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Abstract

Mutation is fundamental to evolution, because it generates the genetic variation on which

selection can act. In nature, genetic changes often increase the mutation rate in systems

that range from viruses and bacteria to human tumors. Such an increase promotes the accu-

mulation of frequent deleterious or neutral alleles, but it can also increase the chances that a

population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in

Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved

multiple replicate populations of asexual E. coli strains engineered to have four different

mutation rates for 3000 generations in the laboratory. We measured the ability of evolved

populations to grow in their original environment and in more than 90 novel chemical envi-

ronments. In addition, we subjected the populations to whole genome population sequenc-

ing. Although populations with higher mutation rates accumulated greater genetic diversity,

this diversity conveyed benefits only for modestly increased mutation rates, where popula-

tions adapted faster and also thrived better than their ancestors in some novel environ-

ments. In contrast, some populations at the highest mutation rates showed reduced

adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In

addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates

that the mutation rate changes the global balance between deleterious and beneficial muta-

tional effects on fitness. In contrast to most theoretical models, our experiments suggest

that this tipping point already occurs at the modest mutation rates that are found in the wild.

Author summary

Mutation is of central importance in biology. It creates genetic variation, the raw material

of evolution by natural selection, It can improve traits and organisms, but can also lead to

phenomena like cancerous cells and antibiotic resistant pathogens. Increasing the muta-

tion rate can accelerate evolutionary adaptation, even over many thousands of generations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007324 April 27, 2018 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Sprouffske K, Aguilar-Rodrı́guez J,

Sniegowski P, Wagner A (2018) High mutation

rates limit evolutionary adaptation in Escherichia

coli. PLoS Genet 14(4): e1007324. https://doi.org/

10.1371/journal.pgen.1007324

Editor: Ivan Matic, Université Paris Descartes,
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in a constant environment. Our study describes the laboratory evolution of asexual Escher-
ichia coli strains with a range of mutation rates at levels found in the wild (from wild type

to strong mutator). Unexpectedly, evolutionary adaptation was most limited in the popu-

lations with the highest mutation rate. Our work suggests that deleterious mutations can

begin to limit adaptation at lower mutation rates than previously thought.

Introduction

Mutation is fundamental to evolution. Without it, evolution cannot occur, because mutation

provides the genetic variation necessary for selection and genetic drift. Each new mutation in

an individual can increase its fitness, decrease its fitness, or have no effect on its fitness. Unfor-

tunately, most mutations with fitness effects are deleterious, and fitness-increasing beneficial

mutations constitute only a small fraction of all possible mutations [1]. The mutation rate can

itself evolve, because it is subject to genetic change in the "mutation rate genome", the part of a

genome encoding DNA replication and repair systems [2,3]. Here, we characterize the long-

term effects of a range of mutation rates on adaptation, as well as the evolution of the mutation

rate itself, by evolving multiple replicate populations of asexual Escherichia coli in a minimal

medium in the laboratory.

Evolutionary adaptation under increased mutation pressure in large non-recombining pop-

ulations like ours has been explored in past work (all mutations that occur in our E. coli labora-

tory strain’s genome are linked). The joint effects of mutation and linkage on selection (and

the related topics of diversity and the evolution of sex) have been much studied since Fisher

[4] and Muller [5] ([6–10], recently reviewed in [11–14]). Under increased mutation pressure,

multiple clones within a population may acquire new mutations, and then compete with each

other for fixation. While relevant studies show that the speed of adaptation can increase with

the genomic mutation rate [10,15–18], they leave open the possibility that extremely high

mutation rates could hinder adaptation. This possibility is raised by a variety of models that

predict declining fitness in populations with extreme mutation rates. An early, influential, but

simple model predicted that a population’s fitness will decrease when the rate of mutation

increases beyond a critical “error threshold” [19] whose value depends on model details. Other

models of populations evolving at high mutation rates are more realistic and take into account

phenomena like beneficial mutations and demography. However, they also predict that adap-

tation can be slowed and eventually reversed at sufficiently high mutation rates by the effects

of deleterious mutations [20–24].

Many studies have documented the evolution of increased mutation rates [25–31], which

can evolve in certain conditions. For example, after a recent environmental change that creates

opportunities for novel adaptations and new beneficial mutations [32,33], a cell with a mutator

allele is more likely to produce large-effect beneficial mutations than a cell with a wild-type

mutation rate. Because of their improved fitness, cell lineages with newly acquired beneficial

alleles (and their linked mutator alleles) can increase in frequency in the population. Thus,

hypermutation can readily evolve when mutator alleles hitchhike to fixation with beneficial

mutations [34–37].

