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T follicular helper (Tfh) cells participate in humoral immune by promoting inflammation and
aiding B cells survival, proliferation, maturation, and generation autoantibodies. The plasticity
of Tfh cells enables the immune system to adjust the direction of differentiation according to
the degree of the immune response, regulate the germinal center (GC) response andmaintain
homeostasis. Tfh differentiation involves several signaling factors, includingmultiple cytokines,
receptors, transcription factors and genes. The signal transducer and activator of
transcription (STAT) family signaling pathways are crucial for Tfh formation. However,
because of the multi-factorial and multi-stage features of Tfh differentiation, every STAT
member plays a role in Tfh differentiation, but is not completely depended on.With the gradual
recognition of different Tfh subsets (Tfh1, Tfh2, Tfh17), the process of Tfh differentiation can no
longer be explained by straight-line derivation models. In this review, we summarize the roles
of different STATs in mediating Tfh subsets, analyze the contributions of mutual restraint and
cooperation among cytokine-STAT signals to terminal Tfh differentiation, and clarify the multi-
source pathways of Tfh differentiation with a three-dimensional illustration.
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INTRODUCTION

Antibody production is reliant upon the formation of GCs in secondary lymphoid organs, where B cells
undergo proliferation, differentiation, and somatic hypermutation aimed at producing high affinity
antibodies. These processes occur dynamically after activation of B cells by Tfh cells (1). Tfh cells are a
unique lineage of CD4+ T cells that express the master transcription factor B-cell lymphoma 6 (Bcl-6).
They are phenotypically characterized by surface expression of C-X-C motif chemokine receptor 5
(CXCR5) and programmed cell death protein 1 (PD-1), as well as production of interleukin (IL)-21 (2).
While proper development of Tfh cells is critical for establishing strong humoral immunity to protect the
host frommicrobial infections, abnormal Tfh immune responses have been associated with autoimmune
diseases (1). Therefore, a clear understanding of Tfh differentiation is required for finding suitable targets
to control the accumulation and activity of Tfh cells.

Tfh differentiation has been studied for more than a decade and the increasing discovery of factors
relevant to the process of Tfh differentiation has raised more questions than answers. Therefore,
dynamically observing the interactions between various signals will aid in our understanding of the
processes of Tfh differentiation. In this review, we focus on the roles of cytokine-STAT signaling in
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regulating the multi-stage processes of Tfh formation and how
multiple signals restrict and cooperate with each other to promote
Tfh differentiation.
DIFFERENTIATION OF TFH CELLS IS NOT
A STRAIGHT-LINE

It is well known that Tfh cells are a “fluid subpopulation”. The
differentiation of Tfh cells is multi-staged and multi-factorial. Thus,
there is no single event that easily defines Tfh differentiation.
Currently, a multi-stage differentiation model has been established
to describe three essential processes of canonical Tfh differentiation,
including the dendritic cell (DC) priming stage, T-B cell interaction
stage and GC stage (3). However, it has been increasingly
recognized that Tfh differentiation is more complex than just
three stages. Precursor Tfh (pre-Tfh) cells share a common
developmental program with Th1, Th2, or Th17 cells and the
direction of polarization depends upon the dominant cytokine
milieu (4). Due to the flexibility of T helper (Th) cells, Tfh cells
express major regulator Bcl-6 and can express major regulators of
other lineages, such as T box factor (T-bet), GATA binding protein
3 (GATA3), or retineic-acid-receptor-related orphan nuclear
receptor gamma (RORgT) (5). These dual transcriptional
regulator-expressing cells are defined as subsets of Tfh cells
named Tfh1, Tfh2 and Tfh17, respectively. Recently, T follicular
regulatory (Tfr) cells have been identified as a new subset of T
regulatory (Treg) cells that co-express Bcl-6 and forkhead box P3
(Foxp3). Tfr cells are able to access B-cell follicles and inhibit the
Tfh–B cell response in GCs (6), which is indispensable for Tfh
differentiation. Many reports have shown that alterations in the
proportions of Tfh subsets and Tfr cells are associated with the
pathogenesis of autoimmune and infectious diseases (7–11). The
functional heterogeneity of Tfh cells suggests that multiple sources
may contribute to the formation of terminally differentiated Tfh
cells, which have developed the characteristics of their respective
subsets and maintain the capacity for repolarization.
FUNCTIONAL DIVERSITY OF TFH CELLS

