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ABSTRACT The health of patients in the intensive care unit (ICU) can change frequently and inexplicably.
Crucial events and activities responsible for these changes often go unnoticed. This paper introduces
healthcare event and action logging (HEAL) which automatically and unobtrusively monitors and reports on
events and activities that occur in a medical ICU room. HEAL uses a multimodal distributed camera network
to monitor and identify ICU activities and estimate sanitation-event qualifiers. At the core is a novel approach
to infer person roles based on semantic interactions, a critical requirement in many healthcare settings where
individuals’ identities must not be identified. The proposed approach for activity representation identifies
contextual aspects basis and estimates aspect weights for proper action representation and reconstruction.
The flexibility of the proposed algorithms enables the identification of people roles by associating them with
inferred interactions and detected activities. A fully working prototype system is developed, tested in a mock
ICU room and then deployed in two ICU rooms at a community hospital, thus offering unique capabilities
for data gathering and analytics. The proposed method achieves a role identification accuracy of 84% and a
backtracking role identification of 79% for obscured roles using interaction and appearance features on real
ICU data. Detailed experimental results are provided in the context of four event-sanitation qualifiers: clean,
transmission, contamination, and unclean.

INDEX TERMS Contextual aspects for events and activities, smart ICU, medical Internet of Things,
multimodal sensor network.

I. INTRODUCTION
Effective healthcare is at the core of national debate.
A report published in August 2016 by Harvard’s School of
Medicine [12] indicates that monitoring Intensive Care Units
can save up to $15 billion per year by saving about $20, 000
on each of the 750, 000 ICU beds. This can be achieved
by monitoring and tackling preventable health risks such
as bed sores and spread of infections by touch. However,
effective monitoring require autonomous systems that can
work reliably in real-world situations. In the context of visual
monitoring, this requires working with occlusions, illumina-
tion changes, multiple subjects, and concurrent activities and
events. This paper introduces the HEAL framework, which
focuses on the detection and classification of human activities
and events.

The main novelty of HEAL is the creation of chrono-
logically consistent event logs by fusing contextual and

visual information from multiple views and modalities.
Contextual information includes location, relevant scene
objects, duration of activities or events. We introduce the
concept of actor roles, i.e., individuals present in the scene are
identified based on their interactions as opposed to recogniz-
ing their identities. This is especially important given the ICU
conditions and generally accepted protocols for security and
privacy of patients and staff in such environments. Figure 4
shows the overall event analysis workflow consisting of three
stages: aspect initialization, aspect computation, and label
estimation.

We built an inexpensive HEAL prototype for healthcare
using off-the-shelf hardware and sensors. The multimodal
sensor nodes are installed at various locations inside the ICU
room to monitor the space from multiple views, see Figure 1
for a top-view in an ICU space. The multimodal multiview
nature of HEAL allows it to accurately monitor the ICU
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FIGURE 1. Top-view of the medical ICU. The space is monitored by three
nodes, each containing RGB-D sensors.

room and is robust to scene conditions such as illumination
variations and partial occlusions. HEAL is currently deployed
in a medical ICU where it continuously monitors two rooms
without disrupting existing infrastructure or standards of care.

A. IMPORTANCE OF EVENT LOGS AND QUALIFIERS IN
HEALTHCARE
Consider the issue of Hospital Acquired Infections (HAIs)
by touch in the ICU. For consistency, assume that events can
have one of four qualifiers: clean, contamination, transmis-
sion, or unclean. The labels depend on the sequence of under-
lying activities and the detection of hand sanitation activities
performed by people after entering and before exiting the ICU
room. The variation of HAI-relevant events is often attributed
to staff fatigue, monotonous routines, or emergencies, and
to visitors not being aware of sanitation protocols. The log’s
objective is to provide a chronological description of events
inside the ICU room. The logs can be used by healthcare
professionals to backtrack the origins of pathogens, which
can help designing and executing corrective action plans.

HEAL’s event and activity logging in the ICU will enable
the following tasks for healthcare:
• An unobtrusive monitoring system for healthcare that
can be used to detect deficiencies and areas of improve-
ment, while maintaining the privacy of patients and staff.

• Semantic healthcare logs that can be used to analyze the
spread of pathogens and HAIs by physical contact.

• Aplatform to evaluate best practices in ICU architectural
and operational designs, which promote sanitation and
prevent the spread of infections (e.g., sanitation plans).