In the long term, however, hypermutation can be detrimental, because most non-neutral

mutations have deleterious consequences [1]. Thus, an individual with a higher mutation rate

may accumulate more deleterious mutations overall, which can result in lower fitness. For this

reason, selection has been predicted to reduce mutation rates [38]. However, there are several

potential reasons why mutation rates may not decline all the way to zero. One of them is that
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the physiological mechanisms required to improve replication fidelity and DNA repair carry a

fitness cost [39–42]. Another is that the power of selection to reduce the mutation rate is lim-

ited by population size via the so-called drift-barrier [43,44]. Experimental observations of

evolved reductions in the mutation rate have been reported, but are relatively infrequent

[27,31,45–50] (reviewed in [51]).

While some previous experiments explored the adaptive responses and mutation rate

changes that can take place under increased mutational pressure [46–48,50], they focused on

one or two mutation rates, and did not include genomic analyses (except [50]). Here, we

sought to provide a uniquely comprehensive empirical data set across a range of mutation

rates, including whole genome population sequencing data, mutation rate data, and fitness

measurements in a number of environments. To do so, we engineered four isogenic E. coli
K12 MG1655 derivative strains with increased mutation rates and evolved eight replicate pop-

ulations of each strain for 3000 generations in a serial-transfer experiment. Genomic mutation

rates differed more than a hundred-fold among these strains and ranged from U = 0.00034 to

U = 0.036 point mutations per genome per generation by one method of estimation. During

evolution, we periodically characterized the growth rate and stationary population density of

each population. We also assayed the fitness of evolved populations in a variety of stressful

environments. High-throughput population sequencing allowed us to characterize how far

our populations spread through sequence space, and to study the mutations occurring in each

population.

Results

The experimental design is summarized in Fig 1. We evolved eight independent replicate pop-

ulations for each of four isogenic E. coli strains with increasing mutation rates, and did so for

175 days (about 3000 generations) in minimal medium. The mutation rates, as estimated by

mutation to rifampicin resistance, differed 139-fold between the ancestor strains with the low-

est and highest mutation rates. We called these strains MRS, MRM, MRL, and MRXL for strains

Fig 1. Experimental design. We evolved eight replicate populations for each of four E. coli strains with increasing

mutation rates for nearly 3000 generations, and sequenced all evolving populations approximately every 1000

generations. All eight replicate populations with the same mutation rate shared a single, common ancestor.

https://doi.org/10.1371/journal.pgen.1007324.g001
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with small, medium, large, and extra-large mutations rates (MR). We evolved all 32 replicate

populations at 37˚C in 2 mL minimal medium, and diluted them daily 100,000-fold into fresh

medium. Because the population density at carrying capacity differed among strains (S1 Fig),

the notional effective population size of the evolving replicates also differed, ranging between

42,500 and 92,800 (S2A Fig). Linkage is known to reduce the effective population size [52], so

we also estimated its effect on this size (S2B Fig) [53–55]. We found that populations with

higher mutation rates generally had lower effective population sizes. We sequenced samples of

the evolving populations at generations 0, 1000, 2000, and 3000 to high genome-wide coverage.

We measured the mutation rates and tested growth in stressful environments at generations 0

and 3000. We also periodically measured maximum growth rates and growth curves as a proxy

for fitness.

Very high mutation rates can lead to reduced adaptation

We used a population’s maximum growth rate during exponential growth as a proxy for fit-

ness, and we refer to relative fitness as the difference between an evolved and a reference popu-

lation, usually the ancestral population. We first measured the fitness of the ancestral strains

relative to the E. coli K12 MG1655 strain and found that the ancestral strains had similar fitness

values, with the exception of the MRL strain, which had much lower fitness than the other

strains (S3A Fig, linear mixed effects analysis, Χ2(4) = 248; MRS: 0.34±0.02; MRM: 0.32±0.02;

MRL: 0.11±0.02; MRXL: 0.25±0.02, relative fitness ± s.e.m., p<2×10−16). We next measured the

fitness of each evolving replicate population relative to its ancestor at several time points dur-

ing the experiment (Fig 2, S3B Fig, S4A Fig). At generation 3000, replicate populations with

higher mutation rates showed a greater increase in fitness, except for the MRXL strain, which

Fig 2. Fitness of the evolving replicate populations relative to their ancestors (A) over time, and (B) at the end of the experiment. A relative fitness value

greater than zero indicates that the evolved population has higher fitness than its ancestor. Different colors distinguish data from the MRS (blue), MRM