Knowledge of the multi-source pathways of Tfh differentiation
contributes to the understanding of the heterogeneity of
phenotype and function of Tfh cells. Similar to T effector cells,
the dominant cytokine milieu at the earliest stage of
differentiation determines the fate of pre-Tfh cells. These fates
determine the roles of terminal Tfh cells in the immune response.
The Tfh1 differentiation pathway can be initiated by type 1
responses in which STAT1/4-activating cytokines expand, such
as viral infection, vaccination, or some autoimmune diseases (9,
10, 12, 13). Tfh1-source subsets produce IFN-g and IL-21 and
lead to isotype switching of GC B cells to induce murine IgG2 or
human IgG1 (14). Type 2 infections, allergic diseases or
autoimmune diseases such as IgG4-related disease can initiate
Tfh2 differentiation (8, 15, 16). Tfh2-source subsets produce IL-4
and IL-21 to support induction of either murine IgG1 or human
Frontiers in Immunology | www.frontiersin.org 2
IgG4 and IgE by GC B cells (14). Tfh17-source subsets induce
IgA production (14). An increase in circulating Tfh17 cells can
be found in patients with immunoglobulin A vasculitis, as well as
a variety of immune diseases which are often accompanied by an
increase in the Tfh2 subset (8, 10, 17).
CYTOKINE-STAT SIGNALING PATHWAYS
ACTING AS ENVIRONMENT SENSORS IN
T CELLS

Molecular signals including cytokines, surface receptors, and
transcription factors, are crucial regulators of Tfh differentiation
at every stage. Cytokine signaling is a type of ubiquitous and
indispensable molecular signal in immune cells and is critical for
cell survival, proliferation, apoptosis, anddifferentiation (18).Many
molecular signals have been shown to be directly or indirectly
involved, positively or negatively regulating Tfh formation and
maintenance (Figure 1).

Many cytokines act through the JAK-STAT signaling pathways
to exert their effects on Tfh differentiation. Binding of cytokines to
theirs receptors and receptor dimerization leads to the activation of
JAKs, which phosphorylate the receptor tails and induce docking of
STATs to the receptors. Phosphorylated STATs dimerize and move
into the nucleus, activating the transcription of target genes (19, 20).
The STAT family shares a characteristic protein domain structure
and consists of seven members-STAT1, STAT2, STAT3, STAT4,
STAT5a, STAT5b, and STAT6 (21). Each STAT can be activated by
multiple cytokines. For example, STAT3, which is predominantly
activated by IL-6 and IL-21, can also be activated by IL-23, IL-12,
and IL-10 (22, 23). Similarly, most cytokines can activate more than
one STAT member. For instance, type I IFN is able to activate
almost all of the STATs (19, 24). Intriguingly, it seems that different
STAT signals activated by one single cytokine can be competitive,
whereas the same STAT signal activated by different cytokines can
compensate for one another. For example, IL-6 elicits a strong
STAT3 response coupled to a weaker STAT1 response. In the
absence of STAT3, IL-6 enhances activation of STAT1 (25).
Addition of STAT3-activating cytokine IL-23 to IL-6 generates a
more serious Th17-mediated autoimmunity (26).
THE ROLES OF STAT FACTORS IN EARLY
TFH DIFFERENTIATION

STAT1 and STAT4 Initiate the
Tfh1 Pathway
STAT1 as a Pioneer
STAT1 is a well known Th1-polarizing signal (27). In a recent fate-
mapping analysis, almost all IFN-g-producing Tfh cells previously
expressed T-bet (28). Excessive IFN-g signaling and IFN-g receptors
result in pathological accumulation of Tfh cells and GC formation
(29). During acute viral infection, T-bet is required for the
expansion and maintenance of Tfh1 cells (30). In addition, other
STAT1-activating cytokines also promote Tfh differentiation. Type I
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IFN and IL-6 are able to induce Bcl-6 expression and early Tfh
differentiation via activation of STAT1 (31, 32). The studies of
STAT1-mediated Tfh differentiation have mainly been performed
in mice. In humans, the impact of STAT1 on Tfh cells has been
visualized mainly through IL-12-mediated co-activation of STAT1
and STAT4 (10, 33). Interestingly, STAT1 is a regulator of IL-12
receptor (IL-12R) expression. IL-12R is not expressed on human
naive CD4+ T cells until it is induced by IFN-g-STAT1 signaling
derived from TCR-stimulation (10). Analogous processes were also
verified in mice (34).