B. RELATED TECHNICAL WORK
The latest developments in convolutional neural net-
work (CNN) architectures for visual activity recognition
achieve impressive performance; however, these techniques
require large labeled data sets [2], [4], [33], [35]. The
method in [28] uses egocentric cameras to analyze off-center

activities. A supervised method for learning local fea-
ture descriptors is introduced in [41]. The spatio-temporal
evolution of features for action recognition is explored
in [18]. A multimodal bilinear method for person detection
is explored in [34]. The method in [36] uses CNNs to ana-
lyze off-center activities, but it requires scenes with good
illumination and clear of occlusions. Multi-sensor and multi-
camera systems and methods have been applied to smart
environments [13], [37]. The systems require alterations to
existing infrastructure making their deployment in a hospital
logistically difficult. Multiview and multimodal/multimedia
methods have been explored in the past. Activity analysis
and summarization via camera networks enables systems to
represent and monitor environments from multipleviews via
graphs [38], hypergraphs [29], or motion motifs [6]. These
methods, however, are limited to smooth sequential motion
in scenes with relatively good illumination and cannot be
applied to the ICU. The work in [27] surveys multime-
dia methods for large-scale data retrieval and classification.
A multimedia method to analyze events in videos via audio,
visual, and textual saliency is introduced in [9]. Although
interesting, these methods expect speech or text information
as input, which cannot be recorded in the ICU (or hospital
space) due to infrastructural and privacy restrictions. The
studies from [13] and [37] use multiview systems and meth-
ods for smart environments. Unfortunately, these methods
require modifications to existing infrastructure. Internet-of-
Things (IoT) applications for healthcare are surveyed in [14]
and [24], with a lifelonging visualization explored in [39].

In general, these previously listed studies are cannot be
used in the ICU since they are unable to overcome illumi-
nation variations and occlusions. They do not account for
subtle motion, which can be non-uniform and non-sequential.
The ICU scene conditions disqualify techniques based on
skeletal estimation and tracking [1] and pure RGB data for
human body orientation [33]. The performance of existing
single-camera systems is limited by partial occlusions and
challenging ICU scene configurations, which are tackled via
HEAL’s multimodal multiview data.

Healthcare applications of patient monitoring include the
detection and classification of patient body configurations
for quality of sleep, bedsore incidence, and rehabilitation.
Torres et al. [31] introduce a coupled-constrained optimiza-
tion technique that allows them to trust sensor sources for
static pose classification. Torres et al. [32] use a multimodal
multiview system and combine it with time-series analysis
to summarize patient motion. A pose detection and tracking
system for rehabilitation is proposed in [20]. The controlled
study in [22] focuses on workflow analysis by observing
surgeons in a mock-up operating room. The work most sim-
ilar to HEAL is introduced in [17], where Radio Frequency
Identification Devices (RFIDs) and a single depth camera are
used to analyze work flows in a Neo-Natal ICU (NICU) envi-
ronment. These studies focus on staff activities and disregard
patient motion. Literature searches indicate that HEAL is the
first of its kind in utilizing a distributed multimodal camera
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FIGURE 2. Views of the mock-up ICU where HEAL is tested and activities and events are simulated with the help of actor-volunteers.
Left: the multiview (depth and grid information are not shown) input videos for HEAL. Right: the labeled activity output and its
labeled aspects.

network for activity monitoring in a real hospital environ-
ment. HEAL’s technical innovation is motivated by medical
needs and the availability of cheap sensors and ubiquitous
computing. It observes the environment and extracts contex-
tual aspects from various ICU room activities. The events
are observed from multiple views and modalities. HEAL
integrates contextual aspects such as roles and interactions
with temporal information via elastic-net optimization and
principled statistics.

A sample input and output for activity classification is
shown in Figure 2, where various activity elements are iden-
tified across the multiviews of the ICU.
Technical Contributions. The main contributions are:

• A holistic activity representation that integrates con-
textual aspects (i.e., roles, locations, interactions, and
duration) to identify activities and create event logs.

• The concept of role and role identification, which nar-
rows the activity-role label search space and preserves
privacy.

• Integration of activity regions (location and interaction
cones) to localize and improve activity classification.

Organization. The ICU activity and events multimodal
and multiview dataset is described in Section II. The gen-
eral approach event detection is described in Section III,
along with the definition of aspects, representation of
activities via aspects, and estimation of aspect basis and
weights. The computation of the various contextual aspects
is detailed in Section IV. Tests and results are described in
Sections V and VI, respectively. Finally, Section VII
discusses our findings, limitations, and future work.

II. HEAL EVENTS AND ACTIVITIES DATASET
Two experimental setups are considered. First, we built a
mock-ICU room complete with an ICU bed and various activ-
ities are acted out. The multimodal sensor rig was custom
built as described below using off-the-shelf components and
Raspberry Pi3 devices for data acquisition. This provided
the preliminary data for methods development.The mock-up
data contains 30-minute videos from six views, each view
having two modalities. The videos are fully annotated. The
preliminary data enabled us to modify the acquisition process

and deploy a fully functional distributed sensor network in a
community hospital ICU.