(yellow), MRL (orange), and MRXL (red) strains. Shaded areas (A) or bars (B) indicate s.e.m.

https://doi.org/10.1371/journal.pgen.1007324.g002
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had the smallest fitness increase of all strains (p = 0.002, linear mixed effects analysis, Χ2(4) =

16; simultaneous tests for general linear hypotheses that relative fitness is unchanged at genera-

tion 3000: MRS:0.7±0.2, p = 0.004; MRM:1.0±0.2, p<4×10−5; MRL:1.1±0.2, p<1×10−6; MRXL:

0.6±0.2, p = 0.02, evolved fitness difference from ancestor ± s.e.m., significance). In replicate

populations with lower mutation rates (MRS and MRM) fitness only began to rise substantially

after 1000 generations, while in replicate populations with higher mutation rates (MRL, MRXL)

this fitness increase began earlier (Fig 2A; linear mixed effects analysis, Χ2(4) = 17, p = 0.002;

simultaneous tests for general linear hypotheses that relative fitness is unchanged at generation

1000: MRS: -0.01±0.07, p = 1.0; MRM:0.07±0.07, p = 0.76; MRL:0.40±0.07, p<0.0001; MRXL:

0.57±0.07, p<0.0001, evolved fitness difference from ancestor ± s.e.m., significance). A second

growth curve metric that integrates information about the lag phase, growth rate, and carrying

capacity yielded similar results (S1 Text). The delays in fitness gains in populations with lower

mutation rates are also reflected in reduced fitness variation among replicate populations at

any one point in time (S4B Fig). MRL and MRXL populations seem to form two clusters with

either high or low (ancestral-like) fitness at the end of the experiment (Fig 2B). In principle,

the fitness of populations with lower fitness might either not have increased at all, or it might

have increased at first and subsequently decreased again. Examination of individual fitness tra-

jectories (S4A Fig) shows that most MRXL replicate populations with low fitness at generation

3000 gained and then lost fitness again.

Population sequencing at regular intervals

We sequenced a sample of each heterogeneous evolving population rather than a clone isolated

from each population, so that we could estimate the genetic diversity within each sequenced

population. We sequenced 100 populations in total: the four ancestor populations with differ-

ent mutation rates, and eight replicates evolved from each ancestor at generations 1000, 2000,

and 3000. Specifically, we sequenced the four ancestor populations after one day of growth just

before having split them into their replicate populations. The mean sequence coverage for pop-

ulations was 364-fold (standard deviation 98), with 99% (83%) of the samples having at least

100-fold (200-fold) coverage across at least 95% of the genome. In virtually all sequenced sam-

ples less than 1% of the genome had no sequence coverage (S5 Fig). We identified the fre-

quency of SNPs in each sequenced population and their annotations using breseq, which has

been widely used in microbial studies and has been optimized for bacterial data [56] (S6 Fig).

We discovered several SNPs at non-zero frequency in these sequenced ancestral populations

(1, 3, 2, and 64 loci for MRS, MRM, MRL, and MRXL, respectively; S7 Fig), some of which may

have been transferred to the evolving populations. Previous studies had suggested that there

may be biases in the mutational spectra caused by the reduced efficacy of the mutL and dnaQ
gene products [57–59], but our sequence data shows that any such bias is weak or absent in

our strains (S8 Fig).

Higher mutation rates lead to larger mutant clouds and more high

frequency derived alleles

One can view an evolving population as a cloud of mutant individuals in sequence space. We

suspected that this mutant cloud would be spread out further in genotype space–indicating

greater standing diversity–for populations with a higher mutation rate. To test whether this

was indeed the case, we first defined the center of an evolving population as its consensus

sequence and then computed the average distance of each population to this consensus. A

strain’s mutation rate affected the size of its mutant cloud (linear mixed effects analysis, cube

root of diversity taken to ensure homoscedasticy, Χ2(4) = 79; p = 3×10−16; see Methods), such
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that higher mutation rates led to a larger cloud (Fig 3A; MRS:0.005±0.001; MRM:0.007±0.001

MRL:0.011±0.001; MRXL:1.018±0.001, cube root of diversity ± s.e.m.). Similarly, higher muta-

tion rates led to higher levels of mean nucleotide site diversity (Fig 3C).

