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Brain-machine interfaces (BMIs) record and translate neural activity into a control signal

for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high

degree-of-freedom BMI control for complex tasks by providing fine-resolution neural

recording. However, chronically implanted MEAs are subject to a dynamic in vivo

environment where transient or systematic disruptions can interfere with neural recording

and degrade BMI performance. Typically, neural implant failure modes have been

categorized as biological, material, or mechanical. While this categorization provides

insight into a disruption’s causal etiology, it is less helpful for understanding degree

of impact on BMI function or possible strategies for compensation. Therefore, we

propose a complementary classification framework for intracortical recording disruptions

that is based on duration of impact on BMI performance and requirement for and

responsiveness to interventions: (1) Transient disruptions interfere with recordings on

the time scale of minutes to hours and can resolve spontaneously; (2) Reversible

disruptions cause persistent interference in recordings but the root cause can be

remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause

persistent or progressive decline in signal quality, but their effects on BMI performance

can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions

cause permanent signal loss that is not amenable to remediation or compensation.

This conceptualization of intracortical BMI disruption types is useful for highlighting

specific areas for potential hardware improvements and also identifying opportunities

for algorithmic interventions. We review recording disruptions that have been reported

for MEAs and demonstrate how biological, material, and mechanical mechanisms of

disruption can be further categorized according to their impact on signal characteristics.

Then we discuss potential compensatory protocols for each of the proposed disruption

classes. Specifically, transient disruptions may be minimized by using robust neural

decoder features, data augmentation methods, adaptive machine learning models,
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and specialized signal referencing techniques. Statistical Process Control methods

can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as

impedance spectroscopy can inform neural feature selection and decoding models

to compensate for irreversible disruptions. Additional compensatory strategies for

irreversible disruptions include information salvage techniques, data augmentation during

decoder training, and adaptive decoding methods to down-weight damaged channels.

Keywords: microelectrode failure, biocompatibility, recording disruptions, neuroprosthetics, brain-computer

interface, intracortical electrode array, signal quality

INTRODUCTION

Brain machine interface systems (BMIs) have been proposed
as assistive devices to restore, replace, or augment lost motor
function to people with paralysis (Hochberg et al., 2006;
Collinger et al., 2013b; Aflalo et al., 2015; Bouton et al., 2016;
Ajiboye et al., 2017). These neural interface systems record
and interpret brain signals, enabling control of an effector
device through modulation of neural activity. Non-invasive
neural recording techniques including electroencephalography
(EEG), functional near-infrared spectroscopy (fNIRS), and
functional magnetic resonance imaging (fMRI) can function
as sensors for BMIs (Hochberg and Donoghue, 2006; Nicolas-
Alonso and Gomez-Gil, 2012). However, these systems lack
the spatiotemporal resolution or information transfer capacity
required for accurate and intuitive control of high degree-
of-freedom (DOF) effectors (Hochberg and Donoghue, 2006;
Lebedev and Nicolelis, 2006; Klaes, 2018). In contrast, invasive
recording systems utilizing electrocorticography (ECoG) grids or
microelectrode arrays (MEAs) provide a richer source of neural
information. Penetrating cortical MEAs including microwire
arrays (Nicolelis et al., 2003; Krüger et al., 2010; Schwarz et al.,
2014; Obaid et al., 2020), Michigan-style arrays (Wise, 2005), and
the Utah array (Figure 1; Campbell et al., 1991; Leber et al., 2019)
acquire neural activity with unparalleled signal resolution. MEAs
can record single- and multi-unit neural activity correlated with
the kinetics (Fagg et al., 2009) and kinematics (Vargas-Irwin et al.,
2010; Aggarwal et al., 2013) of the arm during reaching and grasp
(Downey et al., 2018b). Such fine-resolution recordings have
enabled intuitive control of high DOF robotic arms (Wodlinger
et al., 2015) and functional electrical stimulation (FES) systems
(Colachis et al., 2018) by people with quadriplegia. MEAs can
also provide the necessary somatosensory feedback-control to
enhance grip performance of high DOF robotic arms (Flesher
et al., 2017) and advanced FES orthotics (Ganzer et al., 2020).
This review focuses on recording disruptions that affect MEA
BMI performance and limit their use.

Although their performance capabilities are impressive, a
significant barrier to the widespread adoption of intracortical
neural interfaces as assistive devices is the limited lifetime of
the recording array. The most extensive retrospective study of
intracortical MEA failure modes to date showed that a majority
of devices failed within a year of implantation in non-human
primates (NHPs) (Barrese et al., 2013). Even in the absence of
acute failures, analyses of state-of-the-art MEAs predict they have

less than a decade of useful life due to persistent decline in
recording quality over time (Barrese et al., 2013). Less is known
about the longevity of MEAs in humans due to the limited
number of studies utilizing chronic implants. The few clinical
trials that have investigated the functionality of intracortical
BMIs beyond 4 years post-implant have reported sustained
usability (Hochberg et al., 2012; Bockbrader, 2019; Bockbrader
et al., 2019; Hughes et al., 2020), while most other clinical studies
had plannedMEA explantation dates that occurred prior toMEA
malfunction (Bullard et al., 2020). While the useable life of MEAs
for BMI control is likely longer in humans than has been reported
in NHP studies, chronic declines in signal quality are evident
in human trials (Perge et al., 2014; Zhang et al., 2018; Hughes
et al., 2020). These declines are sometimes persistent, progressive,
and irreversible because the underlying disruptions affect the
tissue-electrode interface (e.g., glial scarring and meningeal
encapsulation), or implanted hardware (e.g., electrode insulation
deterioration). Such signal disruptions require neurosurgical
intervention for hardware exchange to completely resolve.
Device replacement to improve performance or evaluate the
hardware for damage can be both prohibitively costly and risky,
involving potential for cortical tissue injury during explant and
reimplant as well as risk for infection, hemorrhage, and adverse
reaction to anesthesia. Identifying chronic signal disruption
types that may be amenable to non-surgical remediation could
potentially extend the longevity and enhance the attractiveness
of intracortical BMIs as assistive neurotechnology.

Another challenge affecting practical usability of intracortical
neural interfaces is dynamic neural signal drift and other
transient disruptions. For example, the presence of an object
in a neuroprosthetic reach and grasp task may transiently
affect neural population firing rates and complicate decoding
of intended grip states (Downey et al., 2017). Additionally,
micromovements of the MEA and cognitive fatigue can impact
how neural features are represented across channels over time.
A common technique used with humans to mitigate these signal
instabilities is to train intracortical BMI algorithms de novo on
a daily basis (Hochberg et al., 2012; Collinger et al., 2013b;
Bouton et al., 2016; Ajiboye et al., 2017). However, transient
disruptions can decrease BMI performance to chance levels in
as little as 30min (Perge et al., 2013). This effectively renders
the interface useless until the disruption is resolved, or the
decoder is recalibrated. Recalibration prolongs set up time, a
characteristic that candidate BMI users rate as very important to
minimize (Collinger et al., 2013a). Other transient disruptions,
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FIGURE 1 | The Blackrock Microsystems (Salt Lake, UT) silicon-based, Utah microelectrode array used in high performance intracortical brain-machine interface trials

(e.g., Wodlinger et al., 2015; Pandarinath et al., 2017; Bockbrader et al., 2019). (A) Skull-mounted titanium pedestal with the wire bundle connected to a Utah MEA.

The pedestal connector pins interface with an analog or digital headstage that transmits signals to the data acquisition system. (B) Scanning electron microscopy

(SEM) image of the 10x10 array (scale bar is 2mm). (C) SEM of platinum-coated silicon tip and parylene-coated silicon shaft of a MEA electrode (scale bar is 10µm).

MEA signals may be disrupted, e.g., by biologic tissue reactions around the electrode tips, deterioration of electrode materials, or mechanical connection failures.

Detection methods can leverage the characteristic manner in which disruptions affect recorded signals, allowing for targeted interventions to restore signal quality and

BMI function. Figure reprinted with permission from Barrese et al. (2016). © IOP Publishing. All rights reserved.

e.g., FES stimulation artifact (Bouton et al., 2016), introduce noise
into the recording that must be removed to avoid temporary
loss of control when operating a physical effector like a grip
orthotic. Therefore, recognizing and accounting for transient
signal instabilities are important ways to improve convenience,
safety, and eventual adoption of BMI systems.

Consequently, detecting and mitigating MEA signal
disruptions on both chronic and acute time scales are important,
open challenges for the field. As a first step, researchers have
identified and classified common MEA failures (Barrese et al.,
2013, 2016; Prasad et al., 2014; Wellman et al., 2018). Typically,
the root causes of these failures have been sorted into three main
categories: biological, material, or mechanical. This organization
is convenient for grouping failures with similar underlying causes
and helps establish design criteria for next-generation neural
implants. For example, mechanical design considerations include
that electrodes should be strong enough to withstand the physical
forces during cortical insertion, but also sufficiently compliant to
minimize micromotion-induced strain on surrounding tissue.
Biological and material design constraints, respectively dictate
that MEA devices should not elicit a foreign body response
and should be resistant to electrode corrosion and insulation
deterioration. Though much current research is focused on
biological intervention strategies and hardware advancements
to mitigate the biological, material, and mechanical sources of
signal instability (for reviews, see Jorfi et al., 2015; Kozai et al.,
2015b; Lecomte et al., 2018; Wellman et al., 2018), the time
required for iterative redesign, testing, and regulatory approval
to translate these improvements to clinical BMIs is substantial.
While the neurotechnology field is advancing, even the best
neural implants are subject to a range of potential disruptions
that affect MEA signals and limit BMI system performance.