However, STAT1 seems to be indispensable only at the early
stage of Tfh differentiation. IFN-g-producing Tfh cells were
absent in T-bet-deficient mice, but were present in the mice
with T-bet deletion at later stages of differentiation (28).
Moreover, Type I IFN-STAT1 was an inefficient inducer of IL-
21 production (31). In humans, T-bet promotes CXCR5
expression but diminishes the ability of Tfh cells to provide
help to B cells (35). In summary, STAT1 acts as a pioneer for
initial induction of the Tfh1 pathway, but additional signals are
needed for subsequent differentiation.

STAT4 Cooperation With STAT1
STAT4 is activated predominantly by IL-12 and to a lesser extent by
IL-23 and Type I IFN (36). In humans, one study showed that DCs
induced IL-21-producing Tfh differentiation through production of
IL-12 (37). IL-12 was able to promote sustained expression of
CXCR5 and Bcl-6 in activated CD4+ T cells independent of IFN-g
or T-bet (38). Patients with IL-12Rb1 deficiency had fewer Tfh cells,
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memory B cells and GCs (39, 40). In mice, ChIP experiments
indicated that expression of the il21 and bcl6 genes was promoted by
IL-12-mediated STAT4 signaling (41, 42).

Similar as STAT1, STAT4 can induce the Th1 phenotype and
thus may induce Tfh1 cell differentiation (27). It has been shown
that production of IL-21 and IFN-g is strongly inhibited in STAT4-
knockdown CD4+ T cells (37). Further study confirmed that IL-12
not only activated STAT4, but also activated STAT1 independent of
exogenous IFN-g, resulting in the expansion of Tfh1 cells (10).
However, although IL-12 modulated the differentiation of IL-
21+IFN-g+Tfh1 cells from naive CD4+ T cells via both STAT1
and STAT4, only STAT4 was indispensable if the induction of
differentiation was initiated from memory cells (33). STAT1-
deficiency did not reduce IL-12-induced Tfh cells (40).

However, singular STAT4 signaling plays only a transient role
relative to the entire Tfh differentiation process. One study showed
that STAT4-induced T-bet repressed bcl6 gene expression and thus
decreased the expansion of Tfh cells and attenuated Tfh-related
functions. Impaired generation of Tfh cells resulted in differentiation
toward the Th1 phenotype (41). Consequently, participation of
additional signals is required to rescue STAT1/4-induced Th1
polarization and thus complete subsequent differentiation.

Distinct Roles of STAT5 and STAT6 in the
Tfh2 Pathway
IL-4-STAT6 signaling is able to promote the expression of GATA3
and is thought to be crucial for Th2 differentiation (27, 43, 44).
Presently, studies of Tfh2 differentiation have been performed
FIGURE 1 | Factors Involved in the Generation of Tfh and Tfh Subsets. Multiple cytokines, receptors, and transcription factors are involved in the differentiation of
Tfh cells. The orange, green, and purple regions represent factors leading to the polarization of Tfh1, Tfh17 and Tfh2 cells, respectively. Red arrows indicate
promotion of Bcl-6 expression; blue arrows indicate suppression of Bcl-6 expression; orange, dark green, purple, and light green arrows indicate major regulated
factors of Tfh1, Tfh17, Tfh2, and Tfr, respectively.
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mainly in mice. It has been shown that during helminth infection,
IL-4-producing CD4+ T cells in reactive lymph nodes have the
phenotypic characteristics of Tfh cells, suggesting that these IL-4-
producing cells are indeed Tfh cells (45). Further study
demonstrated that Bcl-6+GATA3+Tfh2 cells in lymph nodes are
derived from Th2 cells (46). IL-2-STAT5 signaling also promoted
Th2 phenotypic characteristics by up-regulating the expression of
IL-4Ra and the production of IL-4 (47–50).

The induction of Tfh2 differentiation by IL-2-STAT5 seems
paradoxical, since STAT5 contributes to Th2 gene expression but
represses Tfh development (51, 52). In contrast, IL-4-STAT6
signaling can promote Tfh2 differentiation. It has been reported
that IL-4 selectively suppresses IL-2-STAT5 and IL-2R
expression (53), which benefits Tfh differentiation in theory.
Thus far, it is known that STAT6, in cooperation with STAT3,
contributes to the capacity of Bcl-6+GATA3+Tfh2 cells to
provide B-cell help (54). It has also been shown that Batf, in
cooperating with STAT3 and STAT6, increases the production of
IL-4 in Tfh cells (55). However, it seems that STAT3 should not
be activated prematurely, since STAT3-deficient Tfh cells
overexpressed both Bcl-6, GATA3, and IL-4, which suggests
that the intrinsic effects of STAT3 on Tfh2 cells at the early stage
of differentiation are suppressive (56).