We also expected evolving replicate populations with higher mutation rates to accumulate

more high frequency derived alleles than those with lower mutation rates because populations

with more variation are expected to adapt faster. Here, we defined a high frequency derived

allele at a given site as a derived allele found in more than 50% of the population. Again, strain

identity affected the number of high frequency derived alleles (linear mixed effects analysis,

Χ2(4) = 69, p = 4×10−14; see Methods), such that strains with higher mutation rates accumu-

lated more high frequency derived alleles (Fig 3B; MRS:0.8±0.3; MRM:1.8±0.8; MRL:12±2;

MRXL:68±13, number of high frequency derived alleles ± s.e.m. at generation 3000).

Beneficial mutations

Most new mutations are thought to be effectively neutral or deleterious, and only a small frac-

tion are beneficial in a given environment [1]. To identify putatively beneficial mutations in

our replicate populations, we developed a statistical test that identifies genes in which more

replicate populations contain high frequency derived alleles of any one gene than one would

expect by chance alone (Methods, S9 Fig). In addition to identifying beneficial mutations, this

approach can also identify artifacts such as mutational hotspots or the violation of indepen-

dence across samples. Our test identified 20 genes with putatively beneficial mutations.

Fig 3. Replicate populations with higher mutation rates have increased genetic diversity and more high frequency derived alleles.

Each circle represents (A) the distance of a population to its center (vertical axis), (B) the number of sites with derived alleles at a

frequency exceeding 50% (vertical axis), or (C) the mean nucleotide site diversity (vertical axis) in an evolving replicate population over

the course of the evolution experiment (horizontal axes). Different colors distinguish data from the MRS (blue), MRM (yellow), MRL

(orange), and MRXL (red) strains.

https://doi.org/10.1371/journal.pgen.1007324.g003

High mutation rates limit evolutionary adaptation in Escherichia coli

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007324 April 27, 2018 6 / 31

https://doi.org/10.1371/journal.pgen.1007324.g003
https://doi.org/10.1371/journal.pgen.1007324


Statistical analysis places the highest confidence for the existence of beneficial mutations in

eight of these genes (clpB: 6/32 populations, p<6×10−6, cspC: 3/32 populations, p = 3×10−5,

mreB: 5/32 populations, p<6×10−6, pykF: 16/32 populations, p<6×10−6, rnb: 7/32 populations,

p<6×10−6, rpoC: 6/32 populations, p<6×10−6, topA: 9/32 populations, p<6×10−6, and ygeN:

4/32 populations, p = 4×10−5 (S9A Fig, S10 Fig). Most of the mutations are nonsynonymous

or nonsense mutations, and are thus likely to affect gene function (S9A Fig). Furthermore,

between 70 and 100% of the observed mutations in any one gene occurred at different sites in

different replicate populations (clpB: 100%, cspC: 100%, mreB: 91%, pykF: 95%, rnb: 78%, rpoC:

100%, topA: 70%, and ygeN: 100%), indicating that they occurred de novo and independently

from each other. The two most commonly mutated genes were pykF and topA, which encode

pyruvate kinase and topoisomerase A, respectively. Pyruvate kinase is a key enzyme in glycoly-

sis, and topoisomerase A can affect the superhelicity of DNA. Both genes have repeatedly

acquired beneficial mutations in previous experiments with E. coli B in glucose minimal

medium [60–65]. Similarly, mutations in cspC, a stress protein, confer a fitness advantage for

E. coli populations evolving at 37˚C and higher [62,66]. Finally, mutations in the RNA poly-

merase gene rpoC and the cytoskeletal gene mreB have also been commonly found in labora-

tory evolution [62,67,68].

Surprisingly, multiple MRXL replicates showed the same nucleotide change in 12 of the 20

putatively beneficial genes. As previously discussed, some mutations arose in the ancestor

MRXL population before we split it into its replicate populations (S7 Fig). Specifically, muta-

tions in 10 of the 12 genes with the same nucleotide change across the MRXL replicates were

also found in the ancestral population (at a frequency between 3% and 22%), before we had

split this population into our replicates (S9B Fig). Only two genes (yfeZ and rrlH) showed no

evidence for such identical, pre-existing mutations, although such mutations may have existed

below the detection limit of our sequencing coverage. We cannot conclude that these 12 puta-

tively beneficial genes have a beneficial effect in the MRXL populations, because our statistical

test relies on the assumption that the mutations occurred and were subject to selection inde-

pendently. To know with certainty the phenotypic effects of any of these mutations would

require additional empirical data from allelic replacement experiments.

