Arabidopsis thaliana. In contrast, adults sequestered only low amounts 
of the benzenic 4-hydroxybenzyl glucosinolate from Sinapis alba. The glucosinolate 
accumulation pattern depended both on glucosinolate structure and on the host plant 
background, suggesting that the plants’ glucosinolate composition affects sequestration 
in Ph. striolata. The ability to accumulate high glucosinolate amounts demonstrates 
that Ph. striolata can at least partially prevent activation of ingested glucosinolates. 
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Table 2. Phylogenetic relationships of Psylliodes and Phyllotreta to other Alticini genera.

Study Psylliodes Phyllotreta
Ge et al. (2011) Sister genus: Chaetocnema (Poaceae)1 Sister genus: Batophila (Rosaceae)

Phylogenetic support (B/ML): 0.84/67 Phylogenetic support (B/ML): 0.79/<50
Clade: Crepidodera (Salicaceae), Clade: Lipromela (unknown),

Epitrix (Solanaceae) Syphrea (Euphorbiaceae),
Phylogenetic support (B/ML): 0.52/<50 Altica (Onagraceae, Lythraceae),

Taxonomic group: Unspecified Macrohaltica (Gunneraceae)
Phylogenetic support (B/ML): 0.98/<50

Ge et al. (2012) Bayesian and Maximum-Likelihood phylogenies Bayesian phylogeny
Sister genus: Chaetocnema (Poaceae) Sister genus: Epitrix (Solanaceae)

Phylogenetic support (B/ML): 0.95/67 Phylogenetic support (B): 0.95
Clade: Crepidodera (Salicaceae), Clade: Diphaltica (Aquifoliaceae),

Epitrix (Solanaceae), Syphrea (Euphorbiaceae), 
Altica (Onagraceae, Lythraceae),

Agasicles (Amaranthaceae), 
Disonycha (Amaranthaceae)

Macrohaltica (Gunneraceae) Phylogenetic support (B): 0.81
Phylogenetic support (B/ML): 0.89/<50 Maximum-Likelihood phylogeny

Taxonomic group: Chaetocnema Clade: Lanka (Piperaceae),
Longitarsus (Boraginaceae),

Tegyrius (Piperaceae)
Phylogenetic support (ML): <50

Nie et al. (2018) Sister genus: Chaetocnema (Poaceae), Sister genus and clade:
Epitrix (Solanaceae) Crepidodera (Salicaceae)

Phylogenetic support (B): 0.48 Phylogenetic support (B): 0.83
Clade: Crepidodera (Salicaceae),

Xuthea (Urticaceae)
Phylogenetic support (B): 0.89
Taxonomic group: Chaetocnema

1The major host-plant family for each genus according to Jolivet and Hawkeswood (1995) is given in parentheses.
ML – Maximum Likelihood bootstrap value; B – Bayesian posterior probability

However, quantitative feeding studies, for instance with radiolabeled glucosinolates, 
are needed to determine to which degree ingested glucosinolates are sequestered intact.