A promising alternative approach to counteract signal
deterioration is developing algorithmic methods to monitor
and compensate for disruptions. One benefit of this approach
is its potentially short timeline for development, deployment,
and impact. In contrast to the extensive and time-consuming
regulatory approval process required for hardware modifications,
software can be rapidly implemented and upgraded, conferring
immediate benefits to the user. Another advantage of this
approach is its inherent flexibility and customization potential.
Software can be made to adapt to chronic changes in signal
characteristics and tailored to specific users or disruption
processes. Lastly, algorithmic strategies are the only means
to restore BMI performance following disruptions that affect
implanted components because MEA repairs and modifications
are not feasible under most circumstances.

When designing algorithmic strategies to mitigate signal
disruptions, the underlying cause of a disruption becomes
secondary in importance to its impact on recorded signals.
With this shift in perspective, it becomes evident that
the categorization of disruptions as biological, material, or
mechanical needs augmented to include temporal characteristics
of the disruption and a sense of whether and how the signal
is recoverable. Within each of these three causal categories,
disruptions may have vastly different consequences on signal
quality. For example, neuroinflammation, glial scarring, and
neurophysiological state changes are all of biologic origin but
likely impact distinct attributes and time scales of recorded
signals. Here, we propose a set of disruption categories that
describe the changes of recorded signals and the amenability
of those changes to algorithmic compensation. We classify
commonly observed disruptions of MEA recordings into one of
four groups according to the following definitions:
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Transient Disruptions
Transient Disruptions interfere with recordings on the time
scale of hours or less and may resolve spontaneously. However,
recorded signals do not necessarily revert to a previous state
following a transient disruption.

Reparable Disruptions
Reparable Disruptions cause persistent interference in recordings
that typically does not spontaneously resolve. Good signal quality
can be restored with a targeted intervention that addresses the
root cause.

Irreversible Compensable Disruptions
Irreversible Compensable Disruptions cause persistent or
progressive reduction in signal quality. While the underlying
cause cannot be remedied, the effects may be compensated
for algorithmically.

Irreversible Non-compensable Disruptions
Irreversible Non-compensable Disruptions cause persistent or
progressive reduction in signal quality, cannot be remedied by
fixing the root cause, and are not amenable to algorithmic
compensation. These disruptions indicate severe failures that
may render the interface inoperable.

Assigning disruptions into these categories is useful because
each category aligns closely with strategies to detect and correct
signal disruptions. For instance, adaptive decoding algorithms
are well-suited to compensate for the acute shifts in neural
recordings caused by transient disruptions. Likewise, algorithms
that monitor longitudinal signal quality can detect reparable
disruptions such as faulty connections or external cable damage
and may provide clues that a user is fighting a systemic infection
that requires antibiotics. Irreversible, compensable disruptions,
such as the formation of a glial scar or electrode insulation
cracking, may be overcome by optimizing neural decoding
features in affected channels. Irreversible, non-compensable
disruptions such as meningeal encapsulation and ejection of
the MEA from the cortex result in widespread signal loss
that cannot be recovered with algorithmic strategies. We note
that these categories are not entirely mutually exclusive, and
some disruptions may fall in more than one category based
on severity. Nonetheless, the broad categorization can be used
to organize disruptions by performance impact and potential
for remediation.

In the following sections, we review commonly observed
MEA signal disruptions of biological, material, and mechanical
etiologies and also demonstrate application of the proposed
expanded classification method. We concentrate primarily on
disruptions affecting the Utah array because it is currently the
gold standard for clinical intracortical BMIs (Hochberg et al.,
2012; Klaes et al., 2015; Bouton et al., 2016; Flesher et al., 2016;
Ajiboye et al., 2017; Thomas et al., 2020), and both the chronic
recording performance and failure modes have been thoroughly
investigated. Nevertheless, many of the following disruptions
and corresponding algorithmic strategies are applicable to neural
interfaces that use other intracortical MEAs. An overview of
common signal disruptions with their expanded classifications,

potential detection methods, and compensatory strategies is
shown in Figure 2. We conclude this review with a discussion
of the mitigation strategies appropriate to each of the newly
introduced categories.

BIOLOGICAL DISRUPTIONS

Adverse biological reactions to neural implants are well-
characterized (for recent reviews see Kozai et al., 2015b; Campbell
andWu, 2018). To date, there has been no functional intracortical
multi-electrode recording device that completely avoids the
biological responses to implantation that preclude long-term
neural recordings. In addition to detailing the effects of chronic
biological reactions on signal acquisition, this section reviews the
biological sources of acute recording disruptions that can also be
detrimental to decoding accuracy.

Blood Brain Barrier (BBB) Damage
Electrode implantation causes trauma to cortical tissues and
directly damages the blood-brain barrier. Penetrating electrodes
displace local tissue and cause minor cortical tearing in addition
to rupturing, severing, and dragging of the microvasculature
(Bjornsson et al., 2006; House et al., 2006). Even though
MEAs are carefully placed to avoid major vessel trauma
during implantation, they inevitably causemicrovascular damage
because individualized electrode placement around microvessels
is not possible. Implantation in the human cortex has
caused microhemorrhages around electrode tracks and petechial
hemorrhages below electrode tips (Figure 3; Fernández et al.,
2014). BBB disruption, evidenced by local increases of ferritin,
immunoglobulin, and albumin at the electrode-tissue interface,
persists throughout the entire implant duration and is associated
with poor recording performance (Prasad et al., 2012, 2014;
Saxena et al., 2013; Nolta et al., 2015).

BBB disruption degrades recording quality through several
mechanisms. First, the damaged vasculature enables infiltration
of proinflammatory macrophages and myeloid cells at the
implant site (Saxena et al., 2013). These cells produce cytokines
that promote neuroinflammation, enhance BBB permeability,
and create a feedback loop that propagates chronic inflammation,
neurodegeneration, and signal deterioration (Saxena et al.,
2013). Secondly, loss of the BBB facilitates plasma protein
leakage into the peri-electrode space, contributing to astroglia
and microglia activation, further amplifying neuroinflammation
(Kozai et al., 2015b). Erythrocyte infiltration and degradation
following microhemorrhages at the implant interface increases
free iron levels, which in turn promotes local oxidative stress
(Bennett et al., 2019). Lastly, damaged vasculature allows for an
unregulated influx of molecules around the array that can disrupt
local ionic gradients and synaptic stability, ultimately resulting in
variable neuronal responses.

Signal Disruptions Due to BBB Damage

Transient disruptions
Acute neuroinflammation and homeostatic imbalances cause
acute firing rate modulations of neurons recorded by the
array as well as changes in background biological noise. These
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FIGURE 2 | Classification of common MEA signal disruptions and applicable compensatory strategies. (A) Signal disruptions are classified according to their

underlying cause (Biological, Material, or Mechanical), and impact on signal quality and responsiveness to intervention (Transient, Reparable, Irreversible

Compensable, and Irreversible Non-compensable). (B) Signal disruptions can be explicitly detected with statistical monitoring of neural features and recording metrics.

Following the detection of a disruption, BMIs can initiate tailored algorithmic countermeasures to adapt to changes in signal characteristics. In parallel, advanced

machine learning algorithms and decoder training strategies mitigate the effect of disruptions without requiring explicit detection. (C) The newly proposed disruption

classes have characteristic interventions that help maintain BMI performance. Signal preprocessing, data augmentation, neural feature selection, neural manifolds,

and adaptive neural decoders are among the most useful techniques for mitigating the effects of recording disruptions.

biological responses decrease recording consistency, which can
negatively impact BMI decoder performance. Resolution of acute
neuroinflammation can reverse these signal changes.

Irreversible compensable disruption
Chronic inflammation is associated with minor loss of neurons
around the array, resulting in a decrease of available information
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FIGURE 3 | Gross specimens of human temporal lobe implantations and micrographs of the surface of the Utah electrode array after acute implantation in human

brain. (A) Placement of an electrode array in temporal cortex. (B) Once the array has been removed there are some evident microhemorrhages. (C) Horizontal section

showing blood in the outermost electrode tracks and petechial hemorrhages (white arrows) located below the tip of the electrodes. (D) Detail of the petechial

hemorrhages. (E) Scanning electron micrograph of an electrode tip. Many red blood cells appear in close contact with electrode materials. (F) Detail of the red blood

cells on the surface of the microelectrodes. Calibration bars (A–D) = 2mm. Figure and caption reprinted from Fernández et al. (2014). Microhemorrhages such these

are associated with acute neuroinflammation and transient disruption of signal quality.

in theMEA recording. Neurodegenerative states such as these are
associated with chronic, slowly progressive increases in neural
response variability, dropout of previously recorded units, and
decline in signal to noise ratio of recorded signals.