A. MULTIMODAL MULTVIEW SYSTEM SETUP
The sensor network is composed of three independent nodes
each with a RaspberryPi 3B+, an RGB-Depth carmine cam-
era sensor, and a battery pack. The elements are placed inside
an aluminum enclosure for sanitation purposes. The nodes are
placed at three distinct locations in the ICU to ensure com-
plete coverage of the space as shown in Figure 1. The nodes
use TC/IP protocols for communication and synchronization
via a Local Area Network. Each node operates up to 12hrs on
a single battery.

B. ACTIVITY SET
The 20 activities in the set α with their corresponding number
of observed instances are: washing hands (68), sanitizing
hands (33), entering the room (200), exiting the room (185),
delivering food (15), delivering medicine (10), auscultating
(48), cleaning room areas (16), cleaning the patient (18), bed-
side sitting (80), watching tv (45), patient moving on bed (50),
rotating (adjusting) the patient (76), observing equipment
(105), visiting patient without contact (83), visiting patient
(with contact) (59), eating (16), sleeping/resting (84), turning
lights on (60), turning lights off (45).

C. EVENT SET
This study covers the following set of events E :
1) Clean: As people walk into the ICU room, they use

hand sanitizers or wash their hands. After performing a
series of activities, the person uses the hand sanitation
once again, as the last activity before stepping out of
the room.

2) Contamination: Occurs when visitors bring in contam-
inants or pathogens from outside the room by bringing
in contaminated equipment, objects, or contaminated
hands (unwashed or unsanitized).

3) Transmission: Occurs when an individual, such as a
nurse, enters a room and follows sanitation protocols
up to the point before leaving the room, bringing out
contaminants and pathogens, which can affect others.
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FIGURE 3. Sample HEAL log indicating the time, role, activity label,
location, and detailed description given by a human observer.

4) Unclean (risk of contamination and transmission):
Occurs when sanitation protocols are not followed,
neither upon entering nor exiting the room.

Figure 3 shows a sample log with sanitation event qual-
ifiers. For instance, a very descriptive ‘‘clean visit event’’
includes the following sequence of activities: visitors enter
the room, visitors sanitize their hands, visitors seat by the
bed, visitors gets up, visitors sanitizes their hands one last
time, and visitors exit the room. In short, the event is qualified
based on hand sanitation and washing activities in the ICU
immediately after entering and before exiting the room. Note
that HEAL only observes the inside of the room and not the
outside, where additional sanitation and washing stations are
also available.

The following tasks are performed to classify activities:
(1) detect people, (2) identify relevant objects, (3) define
the activity blocks (location of respective activities), (4) esti-
mate interaction cones from quantized poselet orientations,
(5) estimate activity duration at the estimated ICU location
from the grid, and (6) infer person roles. Tasks (1) to (4)
are the activity and interaction regions, Task (5) is activ-
ity duration using HSMMs, and task (6) is achieved using
interaction maps and allows HEAL to narrow the activity
search space and increase its activity and event classification
accuracy. Events qualifiers are estimated from a sequence of
activities, where the objective is to identify sanitation activity
and localize in time as immediately after entering or before
exiting the ICU.

III. APPROACH
The problem of event logging involves identifyingwhat activ-
ities are executed, where these activities are executed, and by
whom, in chronological order. Figure 4 shows the main ele-
ments of the HEAL approach. In addition, interacting objects
and the activity duration are also recorded. For example,
consider the hand-washing activity: this involves a person
(nurse) walking towards the sink, using the soap, drying with
a towel, and walking away from the sink. The interacting
objects are the sink, soap, and towel. The description includes
the location of the sink and duration of the overall activity,
the objects present, the locations where the person moved
around within the monitored space, and the duration or time
spent at these various locations. These cues provide signifi-
cant contextual information is used to identify individuals and

their activities. We refer to these data as Contextual Activity
Aspects, represented by a P-dimensional vector described as
follows.

A. CONTEXTUAL ACTIVITY ASPECTS
Contextual aspects capture the location, orientation and inter-
action of a person with other static/dynamic objects in the
ICU scene. We use two major objects categories: tagged (i.e.,
initializedmanually, e.g., patient, patient bed, sink, ventilator,
etc.) and automatically detected (e.g., cart, cot bed, bottles,
books, other people). The P aspects (P = 327 in our imple-
mentation) are 40 Interaction Cones (10 tagged Objects ×
4 orientations) + 3 Duration levels + 256 Grid Blocks +
20 detected Objects + 8 Roles.

1) Interaction Cones (C). The interaction cone vector
is a vector with 4× number-of-tagged-ICU-objects
elements. Its elements can take values from the set
{1(close), 2(nearby), 3(far)} depending on the distance
to the object. In our implementation we use 1:≤ 1ft, 2:
> 1 ≤ 2ft, 3: > 2ft). The cone vector (fcone) encodes
relative orientation and distance to objects of interest.
There are 10 identified ICU objects (light-switch, bed,
ventilator, trashcan, computer, closet, couch, door, sink,
and tv), so the cone vector has 40 elements.