To activate sequestered glucosinolates, Ph. striolata possesses an insect myrosinase 
with high activity towards aliphatic glucosinolates, which evolved from insect β-O-
glucosidases (Figure 4; Beran et al. 2014). To investigate how Ph. striolata activate 
sequestered glucosinolates and prevent autointoxication, dissected tissues from adults 
were analysed for the presence of glucosinolates and myrosinase activity, respectively. 
Interestingly, both glucosinolates and myrosinase were mainly localised in the hemo-
lymph and elytra (Beran and Ahn, unpublished), but whether both components are 
stored separately in hemoplasma and hemocytes as previously reported for cyanogenic 
glycosides and the cyanogenic β-glucosidase in Zygaena filipendulae larvae (Lepidop-
tera, Zygaenidae; Pentzold et al. 2017), is not yet known.
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In the genus Psylliodes, the cabbage stem flea beetle, Ps. chrysocephala, selec-
tively sequesters glucosinolates as well, but compared to Ph. striolata, glucosinolate 
concentrations are much lower (ca. 4 µmol/g fresh weight; Beran et al. 2018). Al-
though glucosinolates are present in all life stages of Ps. chrysocephala, a defensive 
function is unlikely, as neither larvae nor adults possess endogenous myrosinase ac-
tivity (Beran et al. 2018). An analysis of the metabolic fate of ingested 4MSOB glu-
cosinolate in Ps. chrysocephala adults revealed that adults utilise at least three strate-
gies to prevent isothiocyanate formation and toxicity. Ps. chrysocephala sequester 
intact glucosinolates, detoxify glucosinolates by desulfation, and detoxify dietary 
isothiocyanates by conjugation to glutathione. The isothiocyanate-glutathione con-
jugate is metabolised via the conserved mercapturic acid pathway to three different 
cyclic cysteine conjugates, which are excreted. These three strategies accounted for 
the metabolic fate of 18.5%, 8%, and 17% of the total ingested glucosinolates, 
respectively. The amounts of other glucosinolate breakdown products (4MSOB-
isothiocyanate, -cyanide, -amine, and –acetamide) corresponded to 17.5% of the 
total ingested glucosinolate (Figure 4; for details, refer to Beran et al. 2018). How-
ever, the metabolic fate of about 39% of the total ingested glucosinolate remained 
unknown in this study.

The detoxification of isothiocyanates in Ps. chrysocephala comes at the expense of 
the amino acid cysteine. Therefore, interference with protein digestion, for instance 
by plant proteinase inhibitors or other digestibility reducers, might affect the detoxi-
fication capacity for isothiocyanates by limiting the availability of cysteine for glu-
tathione biosynthesis. Interestingly, there is evidence that Ps. chrysocephala can com-
pensate for the ingestion of plant proteinase inhibitors. Ps. chrysocephala larvae reared 
on a transgenic Brassica napus line that overexpressed the cysteine proteinase inhibitor 
oryzacystatin I showed doubled proteolytic activity and were heavier than those reared 
on the corresponding B. napus wild type (Girard et al. 1998). This unexpected result 
shows that Ps. chrysocephala is not only adapted to glucosinolates but also to plant 
proteinase inhibitors.

Specialist chrysomelids are well known for discriminating between crucifer spe-
cies (Feeny et al. 1970; Nielsen 1977; Bartlet and Williams 1991; Pachagounder and 
Lamb 1998; Pachagounder et al. 1998), but the factors that determine host suitability 
and preference are often not understood. Although leaf beetles recognise and differ-
entially respond to individual glucosinolates when offered in isolation, there is little 
evidence that host plant preference relies on specific glucosinolate profiles (Nielsen 
1988). Instead, the presence of other toxic secondary metabolites such as cucurbitacins 
and cardenolides was shown to affect host suitability for Phyllotreta spp. and Phaedon 
cochleariae (abbreviated Phaedon) (Nielsen 1978). Toxic cucurbitacins B, E, and I pre-
sent in Iberis spp. deterred feeding of Phyllotreta nemorum but not of Phaedon, an effect 
that correlated with their feeding behavior towards Iberis plants. On the other hand, 
Phaedon, Phyllotreta undulata, and Phyllotreta tetrastigma did not feed on cardenolide-
containing Cheiranthus and Erysimum spp., which are accepted as food plants by Ph. 
nemorum (Nielsen 1978).
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Figure 4. Metabolism of glucosinolates in Psylliodes chrysocephala and Phyllotreta striolata. Upon her-
bivory, glucosinolates are usually hydrolysed by the plant enzyme myrosinase to an unstable aglucone, 
which spontaneously rearranges to a toxic isothiocyanate. In the presence of plant specifier proteins, 
other hydrolysis products such as thiocyanates and nitriles are formed. Both flea beetle species sequester 
glucosinolates in their bodies, suggesting that not all glucosinolates are hydrolysed in feeding-damaged 
plant tissue. Sequestered glucosinolates may be activated for defensive purposes by an insect myrosinase in 
Ph. striolata, but not in Ps. chrysocephala. In addition, Ps. chrysocephala partially detoxifies glucosinolates 
by desulfation, whereas no glucosinolate sulfatase activity was found in Ph. striolata. According to a quan-
titative feeding study performed with Ps. chrysocephala, most ingested glucosinolates are activated, and 
isothiocyanates are detoxified by conjugation to glutathione. The isothiocyanate-glutathione conjugate 
is metabolized via the mercapturic acid pathway to several cyclic metabolites in Ps. chrysocephala adults 
(Beran et al. 2018). Examples of three structurally different glucosinolate side-chains are shown in the 
box. Beetle photos: Anna Schroll.

