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The last decade has seen tremendous effort committed to the annotation of the human genome sequence, most notably
perhaps in the form of the ENCODE project. One of the major findings of ENCODE, and other genome analysis projects,
is that the human transcriptome is far larger and more complex than previously thought. This complexity manifests, for
example, as alternative splicing within protein-coding genes, as well as in the discovery of thousands of long noncoding
RNAs. It is also possible that significant numbers of human transcripts have not yet been described by annotation
projects, while existing transcript models are frequently incomplete. The question as to what proportion of this com-
plexity is truly functional remains open, however, and this ambiguity presents a serious challenge to genome scientists. In
this article, we will discuss the current state of human transcriptome annotation, drawing on our experience gained in
generating the GENCODE gene annotation set. We highlight the gaps in our knowledge of transcript functionality that
remain, and consider the potential computational and experimental strategies that can be used to help close them. We
propose that an understanding of the true overlap between transcriptional complexity and functionality will not be
gained in the short term. However, significant steps toward obtaining this knowledge can now be taken by using an
integrated strategy, combining all of the experimental resources at our disposal.

Over one hundred years after the basic rules of heredity were

established, the gene is undergoing an identity crisis. Indeed the

question ‘‘what is a gene?’’ has been much debated in recent years

(Mattick 2003; Pearson 2006; Gerstein et al. 2007; Gingeras 2007;

Pennisi 2007; Brosius 2009; Mercer and Mattick 2013). In a scien-

tific context, this question concerns the way in which information

is stored in the genome. Over the 20th Century, the biological

definition of the gene evolved from ‘‘the site of a hereditable trait’’

to ‘‘the genomic region from where the mRNA that encodes

a protein is transcribed,’’ i.e., the ‘‘central dogma’’ of molecular

biology (Fig. 1A; Crick 1970). In the 21st Century, however, our

view of transcription is becoming more complicated. In particular,

a locus may generate multiple transcripts due to alternative splic-

ing (AS) (Harrow et al. 2012) and read-through transcription (Fig.

1B; Frenkel-Morgenstern et al. 2012), while the discovery of long

noncoding RNAs (lncRNAs) suggests that most human transcripts

may not encode proteins (Rinn and Chang 2012). In fact, the bulk

of the genome appears to be ‘‘pervasively’’ transcribed (The ENCODE

Project Consortium 2012), although the functional relevance of this

process remains a source of debate (Ball 2013; Doolittle 2013; Graur

et al. 2013). We use the term ‘‘transcriptional complexity’’ to refer to

these phenomena collectively.

This complexity complicates the work of scientists tasked

with describing the human genome. Furthermore, the 20th Cen-

tury concept of the gene has become ingrained in wider society, for

example as part of the language in which scientists discuss their

work with laypeople and clinicians talk to patients. The modern

effort to redefine the gene is thus a practical endeavor, attempting

to ‘‘retrofit’’ biological complexity into an existing vocabulary

such that it remains workable for scientists across a range of dis-

ciplines. To this end, Gerstein and colleagues recently proposed

that ‘‘a gene is a union of genomic sequences encoding a coherent

set of potentially overlapping functional products’’ (Gerstein et al.

2007). The key point here is that the word ‘‘gene’’ no longer

designates a unit of functionality. Instead it is used as a collective

term for a group of products, i.e., transcripts. From our perspective,

there are vital questions concealed within the ‘‘what is a gene?’’

debate. For example: what is the true size of the transcriptome and

what proportion of this transcription is genuinely functional? In-

deed, what does ‘‘functional’’ actually mean in this context? Here,

we summarize our current knowledge on these issues, highlight

the pressing need to close those gaps in our knowledge that re-

main, and discuss the ways in which functionality can be captured

in gene annotation.

The capture and annotation of transcript models
Clearly, transcript capture precedes transcript annotation. Pre-

viously, transcripts were captured as cDNAs, mRNAs, and ESTs,

whereas today RNA-seq methodologies predominate given their

high-throughput nature (Mortazavi et al. 2008; Pan et al. 2008;

Wang et al. 2008, 2009; Robertson et al. 2010; Martin and Wang

2011; Ozsolak and Milos 2011; Gonzalez-Porta et al. 2012). How-

ever, gene annotation projects do not simply capture transcripts;

they also provide a prediction into their biological function. There

are several large-scale gene annotation projects in progress on the

human genome, including RefSeq (Pruitt et al. 2005), GENCODE

(Harrow et al. 2012), and UCSC Genes (Dreszer et al. 2012). In each

‘‘gene set’’ or ‘‘genebuild’’ produced, the vast majority of models

are based upon transcriptomics data. Briefly, GENCODE (the gene

set of the ENCODE project [The ENCODE Project Consortium

2012]) represents a merge between manually annotated HAVANA

and computationally derived Ensembl models, with annotation

taking place on the genome sequence. In contrast, while RefSeq

also combines manual and automated processes, most human

annotation takes place on full-length cDNAs that are subsequently

linked to the chromosome. Finally, UCSC Genes combine RefSeq

models mapped to the genome with additional models from

other data sources, for example computational models based on

GenBank ESTs.
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The remit of GENCODE is to capture all nonredundant

transcripts as models, and we will therefore use this gene set to

discuss transcriptional complexity. GENCODE version 16 contains

194,034 transcripts found within 56,563 genes (Harrow et al. 2012),

although less than half of these genes are protein-coding, as sum-

marized in Figure 2. LncRNA is an umbrella term for transcripts that

are not associated with protein-coding loci, with a minimum size of

200 bp typically used to distinguish them from small RNAs (The

FANTOM Consortium et al. 2005; Kapranov et al. 2007; Guttman

et al. 2009; Clark and Mattick 2011; Mattick 2011; Wang and Chang

2011; Guttman and Rinn 2012; Moran et al. 2012; Rinn and Chang

2012). The 13,220 lncRNA loci in GENCODE v16 are subcategorized

according to their spatial relationship with protein-coding genes.

Pseudogenes are classified according to their mode of formation:

either by mRNA retroinsertion (processed pseudogenes), gene du-

plication (unprocessed pseudogenes), or by the inactivation of

functional genes (unitary pseudogenes). While pseudogenes do

not contain an intact or translated CDS, at least 9% of human

pseudogenes are transcribed (Pei et al. 2012), and there is evidence

that pseudogene loci can gain new functionality via ‘‘resurrection’’

(Brosch et al. 2011; Pei et al. 2012; Johnsson et al. 2013). Finally,

GENCODE contains numerous categories of small RNA, which are

beyond the scope of this article. These include rRNA and tRNA loci,

which are believed to be well described (International Human

Genome Sequencing Consortium 2001; Uechi et al. 2001; Flicek

et al. 2013), as well as more recently discovered categories including

microRNAs (Kozomara and Griffiths-Jones 2011) and piwi-interacting

RNAs (Siomi et al. 2011). Small RNA genes are frequently found

within the exons or introns of larger transcripts (both protein-

coding and lncRNA), which can be regarded as ‘‘host’’ transcripts

(Djebali et al. 2012a).