Tissue Encapsulation
Following device implantation, microglia and astrocytes are
activated and recruited to the electrode interface where they
form a sheath around electrodes (Szarowski et al., 2003; Biran
et al., 2007; Kozai et al., 2012, 2015b; Fernández et al.,
2014; Salatino et al., 2017). The extent of glial scarring is
variable, and selective electrode encapsulation has been observed
for neighboring recording sites in the same array (Rousche
and Normann, 1998). Such inconsistencies could be due to
variations in local tissue and microvascular damage during
implantation. Electrodes surrounded by increased densities of
non-neuronal cells, including microglia and astrocytes, tend to
acquire lower quality signals (Figure 4; Salatino et al., 2017).
Furthermore, MEAs are susceptible to fibrous encapsulation that
can cause gross array movement, chronic recording instability,
and widespread signal loss (Barrese et al., 2013; Woolley et al.,
2013; Cody et al., 2018; Eles et al., 2019). Here we discuss
several of the mechanisms by which glial scarring and fibrous
encapsulation affect recorded signals.

Glial scarring is most likely to disrupt recordings during acute,
post-implant scar formation, and tissue stabilization around the
implant. This process is commonly identified as the cause for
the substantial increase in electrode impedance typically seen
within the first weeks after implantation (Williams et al., 2007;
McConnell et al., 2009a; Mercanzini et al., 2009; Barrese et al.,

2016). Heightened impedance with scar formation suggests that
the scar electrically insulates the implanted device and restricts
current flow. Converging evidence supports the insulating role
of the glial scar, demonstrating that the glial sheath inhibits
molecular diffusion (Roitbak and Syková, 1999). In addition, scar
formation may influence synaptic transmission and modulate
surrounding cellular and neuronal population activity (Salatino
et al., 2017), alteringMEA signal characteristics as the scar forms.
Changes in glial scar morphology have been observed up to
16 weeks post-implant (McConnell et al., 2009b; Potter et al.,
2012), highlighting the potential for dynamic changes in the
MEA recording environment over this timeframe. Nevertheless,
several groups have observed that scar stabilization and chronic
decreases in recording quality are not temporally aligned,
necessitating the involvement of other failure mechanisms in loss
of signal quality (Winslow et al., 2010; Barrese et al., 2013, 2016;
Malaga et al., 2016; Black et al., 2018).

Activated glial cells may contribute to chronic signal
disruptions by producing proinflammatory cytokines that can
lead to neurodegeneration (Salatino et al., 2017). Indeed, high
levels of activated glial cells are associated with neuronal loss
adjacent to electrodes, which is likely a result of neurotoxic
inflammation (Biran et al., 2005, 2007; McConnell et al., 2009b).
Furthermore, these scars are known to create a local inhibitory
environment that impedes axon regeneration (Fawcett and
Asher, 1999). Irreversible neuronal loss decreases the signal-to-
noise ratio (SNR) of recorded signals and causes dropout of
previously recorded units.

While the time course and effects of parenchymal
encapsulation on recording quality are still being debated,
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FIGURE 4 | Evidence for a negative impact of increased gliosis on recording quality. (A–D) Representative images from four animals demonstrate the range of

endpoint histological outcomes (from “good” to “poor,” left to right). Neuronal nuclei (NeuN, green) and astrocytes (GFAP, red) surrounding probe tracts are shown,

and the associated average neuronal and non- neuronal density data are listed [area binned cell counts, neuronal density (ND), and non-neuronal density (NND), in

cells mm−2]. Recording segments with signal-to-noise-ratio (SNR) values representative of the average value for each animal are depicted. Recording quality improved

with decreased NND and increased ND/NND (P < 0.05, Spearman’s ρ, n = 6). Impedance increased with increased NND (P < 0.05, Spearman’s ρ, n = 6). Scale bar,

100µm. This figure was generated after additional analysis on data collected in Purcell et al. (2009). Figure and caption adapted with permission from Salatino et al.

(2017). Copyright 2017, Springer Nature. Chronic changes from glial scarring are associated with irreversible, compensable signal disruptions.

it is generally agreed that meningeal encapsulation is a significant
failure mode of intracortical electrodes. In fact, meningeal
encapsulation and extrusion of intracortical arrays is the most
common chronic failure mode of NHP MEAs (Barrese et al.,
2013). Encapsulation occurs when meningeal cells migrate
down the implant from the cortical surface and form a capsule
that conforms to the implant and thickens over time (Woolley
et al., 2013; Eles et al., 2019). Examples of extensive fibrous
encapsulation around chronically implanted Utah arrays are
shown in Figure 5 (adapted from Barrese et al., 2013). The
tissue capsule exerts mechanical forces that can ultimately
eject the device from the cortex (Rousche and Normann, 1998;
Barrese et al., 2013; Cody et al., 2018). Excessive local meningeal
proliferation can also result in a downward pressure that causes
indentation of the cortical surface (Rousche and Normann,
1998). In either case, movement of the array changes the depth
of the recording sites in the cortex and chronically disrupts
signal stability.

Signal Disruptions Due to Tissue Encapsulation

Irreversible compensable disruptions
Scar formation and stabilization can be associated with increased
impedance, reduction in signal amplitudes, and decreased SNR
due to electrode encapsulation and neuronal loss. Fluctuations
in scar morphology and local neuronal density near the implant

cause variability in recorded potentials across time. Minor
meningeal encapsulation and gradual array movement may alter
spike amplitudes, noise levels, and lead to loss of isolated units.
These irreversible changes may nevertheless be compensable via
algorithmic strategies.

Irreversible non-compensable disruption
Severe meningeal encapsulation and array movement can
progress to ejection of the device from the cortex, resulting
in complete or near-complete signal loss which may disable
the BMI.

Neuronal Degeneration
Device implantation results in a decrease in local neuronal
density, particularly within 50µm of the electrodes (Biran et al.,
2005; McConnell et al., 2009b; Winslow et al., 2010; Potter
et al., 2013; Ravikumar et al., 2014; Gaire et al., 2018). As
has been previously discussed, neuronal loss is attributable to
a combination of traumatic damage during MEA insertion,
the formation of a glial scar, and the neurotoxic and pro-
inflammatory environment in tissue surrounding the MEA.
During the acute post-implant phase (<4 weeks), local neuronal
density may be dynamic (Potter et al., 2012). However, at chronic
time points (≥12 weeks), evidence for both progressive neuronal
loss (McConnell et al., 2009b; Potter et al., 2012), and stable
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FIGURE 5 | Encapsulated arrays—gross specimens. All arrays show grossly

visible encapsulation, however the extent of encapsulation varies greatly. (A)

Thin tissue capsule with arachnoid appearance at 37 days post-implant. This

tissue can be seen merging with normal arachnoid to the left (arrow) and

normal dura to the right (arrowhead). (B) Dense fibrous tissue encapsulation at

761 days post-implant. The array is intradural in this photo. (C) Complete

encapsulation by day 853. The capsule was cut open (black line) in order to

visualize the array seen in (D). Array names reflect monkey name and implant

location. Figure and caption adapted from Barrese et al. (2013), © IOP

Publishing. Reproduced with permission. All rights reserved. Chronic changes

from meningeal encapsulation can be associated with irreversible,

compensable signal disruption when the encapsulation is minor; or irreversible,

non-compensable signal disruption when the process is severe.

neuronal density (Winslow et al., 2010) have been reported. At
least some of this variability appears to be related to the specific
method of device sterilization used pre-implantation; one study
showed a temporal decline in neuronal density between 2 and 16
weeks only for certain device sterilization techniques (Ravikumar
et al., 2014). Because microelectrodes are believed to be sensitive
to neurons within 140µm of the recording site (Buzsáki, 2004),
local changes in neuronal viability are likely to substantially
affect recordings.

Neurodegenerative or pathological states have been
observed near the implant site as early as 2–16 weeks post-
implant (McConnell et al., 2009b; Potter et al., 2013; Saxena
et al., 2013). Tau protein pathology, a characteristic form of
neurodegeneration that is a consequence of neuroinflammation
and microglia activation (Ising et al., 2019), has been found
in axons surrounding implanted microelectrodes (Figure 6;
McConnell et al., 2009b). Hyperphosphorylated tau causes this
intracellular protein to misfold and clump into tangles inside
neurons. Multiple lines of evidence suggest that tau protein
pathology is associated with alterations in synaptic connectivity,
abnormal spontaneous spiking activity, and changes in neuronal
firing rates (Frere and Slutsky, 2018), which can contribute to
destabilization of neural signals near the implant.

Other factors contributing to neuronal degeneration and
dysfunction have also been reported. MEA implantation has

been associated with loss of myelin near the electrode interface
(Winslow et al., 2010), a condition that impairs signal
transduction of affected neurons. Furthermore, local dendritic
loss has been reported (McConnell et al., 2009b), which can
affect synaptic processing and neuronal excitability (Šišková
et al., 2014). Observations of poor recording performance in the
absence of both device material failure and severe neuronal loss
suggest that some local neurons become impaired or silenced
(Michelson et al., 2018). Collectively, these degenerative and
pathological states lead to neuronal signaling instabilities that
affect both acute and chronic decoding performance.

Signal Disruptions Due to Neuronal Degeneration

Irreversible compensable disruptions
Chronic neurodegeneration and neuronal dysfunction lead to
inconsistent neuronal signaling and the potential for a gradual
decline in the number of recorded single units. Although
these conditions are irreversible, meaningful signal may still be
recoverable through neural decoder feature optimization and
other algorithmic strategies.

Irreversible non-compensable disruption
In extreme cases of neurodegeneration or tauopathy, there
is severe, irreversible signal loss not compensable through
algorithmic strategies.