2) Activity Grid (G). The monitored space is partitioned
into a Cartesian map with G = g × g, where g is the
grid dimensions. Themap encodes activity location as a
G dimensional binary vector fgrid . Our implementation
uses a 16× 16 grid, so G = 256.

3) Activity Duration (D). The activity duration is modeled
using segments to more flexibly account for variable
state longevity and quantized into slow, medium, and
fast. The duration vector is represented by fduration.

4) Foreign Objects (O). The of detectable objects include:
laptops, trays, chairs, carts, boxes, cups, books, etc.
In our implementation, the number of detectable
objects per activity is limited to max of 20. The foreign
objects vector is represented by fobjects.

5) Roles (R). Eight actor roles are considered – nurse
Assistant, Caterer, medical Doctor, Facilities, Isolation,
Nurse, Patient, and Visitor [30]. The role aspect is an
eight-element vector, where each element is the score
assigned to the corresponding role. The role vector is
represented by frole.

B. ACTIVITY REPRESENTATION VIA CONTEXTUAL ASPECTS
Let faspects = [fcone, fmap, fduration, fobjects, froles], faspects ∈
RP, represent the contextual aspects feature vector computed
at each frame n (the frame number is omitted to simplify the
notation) for each detected person in the scene. Ideally one
could use this aspects vector for the modeling and recognition
stages. However, given the uncertainty and noise in the mea-
surements, we found that it is more effective to perform this
analysis after approximating the vector in a reduced basis rep-
resentation. This approximation f(M ) is composed as a linear
combination of M aspects basis 8 =

[
φ1, . . . ,φM

]
, φm ∈ P
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FIGURE 4. Contextual aspects stages for activity and event analysis. Stage 1: estimation and overlay of the activity map on the
ICU space, tagging and localization of ICU-objects; detection, tracking, localization of people and objects (foreign to the ICU)
on the map. Stage 2: computation of interaction cones as individuals and ICU-objects relative orientations and distances,
identification of the activity grid, and estimation of activities duration. Stage 3: combination of aspects to create logs,
estimation of activity labels, localization of activities in time, and computation sanitation-event qualifiers.

and M ≤ P reconstruction weights w = {w1, . . . ,wM },
1 ≤ m ≤ M , with

f(M )
=

M∑
m=1

wmφm. (1)

C. ASPECT BASIS AND WEIGHTS
The aspect basis and aspect weights are estimated from the
collection of K segmented and labeled training frames by
minimizing:

minimize
8,W∈RM×N

N∑
n=1

(
1
2
‖faspectsn −8wn‖

2
2 + γ ‖wn‖1

)
(2)

whereW = [w1, . . . ,wN ] ∈ RP×N , γ (= 0.2) is the regular-
ization parameter. The solution to Eqn. (2) is implemented in
Python using the convex optimization library from [7].

IV. CONTEXTUAL ASPECTS
Contextual aspects are computed for each detected person
per time instance in the scene. The computation of aspects
involves the following steps: tag static object of interest,
detect individuals entering the room, compute appearance
features and initialize a depth-modality blob tracker, esti-
mate poselets and compute interaction cones, detect for-
eign objects, and estimate roles. Multiple person detectors
are tested and two are selected for system deployment [5]
limited by Raspberry Pi hardware and convolutional neural
networks [26] for offline analysis. This section describes the
computation of each of the five aspects: cones, duration, grid,
objects, and roles.

A. INTERACTION CONES ASPECT
Individuals are tracked using the Depth modality via a blob
tracker and RGB modality using the method from [19].

FIGURE 5. The interaction cones represents relative orientation and
distances between individuals and tagged objects of interest to the ICU.

The location of individuals is mapped between RGB and
Depth modalities and localized on the activity grid map.
Finally, the poselet detector from [3] is used to estimate the
relative pose orientation of a person with respect to the door-
way. The orientation is quantified using a conical structure
shown in Figure 5. A cone is one of four circumference quad-
rants. Each cone has a 90o operating arc starting at the 315o

mark. The elements of the cone feature vector fcone = {Co,q},
1 ≤ o ≤ O, 1 ≤ q ≤ 4 contain the distances
(Co,q = d) between the individuals and each object o from
the set of tagged ICU objects O = {bed, chair, computer,
doorway, nearest-person, sink, table, trashcan, closet, and
ventilator}.

B. ACTIVITY DURATION ASPECT
A major limitation of existing activity recognition and clas-
sification methods is the inability to distinguish activities
that appear to be similar, i.e., coming from a similar scene
context. For example, in the ICU environment, walking by
the sink, sanitizing hands, and washing hands all appear
very similar. The challenge is to identify the aspects that
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FIGURE 6. The interaction overview diagram for role representation and identification. The cone, narrows down the activity search space and
allows HEAL to infer which objects need to be included in the estimation and interaction based on their relative orientations and distances.
The tracking and quantification steps are repeated throughout the observation.