The oligophagous species Ph. nemorum is used as a model to study the genetic 
basis of host plant adaptation. The common wild crucifer, Barbarea vulgaris ssp. ar-
cuata (abbreviated B. vulgaris), is an atypical host plant for Ph. nemorum. However, 
the discovery of two different flea beetle populations using B. vulgaris as natural host 
plant suggests that Ph. nemorum is extending its host plant range to include B. vulgaris 
in Denmark (Nielsen 1996; de Jong et al. 2000). There are two distinct types of B. 
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vulgaris. The so-called P-type with pubescent leaves is susceptible to all Ph. nemorum 
genotypes, whereas the G-type with glabrous leaves is resistant to most Ph. nemorum 
genotypes (Nielsen 1997b). The flea beetle-resistant G-type represents the common 
B. vulgaris genotype in Western Europe, while the P-type is rare (Hauser et al. 2012; 
Christensen et al. 2014).

The two B. vulgaris types differ not only morphologically but also regarding their 
chemical defences, i.e. glucosinolates and saponins. Feeding assays showed that sus-
ceptible Ph. nemorum larvae started to mine into the leaves of the G-type, but then 
either left and refused to feed or died in the mine, showing that the G-type is toxic 
for them (Nielsen 1997a, 1997b). Resistance of the G-type to Ph. nemorum is linked 
to the presence of the triterpenoid saponins hederagenin cellobioside, oleanolic acid 
cellobioside, gypsogenin cellobioside, and 4-epihederagenin cellobioside, and not to 
distinct glucosinolate profiles (Agerbirk et al. 2001; Kuzina et al. 2009; Nielsen et al. 
2010). The toxicity of saponins is at least partially due to their interactions with cell 
membranes, which can cause cell death (Augustin et al. 2011). The activity of isolated 
hederagenin cellobioside and oleanolic acid cellobioside was tested separately in no-
choice feeding assays with Ph. nemorum adults from five different near-isogenic lines 
(Nielsen et al. 2010). In these experiments, hederagenin cellobioside had a much 
stronger negative effect on adult feeding than oleanolic acid cellobioside, whereas the 
corresponding aglycones of both saponins were not active. An even stronger negative 
effect on some Ph. nemorum lines was observed for α-hederin, a saponin which is not 
present in B. vulgaris, and only differs from hederagenin cellobioside in its glycosyla-
tion pattern (Nielsen et al. 2010). These results show that aglycone structure as well as 
glycosylation pattern affect the biological activity of saponins towards Ph. nemorum.