Inflammation and Infection
Apart from acute neuroinflammation associated with BBB
breach, several other factors may cause or exacerbate the local
neuroinflammatory response and recording signal disruption.
For example, increased levels of residual endotoxins on neural
implants after sterilization have been observed to cause greater
microglial and macrophage activation, glial scarring, and
neuronal loss at the implant site acutely after surgery (Ravikumar
et al., 2014). Activated glial cells near the electrode interface
produce pro-inflammatory cytokines such as tumor necrosis
factor alpha (TNF-α) and interleukin-1β (IL-1β) that can affect
neuronal excitability and contribute to a neurotoxic environment
(Biran et al., 2005; Karumbaiah et al., 2013; Vezzani and Viviani,
2015). Neural tissue with increased expression of genes encoding
for pro-inflammatory cytokines have been linked to reduced
SNR in neural recordings (Saxena et al., 2013). In addition,
histological and gene expression analyses have demonstrated
heightened oxidative stress at the tissue-electrode interface
(Potter et al., 2013; Ereifej et al., 2018; Bennett et al., 2019).
Reactive oxygen species (ROS), formed by inflammatory cells
or during electrochemical reactions at the electrode surface, are
known to deteriorate electrode materials, cause neuronal loss or
degeneration, and potentiate neuroinflammation (Potter et al.,
2013; Potter-Baker and Capadona, 2015; Takmakov et al., 2015),
resulting in MEA signal instabilities.

Mounting evidence suggests that stiff mechanical probes
propagate local neuroinflammatory cascades. Not only do
mechanically stiff probes result in greater micromotion induced
stresses (Subbaroyan et al., 2005; Sridharan et al., 2015), but they
also decrease BBB integrity, increase glial scar density, increase
neuronal loss, and increase levels of activated microglia and
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FIGURE 6 | Hyperphosphorylated tau surrounding chronically implanted

microelectrodes 16 weeks post-implant. (A–C) Representative images of

pT231 immunostained pretangles. (B) Boxed region in (A) at higher

magnification. Note the increased presence of pT231 staining near

non-specifically stained hemosiderin-laden macrophages. (C) Additional

example from another implant showing the pT231 positive signal surrounding

the electrode. Arrows indicate labeled diffuse granular pretangles and arrow

heads indicate rodlike dystrophic neurites. (D) Positive control—human

Alzheimer’s case sections contained stained processes similar to those seen

around electrodes. The scale bar is 50µm (A) and 10µm (B–D). Figure and

caption reprinted with permission from McConnell et al. (2009b). © IOP

Publishing. All rights reserved. Tau protein misfolding and neuronal

degeneration cause irreversible signal disruption that may be compensable

with algorithmic strategies.

macrophages (Nguyen et al., 2014; Du et al., 2017). Thus, stiff
materials such as silicon and tungsten, often used to fabricate
neural implants, likely exacerbate local neuroinflammation and
contribute to signal deterioration.

Lastly, current clinical BMI systems utilize transcutaneous
connectors that have local skin sites that are prone to infection.
Superficial infections may be treated with topical or oral
antibiotics and may not affect MEA signal. However, deep
infections spreading to bone that supports the connector could
result in loosening of the screws leading to mechanical failure
(Fang et al., 2017). In more severe cases, deep tissue infection
could require surgical intervention or lead to death (Barrese et al.,
2013). In parallel, BMI users with a spinal cord injury or similar
disability are at higher risk for systemic infections unrelated to
the implant, e.g., urinary tract infections (Garcia-Arguello et al.,
2017). Several links between peripheral inflammation and CNS
modulation have been identified (Dantzer et al., 2008; Teeling
and Perry, 2009), and systemic infection has been anecdotally
associated in time with decline in BMI decoder accuracy in
clinical trials (Schwemmer et al., 2018). However, formal study
of the relationship between BMI performance and systemic
infections remain to be undertaken. Evidence that inflammatory
responses are exaggerated in those with neurodegenerative
disorders (Teeling and Perry, 2009) could mean that signal
disruptions due to infection are more pronounced in certain
clinical BMI populations than in NHP studies with otherwise
healthy subjects.

Signal Disruptions Due to Inflammation and Infection

Transient disruptions
Acute neuroinflammation or tissue edema after implantation
may cause transient changes in firing rate that may resolve
spontaneously when the underlying biological processes resolve.

Reparable disruptions
Systemic infection is likely to cause altered neural signaling and
recording instability that is reversible with systemic antibiotics.

Irreversible compensable disruptions
Chronic inflammation is associated with altered neuronal
signaling, loss of recorded units, and a decrease in SNR that
may be irreversible, but also potentially compensable with
algorithmic strategies.

Irreversible non-compensable disruption
Severe local deep tissue infections at the MEA implantation
site may cause irreversible tissue changes, disruption of
neural recording, and may require surgical intervention for
device explantation.

Array Micromotion
Inconsistent neuronal firing rates and spike waveforms from
the same MEA channel and subject have been reported in both
clinical and NHP trials. One NHP study evaluating motor cortex
recordings revealed that 61% of neurons were unstable over 15
days (Dickey et al., 2009). A study in humans reported that 60%
of units were unstable after a single day (Downey et al., 2018a). A
similar clinical trial showed that firing rates and spike amplitudes
varied for 84% and 74% of units, respectively, within a single
recording session (Perge et al., 2013).

These instabilities likely arise from two sources:
neurophysiological changes (discussed in the following section)
and small fluctuations in spatial proximity between electrodes
and neurons. One observation that has been interpreted as
evidence of micromotion causing signal variability is the
synchronous shift in spike amplitudes across the array (Perge
et al., 2013). In NHPs, high acceleration head movements have
been proposed as a contributing factor to array micromotion,
as they have been linked to abrupt changes in neuronal peak-
to-peak voltages (Santhanam et al., 2007). However, different
micromotion mechanisms may be at work in human studies,
as severe signal instabilities have been identified in humans
in the absence of rapid head movements (Perge et al., 2013).
Additionally, abrupt electrode shifts are not consistent with the
gradual loss of stable units observed in humans (Downey et al.,
2018a). Alternative explanations for micromotion that may
be more common in clinical trials include changes related to
intracranial pressure, local vasculature, or biological processes
occurring at the tissue-electrode interface.

Small shifts in array location may cause small changes
in waveform amplitude (i.e., spike amplitude instability) that
translate into significant impacts on apparent spike rate and
BMI decoding performance. Perge et al. provide an illustrative
example of spike detection error caused by a rapid baseline shift
to 44% smaller spike amplitudes. This was interpreted as a 50%
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drop in the unit’s apparent firing rate because the spikes no
longer met predefined amplitude criteria for the thresholding
process (Figure 7). Interestingly, offline spike resorting revealed
that the unit actually increased firing rate during this time
(Perge et al., 2013).

Signal Disruptions Due to Array Micromotion

Transient disruption
Array micromotion may cause apparent changes in neuronal
firing rates and spike amplitudes on the time scale of minutes to
hours. Adaptive thresholding algorithms may help identify these
situations and mitigate their effect on BMI performance.

Neurophysiological Changes
Acute changes in recordings may also result from
neurophysiological changes in the recorded neuronal population.
Perge et al. reported that ∼85% of the observed instability in
units was due to variability in spike generation, citing cognitive
and behavioral changes, neural plasticity, or other unknown
physiological mechanisms as likely factors (Perge et al., 2013).
Intracortical recording variabilities in somatosensory or motor
areas have been associated with the subject’s emotional state
(Kennedy, 2011), attentional state (Steinmetz et al., 2000), and
arm posture (Scott and Kalaska, 1995). Neuroplastic changes
from BMI practice or other neurorehabilitation methods may
also alter neural representations across longer time scales (Sanes
and Donoghue, 2000; Dobkin, 2007; Ganguly and Carmena,
2009). It is known that EEG recording is sensitive to acute
variations in neural activity associated with medications,
psychoactive substances such as caffeine, and physical and
mental fatigue effects. It is not clear, however, to what extent
these variations are represented at the level of MEA recording,
e.g., in the hand/arm area of the motor cortex.

Other changes in firing rate may contain important
information about context. For example, researchers
investigating human motor cortex activity during control
of a grasp neuroprosthetic reported that firing rates shifted
in the presence of an object to be grasped (Wodlinger et al.,
2015; Downey et al., 2017). Therefore, in order to successfully
perform BMI-controlled object interaction tasks, BMI decoding
algorithms must account for the changes in neural firing
attributed solely to the presence of the object as well as
neurophysiologic changes associated with the user’s intent to
grasp it (Wodlinger et al., 2015; Downey et al., 2017).

Researchers have also shown that during reaching tasks,
neural activity encodes not just arm kinematics, but also
distinguishes between being in a state of rest vs. holding
a static reaching position (Velliste et al., 2014). These
changes in neural population tuning are important context-
based signal disruptions that can interfere with prosthetic
use and generate non-zero velocity predictions during rest if
not recognized and properly handled (Velliste et al., 2014).
Currently, most BMIs are operated in a controlled laboratory
setting, thus minimizing contextual variability from session to
session. However, if used as assistive devices in everyday life,
BMIs will be used in broader and potentially unpredictable

circumstances, substantially contributing to context variability in
neural representations.