Growth and survival in stressful conditions

Thus far, the only phenotype we studied was population growth in one environment–the glu-

cose minimal medium in which we conducted the entire experiment. To expand our analysis

to other environments, we used Biolog Phenotype MicroArrays, which help measure the

growth and respiration activity of a bacterial strain in multiple environments ([69], but see

[70] for caveats). These microarrays determine the ability of our strains to grow in the presence

of 96 stressful compounds that include antibiotics and heavy metals. We exposed our evolving

replicate populations to these stressors only after completion of laboratory evolution, i.e., the

populations could not have adapted to them during the evolution experiment. We selected two

populations at random from the MRS, MRM, MRL, and MRXL replicate populations at the end

of evolution. Remarkably, the two selected MRXL replicates failed to grow in every single one

of the 96 environments, as did the MRXL ancestor. One possible explanation is that the MRXL

strain is inherently more sensitive to novel environments, including the medium used in the

assay. The remaining populations grew in 42–60 (43.8%-62.5%) of the environments, depend-

ing on the population. In order to identify any link between mutation rate and growth in these

96 environments for the MRS, MRM, and MRL replicates, we identified the molecules in which

an evolved replicate population grew better (and worse) than its ancestor (S11 Fig). All repli-

cate populations were better able to tolerate stressful conditions than their ancestors in some
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of the tested conditions (between 8% to 30%), which suggests that some (fortuitously) benefi-

cial mutations have occurred. The two MRL replicate populations we tested tolerated stressful

conditions better than the MRS and MRM replicate populations. However, the MRS replicate

populations were able to tolerate more stressful conditions than the MRM populations. In sum,

these analyses establish no simple association between ancestral mutation rate and stress toler-

ance after evolution.

To study the evolutionary dynamics of growth in stressful conditions over the course of the

experiment, we periodically tested the growth of the ancestor and all evolving replicate popula-

tions in two stressful conditions: the antibiotic nitrofurantoin (a specific, “narrow” stressor)

and acidic media (a broader stressor). Nitrofurantoin is a nitrofuran antibiotic with multiple

mechanisms of action. Resistance to nitrofurantoin is conferred by mutations in two genes

(nfsA and nfsB), and has a fitness cost in the absence of the antibiotic [71]. Thus, resistance

mutations are unlikely to exist at appreciable levels as part of the standing variation in popula-

tions not exposed to nitrofurantoin. E. coli is known to tolerate acidic conditions due to several

acid resistance systems, one of which depends on the alternative sigma factor σS, encoded by

the rpoS gene [72,73]. For both nitrofurantoin-containing and acidic media, we computed the

fold change in growth (the cell density after 24 hours) of the evolved populations relative to

their ancestors, controlling for changes in carrying capacity (see Methods, Fig 4, S12 Fig). We

found that replicate populations with the highest mutation rates grew more slowly in nitrofur-

antoin than their ancestor. In contrast, populations at low and intermediate mutation rates

grew faster than the ancestor (see Methods, p = 5×10−8, linear mixed effects analysis, Χ2(4) =

40; MRS:0.85±0.15; MRM:0.49±0.15; MRL:0.94±0.15; MRXL:-0.29±0.15, log fold change ± s.e.

m., positive log fold change indicates evolved strains grew better, and negative log fold indi-

cates ancestor strains grew better). The ancestral mutation rate also affected growth in acidic

media. In contrast to nitrofurantoin, all strains showed increased growth, but qualitatively

similar to nitrofurantoin, the MRXL replicates showed the smallest growth rate increase at low

pH (p = 2×10−8, linear mixed effects, Χ2(4) = 42); MRS: 1.23±0.09; MRM:1.39±0.09; MRL:1.56

±0.09; MRXL:1.15±0.09, fold change ± s.e.m., fold change > 1 indicates evolved strains grew

better, and fold change< 1 indicates ancestor strains grew better). In sum, growth in two

stressful conditions, nitrofurantoin-containing and acidic media, improved with increasing

mutation rates (and thus increasing diversity), except for the MRXL replicates which showed a

relative reduction in growth.

