Constructing a Plasma Nutriproteome for Population Assessment: Analytical Considerations

Hyunju Kim,¹ Kerry Shulze,¹ Casey Rebholz,¹ Gwen Sincerbeaux,² Lee Shu-Fane Wu,¹ Sarah Baker,¹ James Yager,¹ Parul Christian,¹ Luigi De Luca,¹ John Groopman,¹ Robert Cole,³ and Keith West¹

¹Johns Hopkins Bloomberg School of Public Health; ²Johns Hopkins University; and ³Johns Hopkins School of Medicine

Objectives: Micronutrient status is rarely assessed in low-income settings. Proteomics may offer a proxy by measuring plasma proteins correlated with nutrients on a single platform. However, the proteome is huge, diverse and measured in different ways. We describe an analytic framework and decision process to explore nutrient: protein (N:P) associations for micronutrient status assessment.

Methods: In plasma of 435 1st trimester women in rural Bangladesh, we compared relative protein abundance, revealed by a multiplexed slow off-rate modified aptamer assay (SomaLogic, Inc), to biochemical concentrations of vitamins A, D, E, B₉, B₁₂, Zn, Se, Cu, I, & Fe, 5 carotenoids, cholesterol and AGP. After log₂-transforming protein abundance per convention, N:P relationships were summarized by simple linear regression. We assessed reliability by Pearson correlation (r_p) and coefficients of variation (CV) in 20 blind duplicates. To define

each plasma *nutriproteome* [proteins correlating at a false discovery rate < 0.05], in all samples we explored a) normalizing protein abundance to the median of our sample vs not, b) assessing correlations by $r_{\rm p}$ vs Spearman rank ($r_{\rm s}$) estimators, and c) log_2 -transforming (log_2) nutrients vs not. We compared differences in the number of proteins and N:P correlative strength (either more negative/positive by $r_{\rm p}$ or $r_{\rm s}$) in each proteome when nutrient concentrations were left untransformed vs log_2 -transformed.

Results: In duplicates, \log_2 -transformed proteins that were normalized, vs not, to the sample-specific median generated higher median r_p (0.92 vs. 0.87) and r_s (0.87 vs. 0.85) and lower CV (4.8% vs. 11.7%). The median (IQR) size of the nutriproteomes was 147 (41–340) proteins by r_p and 87 (29–639) by r_s . For >50% of proteins in 13 nutriproteomes, r_p was stronger than r_s (in either +/- direction), favoring use of r_p . Log₂-transforming folate (B₉), Zn & cholesterol increased proteome size by 39, 223 & 875 proteins and strengthened r_p for >50% of proteins than untransformed nutrients. Other proteomes remained larger when nutrient concentrations remained untransformed.

Conclusions: Comparing plasma protein: nutrient associations via methods of normalization, transformation, and correlation offers a framework to guide plasma nutriproteome definition.

Funding Sources: Johns Hopkins University.