Regardless of the underlying mechanisms, acute recording
instabilities have the potential to negatively impact BMI decoding
performance. In fact, firing rate instabilities have been shown to
create a directional bias during cursor control strong enough to
decrease target acquisition from 100% to chance levels in as little
as 30min (Perge et al., 2013). To prevent such dramatic decreases,
some groups have proposed utilizing adaptive decoders that can
update their parameters to account for instabilities. However,
additional instability may result as the user continuously
adapts to a regularly updating decoding model. An optimal
balance between decoder adaptation and neural adaptation
may improve BMI performance and robustness to disruptions
(Shenoy and Carmena, 2014). Ultimately, the deployment of
portable intracortical BMIs will be critical in determining the
extent to which contextual and other physiological factors impact
functional BMI performance.

Signal Disruptions Due to Neurophysiological

Changes

Transient disruption
Changes in emotional, cognitive, environmental or physical
states may cause acute variation in neuronal firing rates on the
time scale of minutes to hours. Using adaptive machine learning
decoders trained on substantial historical data may make BMIs
robust to context-specific neural features.

Irreversible compensable disruption
Neuroplasticity associated with learning and practice may induce
chronic, irreversible changes in neural representations that are
compensable with algorithmic strategies.

MATERIAL DISRUPTIONS

Intracortical arrays are subject to ongoing biologic reactions
that continually deteriorate device components. Explanted arrays
exhibit evidence of these morphologic changes, which generally
increase in severity with indwelling time. MEAs are susceptible
to a variety of sources of transient and persistent noise whose
effects can be exacerbated by material failures, e.g., damaged
insulation or connector devices. These material disruptions act
synergistically to degrade signal quality.

Pre-implant Failure
Microelectrode array fabrication is an imperfect process, and
defects have been noted even before the devices are exposed
to the harsh in vivo environment. Material defects not only
increase the risk of signal attenuation and corruption, but
also prime the array for other sources of failure. For instance,
the manufacturing inconsistency of planar silicon electrodes is
thought to partly explain variability in mechanical failure (Kozai
et al., 2015a). Pre-implantation scanning electron microscopy
(SEM) of Microprobes parylene-C coated platinum/iridium
(Pt/Ir) arrays reveal non-uniform insulation with substantial
cracking, as well as bent or cracked recording sites, which
together affect ∼25% of the total electrodes (Prasad et al.,
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FIGURE 7 | Spike amplitude instability causes spike detection error. (A) A

representative unit demonstrates large spike amplitude instability. The gray

shaded area covers the amplitude range between the upper and lower

boundaries of the window discriminator as determined manually by the

experimenter. Spikes falling outside of these boundaries remained undetected

during the online experiment. Inset: average spike waveforms during selected

time periods indicated by elongated rectangles. (B) Spike rates as determined

by online (within window, black) and retrospectively discriminated spikes

(resorted, gray). Apparent decline in the online firing rate results from failure of

the smaller waveforms to satisfy the discriminator parameters. Figure and

caption reprinted with permission from Perge et al. (2013). © IOP Publishing.

All rights reserved. Courtesy of braingate.org.

2014; Takmakov et al., 2015). In contrast, pre-implant SEM
of Blackrock Microsystems Utah arrays indicate only minor
insulation delamination and irregularities (Takmakov et al., 2015;
Barrese et al., 2016). However, defective internal components
may not be apparent with imaging techniques. Instead, these pre-
implant failures may be detected by outliers in impedance spectra
(Takmakov et al., 2015).

Though great care is taken to reduce the likelihood
of manufacturing defects and physical damage during
implantation, clinical-grade MEAs are still at risk of these
irreversible disruptions. For instance, immediately following
MEA implantation for a clinical BMI system, a small fraction
of electrodes was identified as non-functional (Simeral et al.,
2011). The precise etiology of this failure remains unknown,
but it is possible electrodes were damaged while handling the
array just before implantation (House et al., 2006) or by forces
incurred during cortical insertion. In other, more severe cases,
manufacturing defects, and improper sterilization techniques
have caused complete array failure in NHPs (Barrese et al.,
2013). In conclusion, pre-implant disruptions are rare in clinical-
grade devices; however, because they interfere with recordings

indefinitely and can degrade signals by accelerating other failure
mechanisms, they are still of high importance.

Signal Disruptions Due to Pre-implant Failure

Irreversible compensable disruption
A limited number of damaged or dysfunctional electrodes
may irreversibly distort signals or cause loss of signal from
individual channels. These disruptions may be compensable with
algorithmic strategies to exclude or down-weight bad channels.

Irreversible non-compensable disruption
Severe material defects during manufacturing have potential
to cause irreversible, widespread signal loss that is not
compensable algorithmically.

Insulation Deterioration
Over a dozen failure modes of microelectrode insulation have
been identified (Schmitt et al., 1999). Insulation deterioration
creates defects that increase effective conductor surface area.
Because the recorded voltage is the average potential across
the exposed area, defects can attenuate signals by averaging
in weak neural activity from distant sources (Wellman et al.,
2018). Moreover, defects allow signal contamination by off-
target cells and create low-impedance shunting paths to the local
environment, further reducing voltage amplitudes (Caldwell
et al., 2018). SEM of explanted Utah arrays after chronic
implantation show insulation deterioration, irregular parylene-
C and platinum (Pt) interfaces, delamination, and cracking
along the electrode shaft (with minor tissue invasion), and
delamination near the silicon-coated wire bundle (Figure 8;
Gilgunn et al., 2013; Barrese et al., 2016). Both cracking and
delamination at the base of Utah arrays have been observed
after explant (Kane et al., 2013) and accelerated aging with
ROS (Takmakov et al., 2015). Similar or worse degradation
is common in alternative devices, regardless of the insulating
material (Prasad et al., 2012, 2014; Takmakov et al., 2015).
However, more severe signal disruption effects of dielectric
damage are expected for neural implants that utilize the same
material for both the electrode and conductor because defect sites
are equally capable of signal transmission (Caldwell et al., 2018).

MEA insulation is also susceptible to water absorption
and infiltration at the electrode boundary. Water absorption
negatively affects dielectric properties and leads to signal
attenuation and electrical coupling to adjacent traces (Seymour
et al., 2009; Wellman et al., 2018). Absorption decreases
impedance and increases phase at low frequencies (Xie et al.,
2011; Takmakov et al., 2015). Furthermore, water penetration
can swell insulation, generate intrinsic stresses, and facilitate
conductor corrosion, ultimately reducing dielectric adhesion,
and promoting delamination (Schmitt et al., 1999; Seymour et al.,
2009; Xie et al., 2011; Gwon et al., 2016). For these reasons,
dielectrics with low rates of water absorption are preferred
insulators in neural interface applications (Wellman et al., 2018).
Apart from tissue-electrode interface disruptions, instances of
complete array failure have been attributed to infiltration of water
or other fluids at sites including external connectors (Barrese
et al., 2013).
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FIGURE 8 | Insulation deterioration and tip cracking. (A) Side view of a typical

electrode with intact platinum [tip], cracked parylene [shaft], and substantial

fibrosis, scale 20µm. (B) Top view of another typical electrode with intact

platinum and thick, uniform fibrosis encapsulation, scale 10µm. (C) An

electrode tip with thick encapsulation tissue, scale 3µm. (D) Detail of cracked

platinum tip, scale 200µm. (E) Delaminating parylene interface, scale 1µm.

(F) Detail of parylene delamination, scale 200 nm. Figure and caption

reproduced with permission from Barrese et al. (2016). © IOP Publishing. All

rights reserved. Tip cracking and insulation deterioration are irreversible, but

potentially compensable with algorithmic approaches.

In vivo cyclic voltammetry (CV) and impedance spectroscopy
can help identify current leakage pathway formation. Both the
electrode yield and the number of recorded units are negatively
correlated with cathodic charge storage capacity, suggesting
that device integrity directly affects recording performance
(Black et al., 2018). Linear increases in the cathodic charge
storage capacity over time suggest that deterioration such as
cracking or delamination are ongoing processes throughout
the indwelling period of the device (Kane et al., 2013; Black
et al., 2018). Additionally, irregularities in CV plots can help
identify failures such as iridium oxide film delamination on
stimulating electrodes (Troyk et al., 2004). However, the safety

and feasibility of CV as a diagnostic tool for the MEAs currently
used in human studies is uncertain. Stimulation parameters must
be tightly controlled to prevent electrode degradation, neural
tissue damage, and undesired neural activation (Cogan, 2008).
Furthermore, disruptions to the reference electrode can result in
dangerously high currents (Kane et al., 2013). Aside from safety
concerns, measurements can be prohibitively time consuming,
especially at slow scan rates for MEAs with many electrodes.

In contrast to CV, impedance measurements are easily and
regularly obtained during clinical BMI recording sessions to asses
recording and stimulating capabilities (Simeral et al., 2011; Zhang
et al., 2018; Hughes et al., 2020). Impedance characterization
of devices has historically been reported at 1 kHz because it
provides information about the exposed electrode area (Hsu et al.,
2009) and roughly matches the frequency of an action potential.
Importantly, 1 kHz impedance can correlate with recording
metrics including array yield and the number of recorded units
(Prasad and Sanchez, 2012; Black et al., 2018), with several
studies supporting the notion that considerable information
about device integrity exists at higher and lower frequencies
(Takmakov et al., 2015; Caldwell et al., 2018; Straka et al., 2018).
For the Blackrock Utah array with platinum recording electrodes,
1 kHz impedance <60 k� indicates shunting to ground (Barrese
et al., 2013). Active declines in impedance may signify ongoing
insulation deterioration, formation of shunting pathways, and
attenuation of recorded signals. Conversely, impedances of
several M� indicate broken signal paths due to hardware failures
or connection disruptions (Simeral et al., 2011). Ultimately,
information extracted from impedance measurements could
be used to customize signal preprocessing and inform neural
decoders to maintain long-term BMI performance despite signal
disruptions caused by chronic material failures.