Toward a definition of transcript functionality
What is a functional transcript? An RNA that is translated into

protein is clearly functional. However, this is not the only mode by

which transcripts can influence physiology. Consider the non-

sense-mediated decay (NMD) pathway, which degrades transcripts

featuring premature termination codons (PTCs) (Fig. 1B, model vii;

Mendell et al. 2004). While a major role of NMD is to ‘‘mop up’’

transcriptional errors, certain genes utilize NMD for gene regula-

tion (Lareau et al. 2007; Huang et al. 2011). Such genes can switch

transcription from a CDS transcript to an NMD-targeted transcript

in order to reduce protein output. Is the NMD transcript func-

tional? It clearly does not function in the same way that a protein-

coding transcript does. Nonetheless, the act of its creation imparts

functionality, i.e., gene regulation. Consider also the Arin lncRNA

locus in mouse, which induces the imprinted silencing of the Igf2r

gene found on the opposite strand (Sleutels et al. 2002). By

shortening the endogenous lncRNA transcript, Latos and colleagues

recently demonstrated that it is the act of Airn transcription that

drives Igf2r silencing; the Airn transcript appears to be a by-product

of this process (Latos et al. 2012). It may therefore be helpful in

regard to the concept of a functional transcript as distinct from the

Figure 1. The evolving dogma of gene transcription. (A) The historical ‘‘central dogma’’ of molecular biology. By this model, (i) transcription generates
the primary transcript (exons in green, introns in white), with the initial interaction between the RNA polymerase complex and the genome being
mediated by a promoter region (gray triangle). (ii) The introns of the primary transcript are removed by the spliceosome, and a mature mRNA is generated
by 59 end capping (CAP) and polyadenylation (aaaa) (coding region [CDS] shown in green, untranslated 59 and 39 UTRs in red). (iii) The mRNA is translated
into a polypeptide by the ribosome complex, with translation proceeding from the initiation codon (ATG) and ending at the termination codon (ter). (B)
An updated model reflecting a modern view of transcriptional complexity. Here, the same gene (iv) undergoes alternative splicing (AS), for example an
exon skipping event that does not change the frame of the CDS (v); this event thus has the potential to generate an alternative protein isoform. However,
products of AS cannot be assumed to be functional; this gene has generated a retained intron transcript (vi), perhaps due to the failure of the spliceosome
to remove this intron. Further complexity comes from a read-through transcription event (vii), whereby a transcript is generated that also includes exons
from a neighboring protein-coding locus (viii). In this example, the read-through transcript has an alternative first exon compared with the upstream gene
that contains a potential alternative ATG codon, although the presence of a subsequent premature termination codon (PTC) prior to two splice junctions
indicates that this transcript is likely subjected to the nonsense mediated decay (NMD) degradation pathway. Finally, model ix is a transcript that is
antisense to the upstream gene; both loci are potentially generated under the control of a bidirectional promoter.
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concept of functional transcription (Kornienko et al. 2013). How-

ever, in the context of annotation, we believe it is appropriate to

define a functional transcript as one that makes a contribution

to phenotypic complexity, regardless of the mechanism by which

this occurs.

What, then, is a nonfunctional transcript? First, we define

nonfunctional transcripts as those created by biological mecha-

nisms as opposed to technical artifacts of the experimental process,

e.g., genomic DNA contaminants (‘‘artifact’’ transcripts can be

common in RNA libraries, and it is vitally important that they are

filtered out of annotation projects [Harrow et al. 2012]). Funda-

mentally, gene expression is a stochastic process, whereby varia-

tions in its output arise from the random nature of the underlying

molecular interactions (Raser and O’Shea 2005; Munsky et al.

2012). Stochastic effects can occur during transcription and splic-

ing, making both processes a potential source of ‘‘incorrect’’ re-

actions. If the resulting transcripts are biologically inert they could

be regarded as ‘‘noise’’ (Melamud and Moult 2009). For example,

while the spliceosome is believed to be highly accurate it does not

act with complete fidelity (Hsu and Hertel 2009). GENCODE

contains 25,466 models classed as retained introns (Fig. 1B, model

vi), and we suspect that many result from the failure of the spli-

ceosome to initiate or complete the splicing of a particular intron.

In fact, the genome sequence motifs that govern splicing are

commonly suboptimal, increasing the likelihood that ‘‘correct’’

splice sites will be missed by the spliceosome. As well as intron

retention, this can lead to exon ‘‘skips’’ (Fig. 1B, model v) and the

utilization of alternative de novo or ‘‘cryptic’’ splice sites (Pickrell

et al. 2010b).

Second, it is noteworthy that 62% of lncRNA transcripts in

GENCODE overlap transposable elements (TEs) (JM Mudge,

unpubl.). Furthermore, there is a well-established link between TEs

and AS in protein-coding genes; certain TE families such as Alu

contain DNA motifs that resemble splicing signals, making them a

ready substrate for exon creation events

(‘‘exonization’’) (Sorek 2007; Shen et al.

2011). Since detectable TE insertions are

typically seen to have occurred during

recent evolution, it appears that most TE

transcripts or exons are also young (Sorek

2007). These observations have led to TEs

being considered a significant source of

noise. Even so, the number of TE tran-

scripts known to be functional is increasing,

indicating that TE sequences should also

be regarded as a potential source of evo-

lutionary innovation (Camacho-Vanegas

et al. 2012; Zarnack et al. 2013). Consider

also the possibility that TEs may insert

into existing transcripts without disrupt-

ing functionality. Most obviously, the 39

untranslated regions (UTRs) of protein-

coding transcripts in GENCODE are replete

with TEs (JM Mudge, unpubl.). Functional

transcripts may thus contain ‘‘nonfunc-

tional’’ sequence. In fact, a ‘‘functional vs.

nonfunctional’’ model is likely to be

a false dichotomy in practice. If we as-

sume that transcript creation (via TE in-

sertion or de novo mutation) is the first

step toward the generation of new func-

tionality in the transcriptome, then we

should anticipate the existence of transcripts that are in the pro-

cess of being ‘‘tested’’ for functionality (Modrek and Lee 2003;

Brosius 2005). This suggests that there may not always be a water-

shed separating transcriptional noise from evolutionary novelty,

and that functionality is in reality an analog as opposed to a binary

classification. Certain transcripts may thus possess ‘‘minor’’ func-

tionality, perhaps making a contribution to cellular physiology

while remaining inessential for overall viability. Indeed, ‘‘func-

tional’’ clearly does not mean ‘‘essential to survival’’; many func-

tional human genes (such as olfactory receptors) can be found

pseudogenized in the genomes of healthy adults (these are referred

to as ‘‘loss-of-function’’ [LoF] genes) (MacArthur et al. 2012).

The importance of classifying functionality
in the transcriptome
There is a conceptual difference between demonstrating that

a transcript is functional and describing what that function actu-

ally is. Most obviously, the majority of the 20,387 protein-coding

genes in GENCODE contain at least one CDS transcript considered

‘‘known,’’ meaning it generates a protein molecule recognized in

the manually curated UniProt database (The UniProt Consortium

2012). Nonetheless the majority of the 81,626 GENCODE CDSs

lack experimental support for translation (Harrow et al. 2012).