FIGURE 7. HSMM trellis with hidden segments �j indexed by j and their
elements {bj ,dj , yj }. The variable b is the first detection in a sequence, y
is the hidden layer, (x) is the observable layer containing samples from
time b to b+ d − d ′ . The observation’s initial detection and observation’s
duration are represented by the variables b and d , respectively.

provide discriminant feature representations of these activi-
ties. We use the HSMM from [25] as it offers a flexible mod-
elling of activities duration as opposed to conventional HMM.
Figure 7 shows the modified trellis and its components. Our
implementation uses the software library from [15]. The
sequence of states y1:T is represented by the segments (�).
A segment is a sequence of unique, sequentially repeated
observations (person grid locations). The segments contain
information to identify when the person is detected, what
the person is doing, and for how long (in time-slice counts).
The elements of the j-th segment (�j) are the indices (from
the original sequence of locations) where the observation (bj)
is detected, the number of sequential observations of the same
symbol (duration dj), and the state or pose (yj).

HSMM ELEMENTS
The hidden variables are segments �1:U and the observable
features are X1:T , which are the semantic grid vectors. The
joint probability of the segments and the semantic activity
location features is given by:

Pr(�,X ) = Pr
(
�1:U ,X1:T

)
= Pr

(
Y1:U , b1:U , d1:U ,X1:T

)
(3)

Pr(�,X ) = Pr(y1) Pr(b1) Pr(d1|y1)×
b1+d1+1∏
t=b1

Pr(xt |y1)

×

U∏
u=2

Pr(yu|yu−1) Pr
(
bu|bu−1, du−1

)
×Pr

(
du|yu

) b1+d1+1∏
t=bu

Pr(xt |yu), (4)

where U is the sequence of segments such that �1:U =

{�1, �2, ..., �U } for �u =
(
bu, du, yu

)
and with bu as the

start position (a bookkeeping variable to track the starting
point of a segment), du is the duration, and yu is the hidden
state (∈ {1, ...,Q}). The range of time slices starting at bu
and ending at bu + du (exclusively) have state label yu. All
segments have a positive duration and over the time-span
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1 : T without overlap and constrained by:

b1 = 1;
U∑
u=1

du = T ; and bu+1 = bu + du. (5)

The transitionmatrix (9): Pr(yu|yu−1), represents the prob-
ability of going from one segment to the next via:

9 : Pr
(
yu = j|yu−1 = i

)
≡ ψij (6)

The first segment (bu) starts at 1 (u = 1) and consecutive
points are calculated from the previous point via:

Pr
(
bu = β|bu−1 = ν, du−1 = l

)
is δ

(
β − ν − l

)
(7)

where δ(i− j) is 1 : i = j; 0 : else. Therefore, β = ν+ l, with
β, ν, l as dummy variables and i = j.

The probability of duration du is given by:

Pr(du = l|yu = i) = Pri(l) (8)

Using segments and HSMMswe can model the state duration
as a normal distribution Pri(l) = Nl,i(µ, σ ) and the duration
probability of the i-th state can be used to distinguish between
slow, medium, and fast activities. We refer to [32] for details
about HSMM parameter estimation and inference processes.

The duration of the activities is analyzed at three levels:
slow, medium, and fast. This allows us to further reduce
the label search space. For example, duration information is
used to distinguish washing hands (slowest), sanitizing hands
(moderate), or walking by the sanitation station (fastest)
activities. Additional aspects such as detected objects, critical
object interactions, activity locations, and person roles is
extracted from the training videos to increase the probability
of correctly identifying activities and logging events.

C. ACTIVITY GRID ASPECT
The binary grid vector fgrid = [g1, . . . , g16, . . . , g256] rep-
resents activated activity regions and are computed per per-
son. The spatial location is computed by overlaying a 2-D
grid on the ICU work-space as shown in Figure 6. The
grid dimensions depend on the size of the physical space.
When projected to the ICU floor, each block in the grid has
dimensions 18×18 inches. The floor plane is estimated from
three points using standard image geometry methods. The
grid dimensions are g × g dimension with g = 16 yields a
256 element activity grid vector (i.e., |fgrid | = g× g = 256).
A sample food delivery map is shown in Figure 8 overlayed in
translucent black, indicating the areas where activities occur.

D. FOREIGN OBJECTS ASPECT
Methods to detect foreign ICU object are tested. These
include: [10], [16], and [26]. There is an uncountable number
of objects associated with activities. A total of 20 objects
is selected based on a detection consistency ≥ 75% on 10
continuous observations. Evaluation of object detectors is
beyond the scope of this work; however, the best performing
detector for offline-ICU processes is YOLO [26], which uses
convolutional neural networks. The best performing detector

FIGURE 8. Semantic activity map for the caterer role in a 16 × 16 grid
overlayed in black. The various block colors in the map are described by
the legend on the left, and indicate the associated activity regions.

capable of running on the Raspberry Pi3 is [10], which detects
objects from learned attributes.