Signal Disruptions Due to Insulation Deterioration

Irreversible compensable disruptions
Insulation failure can lead to irreversible signal disruptions
including reduced signal amplitudes, off-target cell recording,
and increases in crosstalk. Signal loss on select channels due to
electrode shorting is also possible.

Irreversible non-compensable disruption
Catastrophic materials degradation or electrical shorting can
result in irreversible, extensive and non-compensable signal loss.
Impedance spectroscopy can help identify material degradation
and implant failures.

Electrode Degradation
Electrode materials in clinical intracortical BMIs are either
platinum (Pt; for recording) or iridium oxide (IrOx; for
stimulation). SEM imaging of explanted Utah arrays generally
show limited platinum degradation for recording devices
implanted <2 years (Gilgunn et al., 2013; Barrese et al., 2016).
At time scales approaching 1,000 days, platinum corrosion,
cracking, and peeling have been observed (Figure 8), although
some damage likely results from forces incurred during surgical
explant (Barrese et al., 2016). Nevertheless, the platinum-coated
electrodes on Utah arrays appear more stable than tungsten
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electrodes which are known to corrode over shorter periods
and produce toxic metal ions in the process (Patrick et al.,
2011; Prasad et al., 2012). Also, Utah array electrodes appear to
withstand bending and buckling better than Pt/Ir electrodes on
similar microelectrode arrays (Prasad et al., 2014).

Electrode failures that increase effective surface area, such
as cracking or corrosion, decrease impedance, and attenuate
recorded signals by averaging voltages over a larger geometric
area (Wellman et al., 2018). Delamination is a concern for
MEAs with metallic or conductive polymer electrode films,
especially under neural stimulation conditions (Cogan et al.,
2004; Cui and Zhou, 2007; Boehler et al., 2017; Caldwell et al.,
2018). Damage to these outermost electrode films exposes the
underlying conductor which can lead to corrosion and further
undermining of the film (Caldwell et al., 2018). Corrosion
byproducts may decrease signal quality by promoting local
inflammation (see section Inflammation and Infection). In severe
cases, delamination causes the electrical properties of the exposed
conductor to dominate at the recording site, often dramatically
increasing impedance and decreasing signal quality (Cui and
Zhou, 2007; Boehler et al., 2017; Caldwell et al., 2018). In
summary, optimal electrode materials can prolong high-quality
signal acquisition, but over chronic periods, current devices
are susceptible to electrode degradation that negatively impacts
electrical properties.

Signal Disruptions Due to Electrode Degradation

Irreversible compensable disruptions
Damaged electrodes may cause irreversible distortion or loss of
signal that may be compensable through algorithmic strategies.

Irreversible non-compensable disruption
Catastrophically damaged electrodes can result in irreversible,
extensive and non-compensable signal loss and array failure.

Signal Noise
Intracortical recording systems are susceptible to both biotic and
abiotic sources of noise. Major sources of biotic noise include
ionic activity from “background” neurons firing, nearby muscle
activity, and motion artifact. First, microelectrodes are sensitive
to neurons within ∼140µm of the recording site (Buzsáki,
2004; Moffitt and McIntyre, 2005). Thus, signals acquired from
a single electrode could be influenced by dozens or hundreds
of neurons depending on implant location, local neuronal
viability, and degree of tissue encapsulation. Activity from
distant neurons is difficult to effectively isolate and therefore
has traditionally been considered signal noise (Lempka et al.,
2011; Lopez et al., 2012). As such, changes in neuronal density
and firing rates contribute to non-stationary biological noise
(Lempka et al., 2011). Secondly, abrupt motions or nearby
muscle activity can produce artifacts in recorded signals that are
common across all electrodes. Paralikar et al. provide evidence
of common noise with similar characteristics to neural activity
and demonstrate that traditional noise rejection methods such
as differential referencing can be inadequate (Paralikar et al.,
2009). Similar deficiencies in eliminating motion artifact have
been noted for common averaging referencing as well (Michelson

et al., 2018). Finally, the degree of local tissue resistivity from
device encapsulation is expected to correlate with thermal noise
(Lempka et al., 2011).

Abiotic noise arises from BMI hardware and environmental
interference. Contributions from recording systems include
electrode-electrolyte interface noise and electronic thermal and
flicker noise (Hassibi et al., 2004; Yang et al., 2009; Lopez et al.,
2012). High-density arrays are particularly susceptible to cross-
talk, which can attenuate recorded potentials and influence
signals in adjacent electrodes (Wellman et al., 2018). Future
systems that employ high-density arrays and wireless data
transmission will also have to contend with hardware constraints
that limit data bandwidth. Consequently, these systemsmay need
to employ strategies such as lossy data compression that degrade
signal quality.

Environmental noise primarily presents as electromagnetic
interference (especially at 60Hz), but other artifacts such
as electrostatic discharge may occasionally disrupt recording.
BMI systems that incorporate functional electrical stimulation
(FES) to restore hand or arm function (Bouton et al., 2016),
or intracortical microstimulation for somatosensory feedback
(Weiss et al., 2019), are particularly susceptible to extreme
levels of electrical artifact. Large voltage transients during such
stimulation periods decrease neural decoding performance in
the absence of compensatory algorithms (Young et al., 2018;
Weiss et al., 2019). Even in cases where the sources of noise
are small in magnitude compared to recorded action potentials,
the cumulative effect ultimately acts to lower SNR and decrease
neural decoding performance. As BMI systems grow more
complex to support multiple and more diverse end-effectors, and
are used in new environments, recorded noise levels will continue
to become more variable.

Signal Disruptions Due to Signal Noise

Transient disruptions
Sources of noise, including electrostatic discharge, stimulation
transients, and motion artifact commonly cause transient signal
artifacts. Contextual environmental noise may also variably
influence recordings. These sources of noise can frequently be
cleaned from the signal using algorithmic methods.

Irreversible compensable disruption
Background neural activity can introduce irreversible signal noise
that cannot be robustly isolated but can be mitigated through
careful neural feature selection and algorithmic strategies.

Irreversible non-compensable disruption
Recording and effector devices are sources of
irreversible, inherent noise that are not amenable to
algorithmic compensation.

MECHANICAL DISRUPTIONS

Neural recording systems are susceptible to mechanical
interferences at both micro- and macroscopic levels. At the
microscopic level, micromotion of the array and mechanical
agitation of surrounding tissue are the dominating disruptive
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modes. However, the mismatch of mechanical properties
between the cortex and implants generally manifest as biological
disruptions through neuroinflammation, and as such, are
covered in previous sections. At the macroscopic level, hardware
failures such as faulty connections or physical trauma could
rapidly change recordings or cause permanent dysfunction.

Traumatic Damage
Intracortical MEAs in clinical recording systems currently
require a transcutaneous, bone-anchored port to transmit data.
Cables that connect to the port have a tall rigid base that
can act as a lever to produce large, destructive forces on
the connector and skull. Accidental trauma to the connector
or forces applied by the cable could result in unrecoverable
damage to the system or user. Acute traumatic damage to
intracortical MEA systems is the most common failure mode
for NHPs (Barrese et al., 2013). While the connector design has
improved over time to reduce the likelihood of breaking, the
devices are not impervious to mechanical damage. Concerns
about mechanical reliability of skull-mounted connectors have
prompted the design of accessory hardware to enhance connector
stability (McMorland and Velliste, 2013). MEA connectors are
also susceptible to localized physical damage that can affect
recording channels. For instance, in recent Blackrock designs,
the surface of the skull-mounted CerePort connector has an
exposed gold connector pin for each electrode in the array. These
pins are prone to irreparable damage caused by contact with
headstage guide pins and other objects. Utilizing fully implanted
systems would reduce the opportunity for external mechanical
damage, but design challenges regarding power consumption,
device size, and data transmission bandwidth must be resolved
to successfully translate fully implantable technology for human
BMI applications (Leber et al., 2019). Furthermore, implanted
hardware in BMI systems are also at risk for traumatic damage.
Components such as electrode traces may suffer mechanical
damage, particularly at high-strain areas caused by mechanical
property mismatches or device geometry (Kozai et al., 2015a).
Lastly, cases of head trauma may disrupt recording by damaging
neurons and microvasculature near an implant. Traumatic
brain injuries can initiate neuroinflammation, alter intracranial
pressure, contribute to chronic neurodegeneration (Mckee and
Daneshvar, 2015), and significantly alter the landscape of
recordable neurons. Though the incidence of traumatic damage
to BMIs can be mitigated by cautious behavior, operating
BMIs in uncontrolled environments will increase the risk of
these disruptions.

Signal Disruptions Due to Traumatic Damage

Irreversible compensable disruption
Irreversible signal distortion may occur due to minor damage
of irreplaceable hardware components such as external
gold electrode pins. Distortions may be compensable with
algorithmic approaches.