Furthermore, the proportion of lncRNA models that have been

confirmed to function as noncoding transcripts is minute (see

Toward a Functional Annotation of lncRNAs section). This means

that, while GENCODE is a larger gene set than RefSeq, it contains

a higher proportion of transcripts of putative functionality. Such

gaps in our knowledge can have significant effects on scientific

analyses; effects that we believe remain largely unappreciated.

Consider a biologist who is investigating genome sequence vari-

ants found within a protein-coding gene. If she chooses to work

with a single experimentally confirmed coding transcript, the ef-

Figure 2. A summary of locus biotypes in GENCODE. This schematic details the major classes of loci
found in the GENCODE v16 human gene set, and in square brackets the total number of each set. These
counts are made at the locus level as opposed to the transcript level. GENCODE contains 194,034
transcripts in total, 81,626 of which have an annotated CDS. This means there is an average of 4.0 CDS
transcripts per protein-coding gene, while 14,786 protein-coding genes contain more than one distinct
CDS (i). Long intergenic RNAs (lincRNAs), antisense RNAs, and sense intronic RNAs are treated as sub-
biotypes of lncRNA (ii–iv). In GENCODE, lincRNAs are models that do not overlap a protein-coding
gene or pseudogene on either strand, antisense RNAs are models found on the opposite strand to exons
or introns of protein-coding genes, and sense intronic RNAs are found entirely with the intron of
a protein-coding gene. In total, GENCODE contains 22,444 lncRNA transcripts, an average of 1.7 per
lncRNA locus. (v) The 9173 loci classed as small noncoding RNA loci include the classic rRNA and tRNA
genes, as well as the more recently identified categories of loci such as miRNAs, snoRNAs, and piRNAs.
The 13,419 pseudogenes found in GENCODE can be divided into three major classes: unprocessed,
processed, and unitary (vi–viii). Unprocessed pseudogenes result from the genomic duplication of
protein-coding genes; pseudogenization may come from the fact that the duplication is partial, or by
subsequent mutation. Processed pseudogenes are formed by the retroinsertion of mRNAs into the
genome sequence, and these loci are thus typically intronless. Unitary pseudogenes are protein-coding
genes that are pseudogenized in the human lineage, as judged by a comparison with an intact coding
ortholog in another species. Further to this diagram, GENCODE also contains 26 polymorphic pseu-
dogenes: models in the reference assembly that are known to exist as intact protein-coding loci in other
human genomes. All classes of pseudogenes may be subjected to transcription.
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fect of variants found within this CDS can be interpreted with

some confidence. However, if she considers all transcripts within

the locus, this may completely recontextualize the functional in-

terpretation of the variant site. Furthermore, she may identify

additional variants that overlap with exonic sequence. In a recent

study by MacArthur and colleagues, a third of sequence variants

predicted to cause LoF in human genes were found to be subject to

AS, including one in ZSCAN9 (Fig. 3; MacArthur et al. 2012). If only

the model containing the variant had been considered (D), it

would appear as if the entire gene were subjected to LoF. In fact, the

authors could see that ZSACN9 also contains three CDSs (A, B, and

C) that do not contain this variant. LoF can now be seen as an

attribute of transcript D, and not necessarily of the whole gene.

However, the accuracy of this interpretation depends on our con-

fidence in the functional annotation of the locus. If the AS event

that incorporates the variant site into transcript D is spurious, then

the variant may not be of biological interest; ZSCAN9 would not be

a LoF gene. Conversely, if transcript D is functional though A, B,

and C are not, a prediction that this gene escapes LoF due to AS

would be unfounded. In fact, we are not aware of any laboratory

data that unambiguously confirms the existence of any of the four

predicted ZSACN9 protein molecules in vivo.

So where do we go from here? The importance of generating

a complete functional annotation of the human transcriptome can-

not be understated. Unfortunately, neither can the difficulty. Ulti-

mately, when describing functionality, there is no substitute for the

detailed experimental dissection of a single gene as performed in the

laboratory. Clearly, such work will continue for the foreseeable future,

both for protein-coding genes and lncRNAs. The downside to this

approach is that it is time consuming, and the techniques commonly

used cannot be readily scaled up to examine large numbers of tran-

scripts in a single study. It is therefore inevitable that scientists have

explored the usefulness of whole-transcriptome strategies in the an-

notation of functionality, essentially by combining a wide variety of

modern high-throughput techniques with the power of computa-

tional biology. We believe that such approaches can make significant

progress in this regard, in spite of their potential limitations. In fact,

improvements to gene annotation will be of enormous benefit to

single gene studies. For example, if scientists have knowledge of the

different transcripts that a gene produces, alongside insights into

their potential functionality, then this will aid the design of assays

that are specific to a certain transcript within that gene.

New technologies can aid transcript capture
and completion

How many human transcripts remain to be discovered? To begin

with, we must recognize that transcriptomes can differ signifi-

cantly between the cells of distinct tissues and developmental

stages, in terms of both the transcripts produced and their levels of

expression (Heinzen et al. 2008; Pan et al. 2008; Wang et al. 2008;

Brawand et al. 2011; Kang et al. 2011). Furthermore, splicing ab-

normalities are commonly observed in cancer cells and immor-

talized cell lines (a source of much ENCODE transcriptomic data)

(Brinkman 2004; Wang and Cooper 2007; Chen et al. 2011; Djebali

et al. 2012a; The ENCODE Project Consortium 2012). Finally, it is

becoming apparent that AS patterns can show notable poly-

morphism (Montgomery et al. 2010; Pickrell et al. 2010a; Gonzalez-

Porta et al. 2012). While there may be no single human tran-

scriptome, it will often make practical sense to work with a ‘‘con-

sensus’’ transcriptome that combines all known transcripts into

one gene set. Even then, the question of missing transcripts is

difficult to answer. First, any of the million exons in GENCODE

could theoretically be subject to a variety of splicing errors. This

suggests the set of transcripts that can be detected experimentally

is infinitely large, and that we should perhaps count only those

transcripts that show consistently reproducible expression (see

The Annotation of Gene Expression Data section). In this way,

a recent RT-PCR analysis suggests that a fifth of GENCODE genes

contain exons that have yet to be annotated (Howald et al. 2012).

Second, we must consider pervasive transcription. ENCODE

found that 62.1% of the genome (combined across 15 cell lines) is

covered by processed transcripts extrapolated from sequencing

reads (Djebali et al. 2012a), with 34% of the bases incorporated

being intergenic. Other studies have since reported similar find-

ings (Hangauer et al. 2013). Furthermore, it has been shown that

transcription proceeds in the 59 direction beyond 65% of ENCODE

gene boundaries, often integrating into the exonic structure of

upstream genes; the role of such ‘‘chimeric read-through RNAs’’

remains largely unclear (Fig. 1B, model vii; Gingeras 2009; Djebali

et al. 2012b; Frenkel-Morgenstern et al. 2012). Unfortunately,

contemporary RNA-seq data sets remain a source of technical

frustration; the reads generated are short in length, and it is no

trivial task to assemble these fragments into full-length transcript

models (Wang et al. 2009; Martin and Wang 2011; Ozsolak and

Milos 2011). Furthermore, technical dif-

ferences amongst the variety of sequenc-

ing methodologies available can lead to

variations in the nature and quality of the

sequences obtained. For example, pro-

tocols that incorporate a PCR-based am-

plification step may show a bias toward

the capture of highly expressed tran-

scripts (Sam et al. 2011); in fact, the am-

plification step can be a source of experi-

mental artifact (Mamanova et al. 2010).