STAT3 Participates in the Differentiation of
Tfh17 Cells
Controversial Functions of IL-6/IL-21-STAT3
IL-6/IL-21-STAT3 signaling is generally considered as the most
desirable factors for Tfh formation, although there is much
controversy (14). At the present, most conclusions supporting this
theory have been derived from in vivo experiments. It has been
reported that lack of IL-6 and/or IL-21 reduces the formation of Tfh
cells and GCs (57, 58). However, another study found that absence
of IL-21 influenced GC B cells but failed to abrogate Tfh formation
(59). Further study clarified that the effect of IL-21 on GCs was a
result of direct action upon B cells independent of Tfh cells. Tfh cells
were formed but decreased faster in absence of IL-21 (60). However,
other studies have shown that neither IL-21 nor IL-6 was required
for Bcl-6+Tfh differentiation (61). IL-6R deletion in T cells did not
affect the accumulation of Tfh cells (62).

In one in vitro study, purified murine naive CD4+ T cells did
not express more Bcl-6 or CXCR5 in the presence of IL-6 or IL-
21, although abundant production of IL-21 was found in culture
environments (58). In humans, although STAT3 mutations in
patients compromised the generation of Tfh cells, the expression
of CXCR5 and Bcl-6 in STAT3-deficient CD4+ T cells in vitro
was not impacted (40). Therefore, STAT3 alone seems to be
insufficient for Tfh formation, especially in purified CD4+ T cells.

TGF-b plus STAT3/STAT4 and the Tfh17 Phenotype
Although the role of STAT3 alone is undefined, transforming
growth factor b (TGF-b) and STAT3/STAT4-activating cytokines
in combination can promote human Tfh differentiation. Research
has demonstrated that TGF-b plus IL-12/IL-23 was the most
effective in up-regulating the expression of CXCR5, Bcl-6 and IL-
21, while other STAT3-activating cytokines synergistically
Frontiers in Immunology | www.frontiersin.org 4
enhanced Tfh differentiation (22). It is known that TGF-b, IL-1b,
IL-6, and IL-23 in combinationcan increase the expressionofRORgT
and IL-17 (63–65). Therefore, it has been inferred that TGF-b plus
STAT3/STAT4 signaling can induce Tfh17 differentiation.

TGF-b promotes Treg differentiation in the presence of IL-2
(66). It has also been shown that TGF-b can insulate pre-Tfh cells
from IL-2-delivered mTOR signaling, thereby improving Tfh
formation (67). Th17 differentiation is promoted by TGF-b
through the up-regulation of IL-17A and down-regulation of
IFN-g production (68). Meanwhile, IL-23-induced STAT3 can
strongly bind the Rorc gene locus to promote Th17 differentiation
(65). STAT4 can prevent Th17 polarization by inducing Tfh1
differentiation. IL-6 is beneficial for both Th1 and Th17
differentiation, and it is also able to inhibit the generation of Treg
cells (69). Therefore, we speculate that the effects of the cocktail
stimulation result from the mutual restriction of each factor.

IL-2-STAT5 Signaling Acts as a Rheostat
by Regulating Tfr Cells
IL-2-STAT5 signaling is thought to negatively regulate Tfh
differentiation by repressing Bcl-6 expression (51, 52). Low-
dose IL-2 reduced disease activity in lupus patients by
suppressing the expansion of Tfh cells (70). However, a recent
study showed that IL-2-STAT5 seems to fine-tune the
differentiation of Tfh, Treg, Tfr cells according to its
concentration during an immune response. During influenza
infection, high IL-2 concentrations at the peak of infection
prevented the differentiation of Tfr cells from Treg cells by
inhibiting Bcl-6 expression to permit GC responses (71).
Meanwhile, Treg differentiation is enhanced, and these cells
highly express IL-2Ra (CD25), which gradually consumes IL-2
in the milieu. With the depletion of IL-2, the suppression of Tfr
cells alleviated and GC responses are inhibited (71, 72).