Although the saponin-based defence of B. vulgaris is a dead-end for most Ph. nemo-
rum genotypes, resistant individuals that performed well on the G-type were found at 
varying frequencies in all sampled populations (Nielsen and de Jong 2005; Nielsen 
2012; Vermeer et al. 2012). The ability to use the G-type as a host plant clearly shows 
that resistant individuals can tolerate or detoxify saponins by an unknown mechanism. 
In genetic analyses, Nielsen and de Jong identified the presence of dominant resist-
ance-conferring genes (R-genes) in all resistant individuals, but divergent modes of 
inheritance of these R-genes (autosomal and sex-linked) between populations (Nielsen 
1997a; de Jong et al. 2000; de Jong and Nielsen 2002; Nielsen 2012). For example, 
in the resistant population from Ejby (Denmark), two major R-genes were linked to 
the sex chromosomes with additional autosomal R-genes. In a resistant population 
from Kværkeby (Denmark), most individuals were homozygous for a single autosomal 
R-gene (Nielsen 1997a; de Jong et al. 2000). In crossing experiments with resistant 
males from a Swiss population, an autosomal R-gene was inherited only to female 
offspring due to non-random segregation. The most likely explanation for this non-
random segregation of the autosomal R-gene together with the X chromosome is the 
fusion of an autosome carrying the susceptible allele to the Y-chromosome in Swiss 
males (Nielsen 2012). When this R-gene was introduced into the genetic background 
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of the susceptible Ph. nemorum line, it showed a normal Mendelian inheritance pat-
tern (Nielsen 2012). These results strongly suggest that the genetic architecture of Ph. 
nemorum males differs among flea beetle populations, and that this polymorphism af-
fects the inheritance of R-genes that enable the offspring to use the otherwise toxic B. 
vulgaris G-type as a host plant. Interestingly, attempts to generate Ph. nemorum lines 
that are homozygous for an autosomal R-gene resulted in very low survival rated of 
the homozygous larvae (de Jong and Nielsen 2000; Breuker et al. 2007). This observa-
tion was surprising as the homozygous resistant genotype was common at least in the 
B. vulgaris-feeding population from Kværkeby, which suggests that co-adapted genes 
present in the field population counteract the fitness cost of R-genes (de Jong et al. 
2000; de Jong and Nielsen 2002). The genetic diversity and population structure of 
Ph. nemorum makes this species an ideal model to study the genetic basis of host range 
expansion in an oligophagous herbivore.

Conclusions and future directions

The flea beetle genera Psylliodes and Phyllotreta are closely associated with glucosinolate-
containing plants mainly in the family Brassicaceae. Nevertheless, they differ remark-
ably in their overall host plant use and their adaptations to glucosinolates, the charac-
teristic defence metabolites in Brassicaceae. While Ph. striolata can utilise sequestered 
glucosinolates for its defence against predators, Ps. chrysocephala apparently does not 
possess endogenous myrosinase activity and accumulates much lower amounts of glu-
cosinolates compared to Ph. striolata. In addition, both species differ regarding their 
ability to detoxify glucosinolates by desulfation (Beran et al. 2014, 2018).

Despite this progress, our knowledge on the adaptations of Phyllotreta and Psyl-
liodes to the glucosinolate-myrosinase defence is far from complete. It is unknown, for 
instance, whether Phyllotreta rapidly sequester glucosinolates to prevent their break-
down to toxic isothiocyanates, and whether Phyllotreta gain protection from natural 
enemies by activating sequestered glucosinolates using their own myrosinase. In Ps. 
chrysocephala, the importance of the various detoxification strategies and their evolu-
tion needs to be investigated. To this end, a robust phylogenetic tree of the genus 
and comparative studies on how other Psylliodes species are processing dietary glucosi-
nolates are necessary.

A future goal is to place adaptations of Phyllotreta and Psylliodes to their glucosi-
nolate-containing host plants into a broader evolutionary context. While recent phy-
logenetic studies support the hypothesis that both genera adapted independently to 
Brassicaceae, their relationships to other genera of Alticini remain largely unresolved 
(Ge et al. 2011; Ge et al. 2012; Nie et al. 2018). At this background, a comprehensive 
and well-resolved phylogenetic tree of the tribe Alticini will enable studies on interac-
tions with plants in general and adaptations to plant chemical defences, and how they 
contributed to the evolutionary success of this megadiverse lineage.
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