Second, RNA sample preparations com-

monly incorporate selection for poly-

adenylated RNAs, chiefly to avoid cap-

turing rRNA. However, the cell contains

a large amount of non-polyadenylated

RNA that is not rRNA, and these poorly

understood transcripts will therefore be

lost if this filtering step is used (Raz et al.

2011; Djebali et al. 2012a; Livyatan et al.

Figure 3. A LoF variant within the zinc finger and SCAN domain containing nine loci in GENCODE. The
ZSCAN9 protein-coding gene contains eight transcripts in GENCODE v16, four of which are omitted here for
clarity. 59 UTR variation has also been omitted in the transcripts shown, and exon sizes are not to scale.
Annotated CDSs are highlighted in green, UTRs in red. Transcript A appears to be the major spliceform of the
locus based on transcriptomics data (not shown). The putative CDS annotation of transcript B was prompted
by the identification of polyadenylation features marking a genuine transcript end point (aaaa). Transcripts
C and D contain a cassette exon sharing the same splice donor site (39 edge), although with differing splice
acceptor sites (59 edge). The larger form of this exon in transcript D contains a LoF variant identified by
MacArthur and colleagues within 1000 Genomes Project pilot phase data (filled triangle) (MacArthur et al.
2012); the variant is a C/T change that creates an in-frame premature termination codon (PTC).

Mudge et al.

1964 Genome Research
www.genome.org



2013). For these reasons, it is difficult to speculate on what pro-

portion of this experimentally detected transcription will be con-

verted into informative gene annotation.

How can we be sure that an existing transcript model is

complete in terms of its exonic structure? Incomplete models are

likely to be common in GENCODE, where models can be con-

structed based on single ESTs. Even mRNAs and cDNAs may not

extend to the precise 59 or 39 ends of the transcript captured. It

can be difficult to predict the functionality of incomplete tran-

script models. For example, it has been reported that numerous

GENCODE lncRNAs may actually represent 39 UTR sequence from

protein-coding genes (Miura et al. 2013), while a putative CDS

could be recharacterized as an NMD candidate if the model is

extended at the 39 end. For these reasons, protocols have been

devised that capture the true ends of transcripts, i.e., the tran-

scription start site (TSS) and polyadenylation (polyA) site. PolyA-

seq harnesses RNA-seq technology to generate short sequence

reads from the 39 ends of RNA molecules (Derti et al. 2012),

whereas cap analysis of gene expression (CAGE) tags are reads

obtained from the 59 ends of capped transcripts. While polyA-seq is

a novel technique, CAGE has been around for a decade (Shiraki

et al. 2003). However, its power has increased with the advent of

next generation sequencing (Takahashi et al. 2012), and the pro-

tocol has been used as part of both the ENCODE Project (Djebali

et al. 2012a) and especially the FANTOM Consortium’s efforts to

characterize mammalian transcriptomes (The FANTOM Consor-

tium et al. 2005; Suzuki et al. 2009; Kawaji et al. 2011). In both

cases, sequencing reads are converted into clusters that are mapped

onto the genome, therefore indicating the location of transcript

start and endpoints. Where CAGE and polyA-seq clusters corre-

spond to the start or endpoint of existing models respectively, this

indicates that the model is complete, allowing functional anno-

tation to proceed with confidence. In fact, these data suggest that

large numbers of GENCODE transcript models are not yet full-

length; only 35% of model start points were seen to overlap with

ENCODE CAGE clusters when these data were compared against

GENCODE v7, while 38% of protein-coding genes lacked poly(A)

features at this time (Harrow et al. 2012).

Along with RNA-seq, polyA-seq and CAGE will also prove

highly useful in the identification of entirely new transcripts, both

within existing genes and entirely novel transcribed loci. This

process is illustrated in Figure 4, where a series of non-spliced

cDNA and EST transcripts are seen to align to an intergenic region

of chromosome 6. This transcribed region correlates with the lo-

cation of CAGE clusters derived from ENCODE data (Djebali et al.

2012a) and polyA-seq clusters generated by Derti et al. (2012).

Furthermore, we can integrate RNA-seq data produced by the

Illumina Human BodyMap 2.0 project, which captures transcrip-

tion in 16 human tissues (http://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-513). The read coverage graphs generated

from ovary and prostate data by Ensembl (Flicek et al. 2013) are

seen to correlate with the region defined between the CAGE and

polyA-seq clusters. These three data sets thus combine to identify

a novel lncRNA locus with confidence. A limitation of this ap-

proach becomes apparent when considering complex AS loci,

where the same CAGE and polyA-seq clusters can be linked to

several transcripts (and recall also that not all interganic transcripts

are polyadenylated). In the near future, however, it seems likely

that third generation sequencing platforms will allow us to capture

full-length RNA molecules as part of a single protocol. This ap-

proach may be particularly powerful when combined with RT-

PCR, allowing for the targeted validation of novel transcripts as

well as the extension of existing incomplete models (Howald

et al. 2012).

The annotation of CDSs based on proteomics data
Following the capture of the human transcriptome, our focus turns

to its functional annotation. An obvious first question to ask of a

transcript model is whether it is translated into a protein or peptide

molecule. While we may be approaching a final value for the

number of human protein-coding genes, the number of functional

protein isoforms generated by AS remains hard to estimate. Alter-

native CDSs can be generated by exon skipping, splice site shifts, or

from the use of alternative first or last coding exons. However, we

cannot assume that AS within protein-coding genes leads to the

translation of stable protein molecules; such transcripts could be

noise or perhaps functional noncoding transcripts (Mudge et al.

2011; Ezkurdia et al. 2012; Frankish et al. 2012). Unfortunately, it is

still not possible to sequence protein molecules in a manner

analogous to RNA or DNA sequencing. However, improvements

have been made to mass spectrometry (MS) in recent years, such

that ‘‘proteogenomics’’ may now be considered an important tool

in genome analysis (Domon and Aebersold 2006; Yates 2013).