E. ROLES ASPECT
Use of identifiable information in the ICU is restricted by
patient privacy, labor protection, and Health Insurance Porta-
bility and Accountability Act (HIPAA) stipulations [11].
We use role representation from appearance and interaction
information to deal with these ICU restrictions. It assigns
roles over the complete activity or event using a threshold
(70%) based on the number of frames or observations to link
a role, else the role is considered to be ‘‘unknown’’. Learn-
ing a role starts with identifying appearance and interaction
features for each role and compute scores for each element in
the vector frole = {Sr }R for roles in the set R = [Assistant,
Caterer, Doctor, Facilities, Isolation, Nurse, Patient, and Vis-
itor], indexed by r, 1 ≤ r ≤ R, from all views v, 1 ≤ v ≤ V ,
and across all frames n, 0 ≤ n ≤ N . The appearance vectors
(λn,r,v) are computed at n = 0 and used to construct the
dictionary of appearances for all roles3 = {3r }R. Similarly,
the interaction vectors (ζn,r,v) are computed for 1 ≤ n ≤ N
and are used to construct a dictionary of role-interactions for
all roles Z = {Z}R. The dictionaries are shown in Figure 9 for
(a) appearance and (b) interaction elements.

1) APPEARANCE DICTIONARY (3)
Appearance vectors λn,r,v are computed for each person as
they enter the ICU room (i.e., frame n = 0) using the data
from available view v. The vectors computed have two parts:
a 128-dimension GIST vector (one scale) for texture [21],
and the 96-dimension (first and second order) color histogram
vector [40] by combining the first moment (mean) and second
moment (standard deviation) on 16-bin histograms extracted
from each of the three channels in the HSV color space.
The texture and color features are concatenated to form the
vector λ. The intuition is that these vectors can help identify
distinct visitor clothing patterns and generic healthcare staff
uniforms. These vectors are used to create the appearance
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FIGURE 9. Role representation appearance (a) and interaction
(b) dictionaries.

dictionary 3 = {3r }R ∈ RLR, where L = |λ| = 224 is
the cardinality of the appearance feature vector and R = 8
is the number of roles. The elements of the dictionary 3 are
the Linear Discriminant Analysis (LDA) [23] boundaries for
each role, each represented by3r . The decision hyper-planes
are used to score a new sample by computing the distance to
all, but selecting the closest one. The the average score S3r
for role r is computed for a new individual at n = 0 using
available view v via:

S3r =
1
V

V∑
v=1

D(λr,n,v,3r ), ∀v, ∀r, (9)

where D(·) is the Euclidean distance computed between the
input appearance vector λn,r,v and each role boundary {3r }R.

2) INTERACTION DICTIONARY (Z)
The interaction features representing the r-th role at frame n
correspond to the interaction cones (i.e., ζn,r,v = {Cq,o}n,r,v)

computed for each role r and each available view v at frame
n > 0 from a network with V views over a total of N
frames. The floor plane is estimated from the depth modality
to localize ten tagged objected and compute interaction fea-
tures, which are person-object relative distances and orienta-
tions. This interaction feature vector is noted as xζ and has
40-elements representing four relative orientations to each
of the ten tagged objects. The value of each element corre-
sponds to the quantized person-object distances: 1 (close),
2 (nearby), or 3 (far) for one of the four orientations as
shown in Figures 5 and 6. This feature vector represents
the evolution of roles interacting with ICU objects over time.
Interaction features vectors are clustered using density based
clustering (DBSCAN) [8] and the resulting in the interaction
dictionary Z = {Zr }R ∈ RZR, where each {Z}r represents the
cluster centroid for role r , Z = |ζ | = 40 is the cardinality of
the interactions feature, and R = 8 is the number of roles.

The interaction scores are computed for n > 0 via:

SZr =
1
V

V∑
v=1

N∑
n=1

D(ζn,r,v,Zr ), ∀r, (10)

where D(·) is the distance between the interaction vector ζn,r,v
and the role-centroid Zr ∈ Z at frame n from view v.