Fig 4. Cell density after 24 hours of growth in stressful conditions increased with increasing mutation rate, except

for MRXL replicate populations. We measured the cell density of the MRS, MRM, MRL, and MRXL evolved replicate

populations relative to the ancestor (vertical axis) at generation 1000 in (A) medium supplemented with nitrofurantoin

(2.2 μg/mL) and in (B) acidic medium (pH 5.25). The MRS, MRM, MRL replicate populations performed better with

increasing mutation rate, except for the MRXL replicate populations which performed worst among all populations. See

S12 Fig for data on additional timepoints, and nitrofurantoin and pH conditions. Different colors distinguish data

from the MRS (blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

https://doi.org/10.1371/journal.pgen.1007324.g004
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Mutation rate decreased for the highest mutation rate replicates

We measured the mutation rate of one randomly selected clone from each evolved replicate

population at generation 3000, and of the population’s ancestral strain. To this end, we used

fluctuation assays for mutations that cause rifampicin resistance, and estimated the genomic

mutation rate U using Drake’s approach [74]. The mutation rates of the evolved MRXL repli-

cates decreased on average by 556%, reaching 18% of the ancestor’s mutation rate (2%-42%,

depending on the replicate); Fig 5, S3 Table). At the end of the evolution experiment, the

mutation rates in the MRXL populations were no longer statistically distinguishable from those

of the MRL replicates (Wilcoxon rank sum test, p = 0.38). The evolved populations’ mutation

rates for the MRM and MRL strains also tended to decrease (MRM: 49% of the ancestor’s muta-

tion rate on average, ranging between 11%-90% of the ancestor; MRL: 87%, range 32%-170%).

In contrast, the replicates from the MRS strain increased their mutation rate somewhat, to

206% of the ancestor’s mutation rate (range 16%-1000%). Having estimated the mutation rates

for the ancestor and evolved populations, we also wanted to examine whether prominent theo-

retical models that predict declines in mean population fitness at high mutation rates apply to

our populations (S2 Text). While some of the models we studied (e.g., that of mutational load)

predict a small reduction in fitness at the highest mutation rates we employed, none of them

could account for the magnitude of the loss of adaptation we found in several of the MRXL rep-

licates (S2 Text; Fig B, Fig C in S2 Text).

Because mutation rates changed between the beginning and the end of the experiment, we

wondered whether the final mutation rates were correlated with our measured phenotypes.

We found significant correlations between a replicate’s mutation rate and its effective popula-

tion size, standing genetic diversity, and number of high frequency derived alleles, but no

Fig 5. Evolution of the mutation rate. Ancestral genomic mutation rates are shown as squares, evolved mutation

rates at generation 3000 as circles, and 95% confidence intervals of mutation rate estimates are shaded. Each evolved

strain’s mean change in mutation rate is shown as the percentage of its ancestor’s mutation rate. Data from MRS

strains are shown in blue, from MRM strains in yellow, from MRL strains in orange, and from MRXL strains in red.

https://doi.org/10.1371/journal.pgen.1007324.g005
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correlations between a replicate’s mutation rate and its final relative fitness, or normalized cell

density after 24 hours of growth in acidic medium or medium containing nitrofurantoin

(Spearman’s rank correlation, S13 Fig). Interpretation of these results requires caution for two

reasons. First, for any one population, we do not know exactly when (during the 3000 genera-

tions of evolution) the mutation rate changed from its ancestral value. Second, we compared

the mutation rate of a single randomly-selected clone from populations which can have con-

siderable genetic diversity, and thus potentially also show diversity in mutation rates. Despite

these caveats, we found that the correlations between a representative clone’s mutation rate

and our other metrics are consistent with our previous analyses and figures (Fig 4, S2 Fig, S12

Fig), which simply considered the effects of ancestral mutation rate (strain identity).

Changes in the mutation rate genome

We call the set of genes potentially involved in modulating the mutation rate the "mutation

rate genome".

We wondered whether this part of the whole genome was a preferential target of mutation

or selection in our experiments. To find out, we first identified a set of 96 genes potentially

involved in modulating the mutation rate (S2 Table) from the literature and EcoCyc [49,75–

77]. If mutations or selection did not preferentially affect the mutation rate genome, the

amount of genetic change we observe in it would be proportional to its length relative to the

rest of the genome. This is indeed the case: We counted the number of synonymous mutations

occurring at any frequency in any replicate population at generation 3000, and observed no

statistically significant increase in the incidence of such genetic change in the mutation rate

genome for any of our evolving strains (S14A Fig). We also found no difference in mean diver-

sity between synonymous sites in the mutation rate genome relative to the rest of the genome

(S14B Fig).