In particular, state of the art tandem MS can identify peptide se-

quences with high sensitivity and specificity in a manner ap-

proaching high throughput. These data can be publicly accessed

via the online databases PRIDE (Vizcaino et al. 2010) and Peptide-

Atlas (Deutsch 2010), which currently contain hundreds of mil-

lions of spectra. Recently, Ezkurida and colleagues were able to

identify peptides linked to 35% of the protein-coding genes in

Figure 4. The annotation of a novel lncRNA locus in GENCODE. A
schematic diagram of an ;4-kb region of human chromosome 6 is
shown, within BAC AL357054. The alignment of cDNA (accession
numbers AX747750, AK092822) and EST (DA816101, DA923061,
DA427401, BG541155, AI831721, AW135930, CB052137, DB332016,
CB052136, AA004346) data indicate the location of a transcribed locus.
Further support comes from the mapping of CAGE and polyA-seq clusters,
indicated by red and blue triangles, respectively. CAGE data are taken
from the ENCODE project (Djebali et al. 2012a) and polyA-seq data are
taken from Derti et al. (2012). For CAGE, co-locating clusters are found in
the majority of cells investigated by ENCODE, including primary non-
immortalized lines (not shown). Co-locating polyA-seq clusters are de-
rived from brain, testes, and muscle tissues (not shown). Underneath is
Illumina Human BodyMap 2.0 RNA-seq data from two representative
tissues out of 16 available—prostate and ovary—in the form of read cov-
erage graphs. These data were mapped to the genome by Ensembl, using
the BWA methodology (Li and Durbin 2009; Flicek et al. 2013). The cor-
respondence between each of these data sets allowed for a new 2814-bp
lncRNA model to be built (red rectangle; subcategorized as a lincRNA
biotype; see Fig. 1B), accession number OTTHUMG00000185335.
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GENCODE (Ezkurdia et al. 2012). Even so, there are limitations to

this technique. First, spectra commonly represent short peptides

that are unable to distinguish between AS CDSs. Second, both the

processing of the spectra and the subsequent genomic mapping are

complex, computationally intensive techniques. In particular,

peptide to genome mappings may suffer from a high false positive

rate unless rigorous methods are used (a situation confounded

by the occurrence of AS) (Tanner et al. 2007; Brosch et al. 2011;

Ezkurdia et al. 2012).

Ribosome profiling (RP) is a newer technique designed to

infer translated regions of RNA molecules (Ingolia et al. 2009).

Essentially, the short portion of an RNA that is bound to a ribo-

some survives a round of chemical degradation and is then re-

covered and sequenced. Typically, ribosome stalling is induced by

drug treatment, allowing for the capture of translation initiation

sites (TIS) (Ingolia et al. 2011; Lee et al. 2012). RP thus avoids

the complications of dealing with protein molecules directly, and

is extremely high-throughput. Recently, Ingolia and colleagues

identified thousands of translated regions within the transcriptome

of mouse embryonic cells (Ingolia et al. 2011). Of particular in-

terest is their identification of large numbers of TIS found within

previously annotated CDSs, including non-ATG codons. Further

work in human provides similar findings generally, indicating that

RP will be highly useful for both TIS validation and discovery (Lee

et al. 2012; Michel et al. 2012). RP also confirms that certain ORFs

can be translated from the same transcript as the recognized CDS

(Ingolia et al. 2011; Lee et al. 2012; Michel et al. 2012). Figure 5

details the integration of human RP data from Lee et al. (2012) with

the GENCODE annotation of the PNRC2 protein-coding locus.

Previously, a 139aa CDS had been annotated in three transcript

models that differ in their 59 UTR confirmations. However, our

analysis of RP data supports the usage of a TIS at the start of a

previously unrecognized 56aa upstream ORF (uORF). It remains

unclear what proportion of such uORFs actually encodes mature

polypeptides. An alternative possibility is that they are regulatory

in nature, perhaps controlling overall protein output from the

locus by sequestering the ribosome and limiting translation from

the downstream TIS (Somers et al. 2013). For example, the protein

output of ELK1 is controlled in part via the differential splicing of a

uORF in the 59 UTR (Rahim et al. 2012). Certainly, uORFs represent

a further challenge to our preconceptions of transcript function-

ality, and they are a new focus for transcript annotation.

Comparative genomics can support CDS annotation
While MS and RP analyses look set to become standard techniques

for CDS annotation in the near future, we require other methods to

examine translation at the present time. Comparative genomics

is based on the idea that conservation indicates functionality

(Boffelli et al. 2004; Dermitzakis et al. 2005). Of the 20,000 protein-

coding genes known in human and mouse, at least 80% can be

defined as orthologs (Mouse Genome Sequencing Consortium

et al. 2002). Conservation is not only a gene-level attribute, how-

ever; it can also be used to describe the individual transcripts

and CDS found within a gene. In the former case, we can examine

the conservation of TSS, polyadenylation signals, and splice sites,

while in the latter case we can compare TIS and termination co-

dons alongside overall amino acid composition. The PNRC2 locus

is a fascinating example in this regard, since we observe that

both the upstream and downstream reading frames annotated

in Figure 5 are widely conserved amongst vertebrates, including

mouse and zebrafish. The conservation argument therefore sup-

ports the functionality of both translations, and suggests that this

locus may be genuinely bicistronic.

Conservation can also be a powerful technique for inferring

the functionality of AS events. We have estimated that approxi-

mately one third of human and mouse orthologous gene pairs

contain more than one conserved CDS (Mudge et al. 2011). For

example, the human BSG gene contains four distinct CDSs, linked

to alternative first exons and exon-skipping events (Fig. 6). When

compared against the annotation of the mouse locus, we observe

that two of these CDSs are supported by transcriptional evidence

in both species (Pairs A/a and B/b). In other words, conservation

indicates that the skipping of the 348-bp cassette exon of model A

Figure 5. Annotation of the proline-rich nuclear receptor coactivator 2 locus with ribosome profiling data. (A) This schematic shows the GENCODE
annotation for the human PNRC2 locus compared against its mouse and zebrafish orthologs. Annotation for the latter two models is taken from the Vega
manual annotation resources (Wilming et al. 2008). Alternative splicing within the 59 UTR has been omitted for clarity, and intron sizes are not to scale.
Equivalent ORFs are shown in yellow and green in each model, with UTR sequences shown in red. The splice donor site of the 59 UTR exon is conserved
between human and mouse; whether this is also true for the 59 UTR of the zebrafish model cannot be ascertained. The downstream CDS encodes the
known PNRC2 protein. The TIS of the upstream ORF is supported by ribosome profiling data in human and mouse, from Lee et al. (2012) and Ingolia et al.
(2011), respectively. Data from the latter set also support the TIS of the PNRC2 CDS in mouse. Equivalent RP resources for zebrafish are not available. (B)
Alignment of the human, mouse, and zebrafish upstream ORFs, with conserved residues highlighted in red.
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is a functional AS event. Interestingly, conservation can also in-

dicate the functionality of NMD-linked transcription (see Toward

a Definition of Transcript Functionality section). The NMD process

is commonly linked to the inclusion of a ‘‘poison exon’’ in a tran-

script, defined as an exon that introduces a PTC into the CDS. It is

apparent that such exons can show strong conservation, even

across the vertebrate clade; we estimate that 10% of human protein-

coding genes contain NMD transcripts that are conserved in mouse

(Mudge et al. 2011).

The most obvious limitation of the conservation argument is

that it cannot judge, for example, the functionality of the thou-

sands of human and mouse AS CDSs that are not conserved be-

tween the two species. The cassette exon of human ZSCAN9

model D that contains a LoF mutation has no mouse counterpart

(Fig. 3), and neither does the alternative first exon of human

BSG model C (Fig. 6). Similarly, conservation cannot be used to

judge species-specific loci. Lineage specific protein-coding loci are

commonly referred to as ‘‘orphans.’’ Their true prevalence in the

human genome remains a source of uncertainty (Khalturin et al.