3) APPEARANCE AND INTERACTIONS FOR
ROLE IDENTIFICATION
Role candidates Sr , 1 ≤ r ≤ R are a combination of an
individual’s appearance and interaction scores:

Sr = (S3r + S
Z
r ) (11)

The estimated role R∗ is the one with the most similar
representation over all roles given by:

R∗ = arg min
1≤r≤R

(Sr ) (12)

V. TESTING CONTEXTUAL ASPECTS
Activity Classification:Activity labels are estimated using the
computed aspects basis and weights over an observed event
with N frames indexed by n, 0 ≤ n ≤ N . Activity label
inference is integrated via majority-vote over the range of
frames that starts at frame ni and ends at frame no, 0 < ni ≤
ni + h and ni + h = no ≤ N . Activity labels are estimated
using the per-frame aspect information, where h is size of
activity-observation window in number of frames. In our
implementation we use h = 6 (approximately 1 second).
Activity label scores Sa are obtained via:

Sa =
no=ni+h∑
n=ni

D(fn, θa), 1 ≤ ni ≤ N − h, (13)

where fn is defined in Eqn. (1), with its elements computed
using Eqn. (2), where θa is the LDA-decision hyper-plane of
activity a ∈ α. Finally, the activity label a∗ is:

a∗ = argmax
a∈α

(Sa). (14)
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FIGURE 10. Mean activity classification accuracy as function of M aspect
weights {wm}M ,M ≤ P for basis {φm}M , φm ∈ P .

Ambiguous activities are labeled unknown and identified via
the ratio test on Sa with a relative dissimilarity of, at least,
0.2 for the highest and second-highest label candidates. Due
to the limited number of instances a very small number of
activities, such as clerical, physical therapy sessions, and
religious services, are classified as unknown.

A. EVENT LOG CREATION
A sample log in shown in Figure 3. The various aspects are
used to populated the log as shown in Figure 4 and described
as follows: First, the ICU door is used to mark the beginning
frame (n = 0) and the ending of an event (n = N ); single indi-
viduals are detected, tracked, and localized using the gridmap
and the blob-tracker; finally interactions, activity duration,
and role aspects are computed to infer activity labels for a set
of frames starting at ni, i ≥ 1 and ending at no, o ≤ N ; The
activities are localized in time using the order of the frames
and combined with the aspect values to populate the log. The
event qualifiers are estimated after the conclusion of the vent
(i.e., individual has exited the room).

EVENT QALIFIER ESTIMATION
Considered the event E represented by a sequence of J activ-
ities indexed by j i.e., E = [a1, . . . aJ ] = {aj}J , 1 ≤ j ≤ J .
A single activity is represented by a. The event qualifiers eval-
uate the order of sanitation (hand-washing or hand sanitation)
activities in a sequence of activities and provide sanitation
labels based on detected activities within a window at the
beginning and at the end of the sequence. In our implementa-
tion, we consider a clean entry if sanitation is detected within
the first three activities. Similarly, a clean exit is recorded if
sanitation activity is detected within the last three activities
detected.

VI. EXPERIMENTAL RESULTS
HEAL is evaluated using a 10-fold cross-validation. The
reported results are the confusion matrix obtained from the
best fold and the mean accuracy over all folds. Figure 10
shows the affect of M on activity classification accuracy.

A. ROLE IDENTIFICATION
Each individual entering the room is detected (n = 0) using
the RGB modality, from which texture and color (HSV col-
orspace) features are extracted. The RGB person information

FIGURE 11. Role identification confusion matrix of isolated roles. The
symbols are A: assistant, C: caterer, D: doctor, F: facilities, N: nurse, P:
patient, V: visitor. The cells are color scaled to indicate classification
accuracy (darker cells have higher accuracy) in scale 0− 100. The first
column and top row are highlighted using light yellow cells do indicates a
non-isolated ICU room.

FIGURE 12. Role identification confusion matrix of isolated roles. The
symbols are A: assistant, C: caterer, D: doctor, F: facilities, N: nurse, P:
patient, V: visitor. The cells are color scaled to indicate classification
accuracy (darker cells have higher accuracy) in scale 0− 100. The first
column and top row are highlighted using blue cells to indicate
individuals wore isolation scrubs.

is used to localize people on the scene and initialize a blob-
tracker using the depth modality. The features are used to
train a Linear SVM Classifier (C = 0.5) with seven classes
(isolation is a higher order class that needs to be identified
prior to scoring roles using appearance features alone). The
systems estimates roles for each frame and assigns a the label
with the most votes over a period of observations (i.e, ni to
no). The first inference is enabled after a minimum of five
frames. The confusion matrix is shown in Figure 11. The
label column and rows are highlighted yellow to indicate that
individuals in the ICU are not wearing isolation scrubs and
role scores are computed using Eqns. (11) and (12).

B. ROLE IDENTIFICATION IN ISOLATED ICU ROOMS
Roles are estimated from logged events. For example, a clean
patient rotation event is most likely to be performed by
nurses, than patient relatives (i.e., visitors). However, this
is not always possible for the activities that apply to all
roles. Figure 12 shows a qualitative representation of the
performance of HEAL’s role identification correctness of
individuals wearing isolation scrubs. The label column and
rows are highlighted using dark blue cells do indicate isolated
roles. Note: S3r is ignored in Eqn. (11), which sets Sr = SZr .