Although the mutation rate genome is not a preferential target of genetic change, its genes

still accumulated many non-synonymous and nonsense changes, which are the kinds of

changes that are especially likely to affect protein function (S15 Fig). To identify mutant alleles

putatively associated with the decrease in mutation rates we had observed in MRXL replicate

population after 3000 generations (Fig 5), we identified nonsynonymous or nonsense muta-

tions in the mutation rate genome with an allele frequency of at least 50% in any MRXL evolved

replicate population. Mutations in ten genes met these criteria (rpoS, umuC, dinB, dinG, dps,
glyS, glyW, mutL, phr, and vsr), and two were found in multiple replicate populations (rpoS: 7

of 8; umuC: 2 of 8). The rpoS gene encodes the alternative sigma factor, σS, which activates the

stress response in E. coli (reviewed in [78]). Populations with rpoSmutations can hold a fitness

advantage in nutrient-limiting environments [79], but at a cost to fitness in a variety of stress-

ful environments [28,80]. Because σS is a bacterial transcription factor, it can only affect the

mutation rate indirectly, by changing the expression of proteins directly involved in DNA

copying, repair, and proofreading. For example, σS modulates the expression of the error

prone DNA Polymerase IV encoded by dinB [81]. We found the same rpoSN124D mutation

in 2.5% of the individuals in the ancestral MRXL population and in all eight evolved replicates.

(This mutation reached 40.1% in MRXL
1 and 100% in the rest of the replicates.) Thus, the

mutation was likely distributed to the eight replicate populations from the ancestor, and either

increased in frequency due to its direct fitness effects, or because it was hitchhiking with a ben-

eficial mutation. The MRXL
4 and MRXL

6 replicate populations each acquired different non-

synonymous mutations in umuC, which encodes DNA polymerase V. Each of the remaining

genes with high frequency mutant alleles in a single replicate population were involved in

DNA repair and replication (dinB, dinG, glyS, glyW, mutL, phr, vsr) or protection of DNA in
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stationary phase (dps) in a single replicate population and could have also affected the evolved

mutation rate.

Discussion

Here, we studied the effects of mutational pressure on evolutionary adaptation and the evolu-

tion of the mutation rate itself. To this end, we engineered four isogenic E. coli K12 MG1655

derivative strains with increasing mutation rates (MRS, MRM, MRL, and MRXL), and evolved

them for 3000 generations. Our smallest (wild-type) ancestral mutation rate (MRS: U =

0.00034 per genome per generation) was somewhat smaller than rates estimated in E. coli
strains using a similar experimental approach (U = 0.0025) [39,74], but similar to those esti-

mated in a wildtype E. coli B strain using a sequencing approach (U = 0.00041) [82]. At the

opposite extreme was our strain with the highest ancestral mutation rate (MRXL). We origi-

nally expected this strain to have a mutation rate approximately 4500-fold higher than wildtype

[35], consistent with the large effects that mutations in the dnaQ and mutL genes have on the

mutation rate [75]. However, our measurements of this rate demonstrated that it was lower

than expected (MRXL: 139-fold higher than our wildtype; U = 0.036 per genome per genera-

tion). The discrepancy could in principle be due to the acquisition of an anti-mutator allele

during the transfer of the strain between laboratory locations. Alternatively, our mutation rate

could be an underestimate for technical reasons discussed in the Methods. The mutation rate

for our MRXL strain was also somewhat lower than that of a hypermutable clone which sponta-

neously evolved from an E. coli B strain [50] (mutT: U = 0.061). The mutation rate of our

hypermutable MRXL strain is low enough that we expected its populations to be viable [21]. In

sum, we conducted our experiments with strains having a range of viable mutation rates, from

wildtype (MRS), to a 16-, 22-, and 139-fold higher mutation rate (MRM, MRL, and MRXL).

We first characterized the general patterns of adaptation in our four strains, and found that

their fitness increased significantly by generation 3000 for all replicate populations. Previous

experimental evolution studies in constant environments have observed fitness gains that are

initially large but decrease over time [17,18,83,84], which is consistent with diminishing

returns epistasis, in which the size of the fitness gain in an evolving population depends on its

current fitness, such that populations with lower fitness can improve their fitness to a greater

extent [85,86]. However, our fitness trajectories differ from those predicted by diminishing

returns epistasis in two ways. First, they do not show a decreasing fitness gain over time [18].

Second, the mean fitness of replicate populations with small or modestly high mutation rates

(MRS, MRM) did not immediately improve, but unexpectedly remained largely unchanged for

the first 1000 generations (compared to [87]). While delayed adaptive response is consistent

with a lower overall beneficial mutation supply rate, it may not be sufficient to explain our

observations. We expected to wait just 44 generations for a new beneficial mutation to estab-

lish in our slowest-evolving replicate population (S3 Text). It also raises the possibility that

even at moderately high mutation rates, contingent evolution [88], in which the timing and

the order of mutational events affects a population’s adaptive evolution, may be important in

our populations. An instance of such contingent evolution has been documented in E. coli
[89,90], but the higher mutation rate of some of the strains used in our evolution experiment

makes contingent evolution a less likely explanation for delayed adaptation.