2009; Brosch et al. 2011; Tautz and Domazet-Loso 2011; Neme

and Tautz 2013), particularly given that genuine CDSs can be

under 300 bp in length, and yet random ORFs of a similar size are

commonly found on transcripts due to chance (Clamp et al.

2007). The functionality of lineage specific CDSs must therefore

be judged through the integration of proteomics data. A further

limitation of the conservation proxy is that the correct in silico

identification of orthologous exons becomes more difficult as

the genomes targeted become more diverged. In our experience,

even genuine exonic alignments between human and mouse

are commonly missed by computational analysis, in particular

when considering AS exons that are short (Mudge et al. 2011).

Also, if conservation is measured as constraint on the genome

sequence, the proxy can highlight pseudogenes as functional

loci. Finally, the usefulness of comparative annotation depends

entirely upon the availability of high-quality genome sequences

and, ideally, large pools of transcriptomic data. In practice, few

vertebrate species are comparable with human and mouse in this

regard.

Toward a functional annotation
of lncRNAs

Unlike for CDS transcripts, where a strong

paradigm for their functionality existed

prior to the genome-sequencing era, ef-

forts to understand the functional role of

lncRNAs are proceeding in parallel with

their discovery. Unfortunately, while CDS

transcripts and small RNAs can be readily

identified by ab initio methods, there are

no known sequence motifs or secondary

structures that appear common amongst

lncRNAs (Gorodkin and Hofacker 2011).

This complicates efforts to annotate lncRNA

data sets in a meaningful way. In fact, the

true extent of functionality in this tran-

script category has been a source of debate

since its identification. Our knowledge

of lncRNAs evolved from observations

of pervasive transcription across eukaryotic

genomes, which was originally suggested

using genomic tiling arrays (Kapranov

et al. 2002; Rinn et al. 2003). However,

this technology is known to be prone to experimental artifacts that

could lead to false hybridization signals (Johnson et al. 2005). In

due course, the presence of widespread noncoding transcription

was also supported by sets of mammalian noncoding cDNAs

(The FANTOM Consortium et al. 2005) and improved array-based

analyses (The ENCODE Project Consortium 2007; Kapranov et al.

2007). Concerns regarding the biological relevance of such tran-

scripts resurfaced, however, following initial observations that

they show low levels of sequence conservation (Wang et al. 2004).

In fact, this highlights a further issue with the use of constraint as

a proxy for functionality: The best way to measure constraint re-

mains debatable, and different approaches can yield quite different

results. Of particular significance is the method by which the

neural rate of evolution is estimated, since this is essentially the

‘‘background reading’’ against which constraint is measured.

Pheasant and Mattick (2007) and Ponting and Hardison (2011)

have provided detailed discussions on this issue. Significant dif-

ferences can also arise from the nature of the sequence alignments

performed. Specifically, whole-genome comparisons are typically

based around ‘‘windows’’ of alignment, and these may lack the

granularity needed to uncover short, dispersed regions of conser-

vation such as those that have been identified between the human

and mouse HOTAIR orthologs (Pang et al. 2006; Schorderet and

Duboule 2011).

In our view, it is not yet clear how useful constraint will be in

the functional annotation of lncRNAs. One the one hand, Ponjavic

and colleagues have shown that purifying selection within lncRNA

exons is more readily detected when robust analytical methods are

used, in particular when focusing on specific regions of the locus

such as the promoter region and splice sites (Ponjavic et al. 2007).

On the other, functional lncRNAs such as HOTAIR may contain

a bulk of sequence that does not contribute to their actual function

and so does not experience constraint (Tsai et al. 2010). Indeed,

lncRNAs that represent by-products of functional transcription—

such as Airn (Latos et al. 2012)—may not experience purifying

selection at all, given that their sequence content may be largely

unimportant. In fact, it is apparent that the majority of lncRNA

transcripts are subjected to rapid evolutionary turnover in the

Figure 6. A comparison of alternative splicing within the human and mouse basigin locus. In total the
human BSG protein-coding locus contains 13 transcript models in GENCODE v16, four of which are
shown here for clarity (A–D). Similarly, three CDSs from the orthologous mouse Bsg locus are shown (a–
c), taken from the manual annotation resources of the Vega project (Wilming et al. 2008). Annotated
CDSs are highlighted in green, UTRs in red. The human locus contains an intron 5 bp downstream from
the termination codon that has no counterpart in the mouse locus; other minor UTR variations have
been omitted. Dashed lines indicate exon level orthology; intron sizes are to approximate scale only.
Transcript models A and a, and B and b, are thus equivalent between human and mouse, and each is
supported by transcriptional evidence in both species.
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mammalian order (Cabili et al. 2011; Kutter et al. 2012). This may

imply that functionality across lncRNA data sets is rapidly evolv-

ing, and a link has been postulated with the significant changes in

protein gene expression levels witnessed between mammalian

species (Kutter et al. 2012). At the present time, a role in the reg-

ulation of gene expression looks set to become a central paradigm

of lncRNA functionality (Mattick 2007; St. Laurent and Wahlestedt

2007; Guttman and Rinn 2012; Moran et al. 2012; Rinn and Chang

2012). This has in turn led to suggestions that it may be possible to

identify functional lncRNAs by capturing transcripts that interact

with chromatin-modification complexes. For example, Zhao and

colleagues used high-throughput RNA immunoprecipitation to

identify several hundred mouse lncRNAs that bind Polycomb re-

pressive complex 2 (Zhao et al. 2010). Nonetheless, it is currently

uncertain as to exactly how these interactions should be inter-

preted in terms of functionality (Rinn and Chang 2012; Brockdorff

2013).

Clearly, we still have much to learn about how lncRNAs

function, and it may not in fact be appropriate to regard this as

a single homogenous class of transcript. Of particular note here is

the recent discovery by St. Laurent and colleagues that 10% of our

genome may consist of ‘‘very long intergenic ncRNAs’’ (vlincRNAs)

(St. Laurent et al. 2013). Such transcripts, which are over 50 kb in

size, have been previously shown to contribute the bulk of non-

ribosome-associated, non-mitochondrial RNA in some human

cells (Kapranov et al. 2010). However, the relationship between pro-

posed vlincRNAs and the shorter lncRNAs that exist in GENCODE is

currently unclear. For such reasons, it is difficult to speculate on

the proportion of the 22,444 lncRNA transcripts annotated in

GENCODE that have genuine functionality at the present time.

Instead, the value of annotation projects to the description of

lncRNAs begins with the observation that large numbers of

lncRNA models are likely to be either incomplete or entirely

missing from our gene sets. We believe

that our initial focus should therefore be

on the generation of a comprehensive set

of complete transcript structures, onto

which biological information can be lay-

ered as it becomes available. Certainly, it

is true that those few lncRNA genes that

are well understood in terms of function—

such as HOTAIR and Airn—are so because

they have been dissected in detailed lab-

oratory studies. On the other hand, the

existence of putatively annotated lncRNA

models will likely prove an invaluable

resource in the design of experiments to

study individual loci in detail.