C. ACCURACY OF LOG EVENT QUALIFIERS
Logs are descriptions of past events that occurred in an
area and were performed by a certain role. This experiment
involves evaluating the correctness of the event qualifiers:
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FIGURE 13. Confusion matrix of the qualifier of the various events in the
ICU room. The cells are color scaled to indicate accuracy (darker cells
correspond to higher classification accuracy) in scale 0− 100. The four
qualifier are: clean, transmission, contamination, and unclean event.

FIGURE 14. Contribution of contextual aspects for mean classification
accuracy. The aspects are: the interaction cones (C), the activity
duration (D), the activity grid location (G), the object detector outputs (O),
and the roles (R).

clean, contamination, transmission, and unclean qualifiers by
asserting that a sanitation event is detected within the first
activities performed by an individual that entered the room
and within the last three activities performed by an individual
that exited the room. The confusion matrix in Figure 13 indi-
cates true and predicted event qualifiers, where the average
accuracy reaches an 82.5% classification rate.

D. CONTRIBUTION OF ASPECTS FOR ACTIVITY
CLASSIFICATION
The objective of this experiment is to show the impact of the
contextual aspects in activity classification.

E. ACTIVITY CLASSIFICATION
Even with the use of aspects activities in the ICU can be
confused with other, similar activities. The confusion matrix
in Figure 15 shows the labels and rates of correctly and
incorrectly classified activities, where darker cells correspond
to better performance and the rows add up to 100. The left
column contains the true labels and the top row the predicted
labels.

The bar-plot in Figure 16 compares the proposed approach
to two methods: the in-house implementation of [17], which
classifies activities usingRFIDs and a single depth camera via
distance feature vectors and a support vector machine (SVM);
and [33], which uses C3D features with a linear SVM.

FIGURE 15. Confusion matrix of the activity classification performance of
HEAL using contextual aspects. The left column indicates the true activity
labels, while the top row (vertical text) indicates predicted activity labels.
Darker cells indicate better performance, while empty cells indicate zero.
The values are rounded for displaying purposes in the range [0-100].

Lea et al. [17] use distances to represent person-object inter-
actions for healthcare staff. However, it does not include
interactions, roles, or activity duration. The C3Dmethod uses
deep convolutional operations, which are unable to capture
activities’ contextual information. Neither of these methods
encapsulates the subtleties captured by the contextual aspects
such as activity regions, interactions, roles, and relative dis-
tances and orientations. This information helps to better
represent and classify complex activities and allows the pro-
posed solution to outperform the competition. The contextual
aspects and their respective contribution for activity classifi-
cation are shown in Figure 14. HEAL outperforms [17] by
mean average classification ranging from 0.01 in ‘‘delivering
medicine’’ to 0.31 in ‘‘sleeping/resting’’. The performance
comparison between HEAL and C3D ranges from C3D out-
performing HEAL by 0.05 for ‘‘bedside sitting’’ to HEAL
outperforming C3D in all other activities ranging from 0.1 for
‘‘exiting room’’ activity to 0.5 for ‘‘washing hands’’ activity.

VII. DISCUSSION AND FUTURE DIRECTIONS
We proposed a comprehensive multiview multimodal frame-
work for robustly estimating sanitation qualifiers for events
in an ICU. This is achieved by effectively leveraging con-
textual aspect information. The experimental results indicate
that aspects contribute differently to the representation and
classification of activities, estimation of event qualifiers, and
creation of event logs. The methods rely on effective local-
ization of individuals and objects in the ICU. The strength
of HEAL is its multimodal multiview nature, which allow
the methods to robustly and effectively represent activities by
detecting, tracking, and localizing person-objects and person-
person interactions in the ICU. IoT applications and systems
for healthcare can benefit from privacy protection practices
and methods such as role representation, which omits using
face recognition methods. In addition, the automated creation
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FIGURE 16. Average precision classification accuracy of HEAL using
contextual aspects compared to the in-house implementation of the
methods from [17], which analyzes activities in a neo-natal ICU room the
CNN method from [33] (C3D), which is a popular techniques to represent
and classify activities.

of event and activity logs removes human observers and
avoids the manual process of describing room activities and
events.

FUTURE WORK
Future work will explore applications outside the ICU such
as supporting elderly independent living and monitoring and
presenting effective logs for concurrent activities and events.
Future IoT-based studies will explore the remote access of
logs across rooms and facilities, while preserving the privacy
of all individuals. The future investigations will include user
studies to identify the best possible way to present logs to
medical practitioners. Continuous efforts in data collection
will allow us to develop and evaluate new methods to ana-
lyze activities and events using Convolutional Neural Nets
including training and re-evaluating the popular C3D net-
work. In addition, future work will integrate the analysis
of concurrent activities: multiple people performing multi-
ple activities and multitasking: single individuals performing
multiple activities.
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