Irreversible non-compensable disruptions
Traumatic damage to the skull mounted connector or internal
wire bundle can cause irreversible, non-compensable disruption,

and inability to record signals. Head trauma may also result in
irreversible neural dysfunction depending on the severity, and
it is unclear how algorithmic techniques could improve signal
quality after these events.

Connection Failures
After neural activity is acquired through the microelectrodes on
the array, the signals are transferred through a series of cables and
connectors, each of which has potential to fail independently. For
example, in current clinical BMIs, the filament interface between
the CerePort and headstage can accumulate debris that prevents
proper interfacing and corrupts signals. Analog headstages are
particularly susceptible to noise and can require complicated
amplifier connectors to support high numbers of recording
channels. Improvements in connection reliability and signal
noise can be achieved with headstage hardware that digitizes
neural signals near the recording site (Weiss et al., 2020). These
digital headstages are also more compact and less obtrusive—
factors that may enhance their integration in portable BMI
systems (Weiss et al., 2020). Other emerging technologies utilize
active circuits to amplify, filter, multiplex, and digitize neural
signals directly onboard the implanted device (Jun et al., 2017;
Fiáth et al., 2018; Angotzi et al., 2019). On-chip signal processing
and digitization not only reduces the likelihood of connection
disruptions by circumventing the need for complicated analog
headstage connectors, but it also limits interference from noise
and movement artifacts by digitizing signals closer to the source.
These devices enable recording from hundreds or even thousands
of channels (Putzeys et al., 2019), though they have yet to be
validated in clinical studies.

Literature characterizing how connection disruptions
manifest in recorded data is rare. One study, using custom
microwires to record from a macaque cortex, reports that
impurities between the connector and head stage caused poor
contact that resulted in a two-fold increase in noise and the
disappearance of spikes (Figure 9; Krüger et al., 2010). The
authors note that the contact could open and close dynamically
depending on animal movement. After cleaning one of the
connectors, they were able to recover ∼20 malfunctioning
channels. While substantial differences exist between this
system and current clinical BMIs, this study highlights how
system maintenance can unexpectedly impact recordings.
For example, if training data for a decoder were collected
using a compromised cable, hardware maintenance may alter
recorded signals and ultimately decrease BMI performance.
Connection disruptions can also cause high variability in
electrode impedance measurements and impair recording
consistency (Simeral et al., 2011; Hughes et al., 2020). Although
many connection disruptions can be remedied by a technician
or a replacement part, further damage is possible during system
repair. For instance, improper cleaning of CerePort contact pads
has caused recording system failures (Barrese et al., 2013).

Faulty connections are often overlooked as significant failure
modes for BMIs, but as these systems become portable and are
used without technician oversight, the severity and likelihood
of connection disruptions increases. Any system dependent on
connection hardware is at risk for faulty connections, cable
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FIGURE 9 | Record of a channel showing the typical effect of connection disruption leading to noise during neural recording: the spikes are lost in increased

background noise. Figure adapted with permission from Krüger et al. (2010). Connection disruptions are reparable with engineering intervention.

damage, or hardware malfunction that could interfere with
signal transmission. It is important to note that connection
disruptions are possible every time the user connects to and
disconnects from the system. Given the potential for signal
disruptions to be masked during signal processing, e.g., utilizing
normalization methods or insensitive feature extraction, it is
critical to establish careful data checks as standard operating
procedure for device use. Furthermore, especially for clinical
BMI systems with stimulating microelectrodes, safety procedures
require identification of connection disruptions to appropriately
disable electrodes and prevent irreversible damage from exposure
to high voltages (Hughes et al., 2020).

Signal Disruptions Due to Connection Failures

Transient disruptions
Unstable connections may cause temporary loss or gain of viable
recording channels. Hardware maintenance may promote the
recovery of viable channels.

Reparable disruptions
Faulty external cables or connections can cause persistent
channel crosstalk, interference, or signal loss. These
disruptions can be corrected through repair or exchange of
the faulty hardware.

DISCUSSION

This review has discussed how common MEA signal disruptions
of biological, material or mechanical etiologies can further
be classified according to their duration and amenability to
repair or compensation. This shift in focus from the cause
of disruption to characteristic effects on signal and BMI
performance provides opportunities to consider how each type
of disruption is best identified and what interventions might
enable recovery of high-quality signal. Intracortical MEAs are
subject to a dynamic in vivo environment which, if not
accounted for, will render static neural decoders ineffective over
relatively short periods. The potential for signal disruptions
will further increase as BMI systems transition from being
experimental devices used in controlled laboratory settings to
portable devices used in themultiple unpredictable environments
of daily life. Neural recordings will be subject to unique
and varied sources of environmental noise, while hardware
components will be at risk of interference, physical damage,
and unanticipated challenges in novel use cases. Additionally,
the cognitive state of the user and the context in which the

device is operated will be highly variable, affecting neural
responses in unpredictable ways. Several of these disruptions
can be mitigated or even eliminated by improving the materials
and design of the neural interface itself, but it is unrealistic
to expect that hardware improvements alone can solve this
problem. Fortunately, recent developments in machine learning
and statistical methods hold promise in mitigating the diverse
range of signal disruptions encountered by BMIs. We first
consider in vivo diagnostics and algorithmic approaches to
detect ongoing signal disruptions, followed by a discussion
on strategies to combat transient, reparable, and irreversible
compensable disruptions.

Disruption Detection Methods
Identifying ongoing disruptions is an essential step in developing
targeted algorithmic countermeasures. One useful diagnostic
tool, in vivo impedance spectroscopy, has revealed unique
impedance signatures for varying degrees of microelectrode
tissue encapsulation (Williams et al., 2007; Cody et al., 2018).
Impedance spectroscopy, in combination with equivalent circuit
modeling, can provide insight on abiotic failure modes such
as insulation deterioration, wire breakage, and electrode tip
degradation (Caldwell et al., 2018; Straka et al., 2018). Cyclic
voltammetry is another method that has proven useful in
identifying the formation of current leakage pathways. Indeed,
Black et al. found that cathodic charge storage capacity increased
with implant time and negatively correlated with electrode
yield and the total number of units recorded (Black et al.,
2018). However, concerns about the safety and feasibility of this
technique with state-of-the-art MEAs in humans has prohibited
its translation to clinical studies.

In practice, disruptions can coincide and have overlapping
effects that confound diagnostic metrics. For instance, tissue
encapsulation of MEA electrodes raises impedance, while
insulation deterioration creates shunting paths that lower
impedance. Though some disruptions may occur over
characteristic time periods (e.g., insulation water absorption
and tissue encapsulation following device implantation),
compounding effects make it challenging to determine
underlying failures precisely. Nevertheless, relationships
between impedance and common device failures raise the
possibility that researchers could leverage in vivo diagnostic
techniques to predict recording channels that attenuate signals,
or channels that are likely to worsen with time. These predictions
could then be utilized when selecting neural features such as
channel-wise spike amplitude thresholds. It is also feasible that
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these predictions could inform decoding models to maintain
performance over prolonged periods.

Automated real-time monitoring of signal quality will be
a critical component of fielded BMI systems. One potential
candidate for signal quality monitoring is statistical process
control (SPC) (Western Electric Company, 1956). SPC can be
applied in a BMI context by monitoring signal metrics such
as impedance, channel correlations, and SNR, and checking for
deviations from baseline as well as outlier channels that may
indicate hardware failures. For example, insulation degradation
can lead to electrical shunting, which may be detected by
abnormally high correlation between adjacent channels (Flint
et al., 2016). Monitoring impedance is useful for detecting
several disruptions, ranging from irreversible electrical shorting
due to severe materials degradation, to reparable disruptions
such as a loose headstage connector (Simeral et al., 2011;
Barrese et al., 2013). Following the automated identification of
abnormalities by SPC algorithms, technicians could be alerted,
and decoders could be updated to compensate for channels
exhibiting abnormal behavior.

BMIs may also leverage statistical approaches to detect
transient disruptions such as array micromotion that cause rapid,
unexpected changes in firing rates and spike amplitudes. Similar
to irreversible and reparable disruptions, early detection of
transient disruptions could initiate neural decoder adjustments to
mitigate the effects on BMI performance. Furthermore, dramatic
drops in BMI performance in the absence of statistical outliers
may indicate deficiencies in signal processing and decoding. To
our knowledge, there are currently no intracortical BMI systems
that implement online disruption detection. Further developing
these methods is an avenue for future research. Ultimately,
these signal monitoring approaches will help ensure BMIs are
functioning properly for extended periods of time and will
quickly identify problems that may require intervention.

Algorithmic Strategies for Transient
Disruptions
BMI operation may be influenced by recording instabilities
including array micromotion and transient noise, as well as
physiological factors such as cognitive or contextual changes that
affect intrinsic spike generation (sections Array Micromotion
and Neurophysiological Changes). Even in well-controlled
environments, BMI performance may continually degrade
because of gradual changes in spike rates and signal amplitudes
from unstable units. Recent efforts to improve BMI performance
have focused on reducing the effects of these transient disruptions
and eliminating the need for regular system recalibration. In the
following, we discuss neural feature engineering, neural decoder
training strategies, adaptive neural decoding methods, and signal
filters and referencing techniques that can assist in mitigating
the effects of transient disruptions. We discuss each strategy
separately, but in practice many of them can be combined to
further improve robustness.