The annotation of gene
expression data
Gene expression data may provide fur-

ther insights into the functionality of

both protein-coding and lncRNA tran-

scripts. We can start with the following

logic: If a transcript is abundant in the

cell, this suggests it may be functional. This

is based on a presumption that, while sto-

chastic noise may be common generally,

specific ‘‘errors’’ in transcription or splicing

are rare. This logic is implicit in the annotation of the transcript

model in Figure 3, where appreciable read coverage is observed in

several tissues. As RNA-seq technologies improve, it should be-

come routine to measure the expression of every transcript in

a gene set, across a wide range of tissues and developmental stages.

This will also highlight models that have consistently very low or

irreproducible levels of expression. Furthermore, a potential in-

dication of functionality can be also provided by the demonstra-

tion of restricted expression, i.e., where a transcript displays tissue

or developmental specificity. By this argument, restricted expres-

sion suggests that the transcript is generated via gene regulation as

opposed to stochastic noise, although care must be taken to ensure

that the observation is not simply due to false negative detection in

certain experiments linked to low expression levels. This logic is

frequently incorporated into studies examining AS within mam-

malian genes based on RNA-seq (Pan et al. 2008; Wang et al. 2008),

and it appears that >50% of AS events in human are tissue specific

(Wang et al. 2008). Figure 7 illustrates the use of expression pro-

filing in AS annotation, focusing on the ACSL6 gene. This gene

contains a pair of adjacent 78-bp cassette exons that are homolo-

gous and spliced in a mutually exclusive manner (based on EST

data). On integrating Illumina Human BodyMap RNA-seq data, we

see evidence of tissue specificity in this AS: The upstream exon is

transcribed in lymph, lung, and adrenal cells while the down-

stream is not, whereas the opposite pattern is observed in liver

cells. In contrast, both exons appear to be utilized in brain tissue.

Restricted expression has also been used to infer functionality

within lncRNA sets, and it appears that tissue specificity is signif-

icantly more common amongst lncRNA transcripts compared with

protein-coding transcripts (Cabili et al. 2011; Derrien et al. 2012;

Hangauer et al. 2013). In addition, St. Laurent and colleagues have

recently demonstrated the potential value of physiological time-

course experiments in identifying large numbers of novel tran-

Figure 7. Tissue-specific alternative splicing within the human acyl-CoA synthetase long-chain family
member 6 protein-coding gene. The GENCODE v16 annotation of ACSL6 contains 21 AS transcripts,
two of which are shown here. The transcripts differ in the incorporation of distinct members of a mu-
tually exclusive 78-bp cassette exon pair found in the same intron. Illumina Human BodyMap RNA-seq
data read graphs are shown for five tissues (produced by Ensembl; see Fig. 4 legend for further details).
Lymph, lung, and adrenal cells are seen to apparently utilize the upstream exon only, whereas liver cells
show the opposite pattern. Brain cells appear to utilize either exon. Though apparently homologous, the
exons differ at 30 out of 78 bp and 10 out of 26aa (not shown), which provides confidence that the read
mapping has not been confounded by paralogy.
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scripts whose expression level changes significantly in response to

changing cellular conditions (St. Laurent et al. 2012).

Expression profiling will also benefit laboratory studies. For

example, such data can show us that to study a particular protein

we may need to focus on a specific tissue. It could be argued that we

will not have a fully annotated transcriptome until we have cap-

tured the expression profile of every transcript. Following this

logic, Gonzalez-Porta and colleagues have recently compared the

expression levels of the different alternative transcripts located

within GENCODE protein-coding genes using RNA-seq (Gonzalez-

Porta et al. 2013). The authors found that 85% of cellular mRNA

represents the combined expression of a single ‘‘major transcript’’

from each locus. However, when differentiating among the 16

Illumina Human BodyMap tissues, transcription was seen to ‘‘switch’’

to an alternative transcript in 35% of genes. Unexpectedly, they

also found that the major transcript of 20% of genes is not anno-

tated with a CDS (typically as a retained intron model), indicating

that the link between transcript abundance and functionality may

not always be straightforward. This illustrates an important factor

in expression profiling: Researchers have to decide how to distin-

guish significant transcription from background noise. ENCODE

judged significance based on the irreproducible discovery rate

(Li et al. 2011); others have used simple read-depth thresholds such

as reads per kilobase per million mapped reads (Mortazavi et al.

2008) or fragments per kilobase of exon per million fragments

mapped (Trapnell et al. 2010). However, we caution that tran-

scripts with very low expression levels may be functional (Clark

et al. 2011), while transcripts with strong expression profiles may

have undergone recent pseudogenization, losing their function

although not their transcription potential.

Notably, the expression levels of lncRNAs are on average at

least 10 times lower than for protein-coding transcripts (Derrien

et al. 2011). There are additional caveats for interpreting the ex-

pression profiles of lncRNAs, relating to unanswered questions

about their function and evolution. First, there are well-established

scenarios where nonfunctional lncRNAs could display restricted

expression. Most obviously, transcripts found exclusively in can-

cer-derived libraries should concern researchers, since cancer

cells have a well-established tendency for aberrant transcription

(Ghigna et al. 2008). Furthermore, there is evidence that both

embryonic stem cells and testis cells undergo ‘‘hypertranscription,’’

whereby even tissue-specific genes become expressed at detectable

levels (Efroni et al. 2008; Kaessmann 2010). In both cases this

phenomenon has been linked to the presence of constitutively

open chromatin. In fact, the abundance of novel transcripts

detected in testis (especially lncRNAs [Cabili et al. 2011]) has led to

the suggestion that this organ may represent a breeding ground for

new genes; this may be due to the particularly efficient activity of

proto-promoters in testis cells (Kleene 2005; see below). Finally, as

discussed in the following section, many lncRNAs are associated

with either enhancer elements or the bidirectional promoters

of protein-coding genes. If such genomic sequences operate in a

tissue- or developmentally specific manner, then the associated

lncRNA transcripts could theoretically display the same pattern

of expression even if they are nonfunctional. As such, the true

value of expression profiling in inferring the functionality of such

transcripts will not become clear until we find out more about

their biological nature. Conversely, the expression profiling of

annotated lncRNAs is likely to prove of great assistance in this

regard. The fact that the novel transcript identified in Figure 3

shows strong expression in prostate and ovary tissues may not

confirm its functionality, although it does provide a valuable

starting point for scientists who wish to study this locus in more

detail.

Can regulatory signals in the genome aid
transcript annotation?
Gene expression is controlled by sequences encoded in the ge-

nome such as promoter regions (Carninci et al. 2006), enhancer

elements (Kulaeva et al. 2012), and splicing signals (Barash et al.