It has been reported that Tfr cells can differentiate from Treg
cells (73). However, our recent study showed that IL-2 induced the
transformation of human Tfh cells into Tfr-like cells. ChIP
experiments showed that while promoting Foxp3 expression, IL-2
also maintained Bcl6 gene expression via activation of STAT3 (11).
Therefore, IL-2-STAT5 should be considered a regulator of Tfr
differentiation rather than a pure inhibitor. These results suggest
that the role of IL-2 may differ between humans and mice.
RESTRICTION AMONG STATS
CONTRIBUTES TO THE SUBSEQUENT
DIFFERENTIATION OF TFH CELLS

STAT3 Remedies Over-polarization of Tfh1
by Restricting STAT1
One study showed that although STAT3 had no direct impact on
the expression of Bcl-6 and CXCR5, IL-6-STAT3 signaling
prevented Th1 polarization induced by STAT1, thus indirectly
promoting Tfh differentiation by synergizing with STAT1 (32).
In the absence of STAT3, both IL-6 and IL-21 can prolong the
activation of STAT1 and increase the expression of IFN-g-
inducible genes (25, 74). It has also been reported that IL-6
February 2021 | Volume 12 | Article 621105
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enhanced the responses of Tfh cells only during late stages of
chronic viral infection (75). Furthermore, IFN-g+IL-
21+CXCR5+cells and IFN-g+ GC Tfh cells expanded in IL-10-
deficient mice (23), which suggests that STAT3 may promotes
subsequent differentiation of Tfh cells from Tfh1 cells.
Consequently, delayed STAT3-activation relative to STAT1
seems to be beneficial for terminally differentiated Tfh cells.
This speculation is also consistent with the actual developmental
process of Tfh cells, as STAT1/STAT4-initiated Tfh1 can
produce IL-21. IL-21-STAT3 signaling gradually increases and
induces further Tfh formation.

STAT5 Regulates the Development of Tfh
Cells and Subsets
One study demonstrated that STAT5 binding to the Bcl6
promoter increases in high IL-2 conditions, while STAT3
binding decreases, thereby repressing Bcl6 expression (76).
However, although pre-Tfh cells are IL-2-producing cells (77),
large amounts of autocrine IL-2 did not impact Tfh
differentiation, due to the IL-2 responsiveness regulated by IL-
6-STAT3 (78). Another recent study showed that IL-6-STAT3
prevented the association of STAT5 with the Il2rb locus and
repressed IL-2Rb (CD122) expression, which interrupted the IL-
2-STAT5-IL-2R inhibitory feedback loops and allowed for
sustained development of Tfh cells (78). In contrast, Type I
IFN is able to induce the expression of IL-2Ra, which leads to
Frontiers in Immunology | www.frontiersin.org 5
STAT5 binding at the expense of STAT3, leading to a reduction
in Tfh cell differentiation (79).

In addition, it has been reported that IL-2-STAT5 can also
induce the expression of IL-12R. Similar to the promoting of Tfh2
differentiation via inducing IL-4R expression, IL-2-STAT5 involved
the differentiation of Tfh1 cells via regulating IL-12R expression
(80). Therefore, modulation of cytokine receptors by IL-2-STAT5
broadly regulates differentiation into T helper cell lineages.
DISCUSSION

In conclusion, the differentiation of Tfh cells is a multi-stage and
multi-source process. At the early stage of differentiation,
environmental signals are indispensable in conferring the
heterogeneity of Tfh phenotypes. Cytokines are the major factors
that determine fate commitment, mainly through the activation and
regulation of STATs (Figure 2). At subsequent stages, the restriction
and cooperation of multiple STAT signals can prevent
overpolarization of any Tfh subsets, thereby maintaining the
expression of Bcl-6 in Tfh cells. The plasticity of the Tfh
differentiation system is important for the control of adaptive
immunity and homeostasis. In the overall Tfh differentiation
process, the role of any factor is not absolutely positive or negative,
but depends on the state of the cells, the stage of differentiation, and
the polarity of the environment. In this review, we used STAT family
FIGURE 2 | Cytokine-STAT-mediated Multi-source Pathways of Tfh Differentiation. The pathway of differentiation is determined by the type of stimulus to which the
pre-Tfh cells are exposed to during the initial stage of differentiation. STAT1/STAT4-activating cytokines, such as Type I IFN and IL-12, guide cells toward the Tfh1
differentiation pathway; STAT6/STAT5-activating cytokines, such as IL-4 and IL-2, guide cells toward the Tfh2 differentiation pathway; and STAT3-activating
cytokines, such as IL-21, IL-6, and IL-23, guide cells toward the Tfh17 differentiation pathway. At subsequent stages, restriction among STATs limits the polarization
of Tfh subsets, leading to the completion of Tfh cell differentiation.
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members to illustrate the mechanisms of multi-stage and multi-
source differentiation of Tfh cells. However, it should be noted that
STATs are not the only transcription factors involved in the
regulation of Tfh differentiation, and the important roles of other
types of transcription factors should not be neglected. The detailed
regulation of Tfh differentiation at each stage and the development of
each subset need further study.
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