One approach to prevent declining accuracies due to transient
disruptions is to use neural features that are designed to be robust
against these disruptions. Historical recordings and extracellular

waveform characteristics can be leveraged to identify stable units
for decoder training (Ganguly and Carmena, 2009; Downey
et al., 2018a). However, this approach restricts bandwidth by
excluding potentially useful information from recordings. An
alternative solution is to use neural decoding features that
are minimally susceptible to recording instabilities. Threshold
crossings are vulnerable to amplitude shifts in neural recordings,
while features based on spectral power may be more robust
(Zhang et al., 2018; Allahgholizadeh Haghi et al., 2019). BMIs
may also leverage neural manifolds (Gallego et al., 2017, 2020;
Degenhart et al., 2020), low dimensional projections that capture
much of the variance in neural population activity, to combat
transient disruptions. Degenhart et al. stabilize neural activity by
aligning manifolds across time and show that this method can
counteract recording disruptions including changes in baseline
firing rate and neural tuning, as well as loss of recorded units
(Degenhart et al., 2020).

Another approach to build robust decoders is careful data
curation and training of the decoder parameters. In a laboratory
context, a decrease in BMI performance due to task-related
neural modulation can be alleviated by training neural decoders
under similar conditions to the use case (Wodlinger et al.,
2015). However, it is impractical to train take-home systems
under every possible use-case of the BMI. Instead, recent studies
suggest that deliberate neural decoder training strategies and
data augmentation can help make BMIs resistant to transient
disruptions. Using large amounts of historical data to train
neural decoders increases the likelihood that a given model
will be exposed to a variety of signal disruptions. By training
with datasets containing disruptions, machine learning models
may be more robust to similar disruptions that occur in the
future (Sussillo et al., 2016; Schwemmer et al., 2018; Skomrock
et al., 2018). Training data can also be artificially enhanced by
simulating perturbations in neural decoding features that are
representative of transient disruptions (Sussillo et al., 2016).
These approaches may improve decoder robustness not only to
recording instabilities such as array micromotion, but also to
neural variability across cognitive and behavioral contexts.

A third strategy is to use adaptive decoding models that
combat signal instabilities through recurring parameter updates
(Li et al., 2011; Bishop et al., 2014; Schwemmer et al., 2018).
Adaptive decoders outperform their counterparts with fixed
parameters because they account for ongoing disruptions in
neural recordings. For certain BMI applications such as virtual
typing, user intention can be inferred retrospectively and used
to facilitate updates (Jarosiewicz et al., 2015). Recalibration
methods may also use recent neuronal activity and decoder
predictions obtained during BMI use to update the model,
circumventing the requirement for explicit training labels (Li
et al., 2011; Schwemmer et al., 2018). These self-recalibrating
procedures eliminate the need for daily retraining and therefore
minimize BMI setup time. Despite the remarkable performance
of adaptive decoding algorithms over chronic periods, in rare
cases, disruptions can still cause neural decoding accuracy to vary
by up to 20% (Figure 10; Schwemmer et al., 2018). These adaptive
machine learning methods may be enhanced with the decoder
training strategies and neural features previously discussed.
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FIGURE 10 | Recording disruptions impair motor intention decoding in a BMI clinical trial. The performance of three deep neural network decoder variants were

evaluated for a four-movement motor imagery task over the span of 1 year. Accuracies are plotted as a function of the number of days since the end of the neural

network training period. Lines denote a LOESS smoothing curve to visualize the data trends. The fixed neural network (fNN, cyan circles) decoder parameters

remained unchanged for the duration of the evaluation. The other networks were updated each session with data from a preceding recording block with either explicit

training labels (sNN, green diamonds) or with labels predicted by the decoder (uNN, orange squares). Both the sNN and uNN can adapt to daily changes in recording

conditions and thus outperform the fNN. On days 238 and 266 (darkened data points) a disruption caused a substantial drop in accuracy for all decoding models.

These dates corresponded to times when the participant had undiagnosed infections. Though the adaptive decoders are better able to compensate for this

disruption, additional algorithmic interventions are needed to prevent sharp declines in decoding accuracy. Figure adapted with permission from Schwemmer et al.

(2018). Copyright 2018, Springer Nature.

Lastly, some transient disruptions, including electrical
artifacts, may be mitigated by careful selection of referencing
techniques and data filters (Paralikar et al., 2009; Young et al.,
2018; Weiss et al., 2019). Common average referencing aims
to remove noise and artifacts common to all electrodes by re-
referencing recordings to the average potential across channels
(Ludwig et al., 2009; Paralikar et al., 2009). In clinical BMI
systems, a subset of electrodes with the lowest root-mean-square
values are often used to calculate this reference (Jarosiewicz
et al., 2015; Brandman et al., 2018). Though common average
referencing can improve SNR (Ludwig et al., 2009), it can be
inadequate for certain artifact removal applications because it
assumes noise is similar across all electrodes (Young et al., 2018).
For removing FES artifact, Young et al. propose a channel-
specific referencing method and show that it outperforms
common average referencing and artifact blanking (Young et al.,
2018). In addition, they demonstrate neural information can
be recovered during FES stimulation periods, even when the
artifact is orders of magnitude larger (Young et al., 2018). Signal
quality may be further enhanced by optimizing data filters.
A recent study suggests that high-order filters that produce
oscillatory artifacts in recordings can decrease BMI decoding
accuracy (Masse et al., 2014). Furthermore, the authors show that
non-causal bandpass filters can yield greater spike amplitudes
and improved decoding accuracy compared to their equivalent
causal filters (Masse et al., 2014). Synergistic approaches that
combine multiple signal processing and decoding methods hold
promise in effectively suppressing transient signal disruptions.

Algorithmic Strategies for Reparable
Disruptions
Though there are limited reports of reparable disruptions
occurring with intracortical systems, we suspect these will
become more prevalent as BMIs become portable. Recently
and for the first time in the U.S., a portable intracortical BMI

was successfully deployed in a home setting (Weiss et al.,
2020). Moving outside of the lab means that system set up
may be performed by caregivers instead of trained technicians,
increasing the likelihood of faulty hardware connections or
errors during neural decoder training. Poor connection to
the percutaneous pedestal causes recording inconsistencies,
reduces total available neural information, and increases the
risk of irreversible damage to stimulating microelectrodes
and surrounding tissue (Simeral et al., 2011; Hughes et al.,
2020). In order to support BMI use outside the lab and
without a technician, automated algorithmsmust quickly identify
such malfunctions, or they may otherwise go undetected
for substantial periods without technicians regularly checking
signal quality.

Algorithmic Strategies for Irreversible
Compensable Disruptions
Irreversible disruptions frequently affect intracortical BMIs
because the neural interface andmuch of the associated hardware
is inaccessible without surgical intervention. Consequently,
biological responses or damage to the recording device may
cause permanent changes in acquired signals. Though in
rare cases irreversible disruptions can result in catastrophic
signal loss, many of these disruptions can be compensated
for algorithmically.

Most irreversible compensable disruptions contribute to
chronic attenuation or loss of recording channels. These effects
can devastate BMIs with vulnerable decoding methods. For
instance, Ganugly et al. demonstrate that the loss of just three
neurons from a stable neural ensemble could decrease online
BMI accuracy by 50% (Ganguly and Carmena, 2009). It may
be possible to mitigate the effects of irreversible disruptions
by leveraging data augmentation techniques during decoder
training. Sussillo et al. also examined the effects of electrode
dropout during online BMI control, but found that artificially
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perturbing firing rates during decoder training made the decoder
more robust to this disruption (Sussillo et al., 2016).

Similar to compensatory strategies for transient disruptions,
adaptive decoding methods that down-weight the influence
of permanently damaged channels should help maintain
decoding accuracy in the face of irreversible disruptions.
However, this strategy will become less effective with the
accumulation of irreversible failures over time. If there is
insufficient information in remaining channels to maintain BMI
performance, algorithmic compensation becomes increasingly
difficult. Interestingly, a recent study suggests that neural
dynamics under the same motor behaviors are reliable across
time, regardless of recording quality (Kao et al., 2017). The
authors demonstrate that neural population dynamics inferred
from historical recordings with high neuron counts can
be leveraged to rescue neural decoding performance after
severe electrode loss, thus extending functional BMI lifetime
(Kao et al., 2017).

Gradual declines in signal quality due to loss of units or
material degradation may also be counteracted with targeted
neural decoding features. As signals attenuate with time,
and it becomes difficult to attribute electrical potentials to
particular neurons, BMIs may benefit from features that salvage
information from subthreshold neural activity. As an example,
mean wavelet power (Bouton et al., 2016) could theoretically
utilize weak or distant spiking information that is sometimes
considered biological noise.

CONCLUSION

Many of these algorithmic strategies will be needed in concert to
mitigate the vast range of potential disruptions that intracortical

BMIs face. As the diversity of BMI effectors expands from
computer cursors to sophisticated devices that interact with
the environment, the consequences of inaccurate predictions
increase. Misspelling a word is inconvenient, but the inability
to accurately control a robotic arm may pose a danger to
the user and others around them. Therefore, it will be even
more critical to ensure that BMIs are resilient to recording
disruptions. Here we have categorized many of the common
signal disruptions in hopes that it can guide in the development
of targeted algorithmic solutions. Creating systems that can
detect and compensate for these disruptions will be an important
component in the translation of BMIs from the laboratory setting
to a portable assistive device.
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