2010), and also by epigenomic signatures such as chromatin

modifications (Hoffman et al. 2013) and DNA methylation (Smith

and Meissner 2013). Can the description of such elements be used

to aid functional transcript annotation? It seems plausible that the

annotation of AS could benefit from the description of regulatory

signals. For years, it has been clear that AS is at least partially di-

rected by sequences found in the exons or introns of the nascent

RNA, and a variety of splicing enhancer and silencer elements are

now known (Chen and Manley 2009). By focusing on such motifs,

Barash and colleagues combined transcriptomics and machine

learning to show that it is possible to predict the patterns of splice

site usage in genes given only the genome sequence (Barash et al.

2010). While the control of AS is a highly complex process that

remains improperly understood, this work suggests it may be

possible to fully decipher a ‘‘splicing code’’ in the future. If so, the

boon to annotation would be significant (Irimia and Blencowe

2012); a comprehensive splicing code could provide confidence

that annotated AS events are non-spurious, and also predict func-

tional AS transcripts that have not yet been captured by sequencing

projects.

The value of epigenomics and promoter mapping to gene

annotation is harder to gauge. ENCODE and other projects have

dedicated significant resources to the functional annotation of

promoters, other cis-regulatory regions, and epigenomic marks on

the human genome (Barski et al. 2007; The ENCODE Project

Consortium 2007; Mikkelsen et al. 2007; Rando and Chang 2009;

The ENCODE Project Consortium 2012; Neph et al. 2012; Sanyal

et al. 2012; Thurman et al. 2012). Extensive data are available, for

example, on the mapping of a wide variety of histone modification

patterns as well as the sites of occupancy of certain transcription

factors; both can be indicative of promoter elements. All eukary-

otic primary transcripts are theoretically generated by promoters,

which suggests that promoter mapping could be used to identify

novel transcripts. An obvious caveat is that promoter mapping is

essentially a locus level technique; it will not distinguish between

AS transcripts that share similar TSS. These data may instead be of

more use in the identification of novel lncRNAs. In this manner,

Guttman and colleagues identified 1600 multiexon mouse lncRNAs,

using the histone modifications H3K4me3 and H3K36me3 as

markers for promoter sequences and transcribed regions respec-

tively, in combination with DNA tiling arrays (Guttman et al.

2009). In a follow up study, the authors found that significant

numbers of their lncRNAs interact directly with chromatin regu-

latory proteins in ES cells, suggesting that this proxy has identified

functional loci (Guttman et al. 2011).

However, we can also envisage situations where an associa-

tion between a promoter region and a lncRNA locus may not

confirm functionality. In particular, eukaryotic promoters are fre-

quently bidirectional (Carninci et al. 2006; Cabili et al. 2011), such

that lncRNAs are commonly found antisense to protein-coding

gene promoters (Fig. 1B, model ix; Core et al. 2008; Sigova et al.

2013). This transcription could theoretically be a by-product of
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chromatin remodeling, although certain antisense transcripts have

been shown to regulate transcription of the neighboring gene

(Kanhere et al. 2010). Furthermore, noncoding transcription also

commonly co-localizes with enhancer elements, and the potential

functionality of this process remains similarly ambiguous (Kim

et al. 2010). LncRNAs in GENCODE are also commonly linked to

pseudogenes of all categories. Conceivably, active promoters may

persist at genes that have been pseudogenized, and could generate

either noisy transcription as they move toward an inactive state or

lncRNAs with novel functionality. Processed pseudogenes may

also be transcribed, and evidence suggests that regulatory regions

close to the insertion site frequently drive this transcription

(Vinckenbosch et al. 2006; Kaessmann et al. 2009). While such

transcription may commonly be opportunistic, retrotransposition

should nonetheless be considered an additional mechanism for

the ‘‘birth’’ of new lncRNAs (Kaessmann 2010).

Second, the annotation potential of epigenomics is hampered

by gaps in our understanding of promoter sequences. If a nascent

lncRNA locus does not co-opt an existing promoter, it is pre-

sumably transcribed from a novel promoter. It is thought that

the core eukaryotic promoter can arise by de novo mutation

(Kaessmann 2010); alternately, the FANTOM project has identified

thousands of human and mouse CAGE clusters found within TEs

(Faulkner et al. 2009). One can then imagine a scenario where

a ‘‘proto-promoter’’ gives birth to a novel, nonfunctional lncRNA.

Over time, the lncRNA may develop functionality, and in parallel

the proto-promoter may become more elaborate as it picks up se-

quence motifs that confer gene regulation. The co-localization of

a complex promoter with a lncRNA would then suggest the func-

tionality of that locus. While a ‘‘community standard’’ definition

of a complex promoter is not yet available, work is now underway

to classify human promoters based on the genome sequences and

epigenetic marks found in association. For example, ENCODE

have pooled their data set of identified chromatin elements to

generate a ‘‘segmentation’’ analysis of promoter regions, and find

a clear correlation between the marks these data produce and the

annotated 59 ends of GENCODE protein-coding loci (Hoffman

et al. 2013). On the other hand, a minority of GENCODE lncRNA

are currently linked to both promoter-associated chromatin

modifications and TF binding sites (Djebali et al. 2012a). It may be

that lncRNA promoters are generally less elaborate than those of

protein-coding genes, and this may be because these loci do not

need to respond to such a wide variety of gene expression factors in

order to perform their function. However, this scenario is also

consistent with the existence of widespread noise amongst lncRNA

gene sets. Alternatively, this lack of association may also be due to

the structural incompleteness typical of lncRNA transcript models.

Summary
We believe the question ‘‘what is a gene?’’ conceals a question of

more pressing importance: Which transcripts are functional, and

how do they function? There are two approaches we can take to

tackle this question. First, the true confirmation of transcript

functionality, and a detailed understanding of the nature of this

functionality, can only be gained in the laboratory. Nonetheless,

the number of identified human transcripts likely exceeds

200,000, the significant majority of which have to be examined by

in-depth single gene studies. Modern genomics is therefore going

through an awkward transition period: We know that transcrip-

tional complexity exists, yet our understanding of the functional

basis of this complexity remains imperfect. Certainly, nonfunctional

transcripts do occur, and they can confound our scientific analy-

ses. Consider the scientist tasked with judging the effects of several

hundred variant sites: First, she will want to know which of these

overlap transcripts; second, if and how these transcripts actually

function. Modern genomics (and indeed medicine) demands to

understand the entirety of the genome and transcriptome right

now, and to match this demand we have to turn to the second

approach, which is to predict functionality by combining next-

generation data sets with computational analyses. It is important

to understand the limitations to what this approach can achieve.

However, we believe that many of the caveats described above are

temporary hurdles. In particular, a significant step forward will be

taken when short-read technologies are replaced by techniques

able to sequence entire transcripts, while comparative annotation

will gain power from the availability of more high-quality spe-

cies genomes and transcriptomes. To be clear, the purpose of this

strategy is not to replace single gene studies, which will always

be a vital part of science. Instead these strategies should be seen

as complimentary; functional annotation is greatly improved by

scientific advances made in the laboratory, while targeted gene

studies can benefit enormously by considering predictions made

by annotation. Finally, no one knows what proportion of the

transcriptome is functional at the present time; therefore, the ap-

propriate scientific position to take is to be open-minded. We

thus do not claim that the annotation of the human genome is

close to completion. If anything, it seems as if the hard work is just

beginning.
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