We next characterized the effect of mutational pressure on adaptation. We found that

strains with higher ancestral mutation rates increased in fitness more than those with lower

mutation rates, except for MRXL populations, which we will discuss below. These observations

are in agreement with theory [15,91] and previous experimental studies which found that large

asexual populations of E. coli [17,50] and yeast [15] with high mutation rates outperformed
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those with low mutation rates. If we just consider relative fitness after 1000 generations, our

data from our four strains are consistent with expectations: MRS and MRM populations have

lower mean relative fitness than MRL and MRXL. It is only thereafter that the fitness of MRXL

populations stops increasing, such that they have lower mean fitness at generation 3000 than

the MRS, MRM, and MRL strains. We do not actually observe the loss of fitness on average

across the MRXL replicate populations, but rather a prolonged period in which fitness remains

unchanged as a whole. Interestingly, however, the fitness of several MRXL replicate populations

decreases from its maximum and arrives at a value that is approximately equal to that of the

ancestral population. This is reminiscent of models of extreme mutational pressure developed

over the past forty years that predict reduced adaptation and eventual extinction [19,20,22,92–

94]. However, these models predict a loss of fitness only at higher mutation rates than we

observed, and require unrealistic assumptions (S2 Text), together emphasizing the importance

of additional theoretical work. Another possibility is Hill-Robertson interference [7], which

can reduce the rate of adaptive evolution by background selection—negative selection against

deleterious alleles that removes the most deleterious lineages from a population—and can

reduce genetic diversity [8,12]. Empirical evidence supports the action of this mechanism in

natural populations of several eukaryotic species (reviewed in [13,14]). However, because

background selection removes deleterious mutations from a population, it cannot alone re-

duce the fitness of a population and it can therefore not explain the loss of fitness we observed

in the three MRXL replicates. Overall, our observations support the notion that reduced adap-

tation can manifest itself at smaller mutation rates than previously thought (U = 0.036 in the

MRXL strain), even though more than 1000 generations may be needed to manifest its effects.

This observation is all the more striking, because the mutation rate itself had decreased dra-

matically for all MRXL populations after 3000 generations (and much less so in the MRS, MRM,

MRL populations). While a lowering of the mutation rate has been previously observed [46–

48,50] and predicted to be favored in some conditions [38,40,42,43,95], its extent and consis-

tency across multiple of our evolving populations is remarkable. The mutation rate decrease

probably did not occur very early during evolution, because the MRXL populations show

greater genetic diversity than all other populations throughout the experiment (Fig 3). The

decreasing mutation rate, together with the observation that the MRXL populations failed to

adapt after more than 1000 generations, suggests that the maladaptive effects of hypermutation

begin at even lower mutation rates than those in our initial MRXL strain. While we cannot pre-

dict whether our hypermutable populations would eventually go extinct, the observation that

their mutation rate can decrease adaptively makes this less likely. Indeed, recent mutation

accumulation experiments with small bacterial populations suggested that populations with

higher mutation rates tend to go extinct more often and have reduced fitness than populations

with lower mutation rates [47]. Of the several "mutation rate genome" genes mutated in MRXL

strains, only rpoSwas found in all eight evolved MRXL replicate populations. rpoS encodes for

the stress response modulator σS that can indirectly affect the mutation rate through transcrip-

tional changes. However, we cannot definitively identify the proximal mechanisms driving the

drop in mutation rates using bioinformatics alone. Future experimental studies to evaluate the

effect of each "mutate rate genome" mutant allele on the mutation rate and fitness would be

necessary.

We emphasize that all our experiments use asexual populations, and that the evolutionary

dynamics of mutation rates and adaptation may be different in sexual, recombining popula-

tions. For example, in our non-recombining populations, any mutator allele remains

completely linked to the (mostly deleterious) mutations it helps bring forth, resulting in indi-

rect negative selection on the mutator allele. However, such an allele and its associated muta-

tions can become unlinked in recombining populations, which reduces the strength of indirect
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selection on the mutator allele (see [33,39] for reviews). Additionally, beneficial and deleteri-

ous alleles can become unlinked in recombining populations, which can lead to increased lev-

els of adaptation and diversity (see [13,14] for reviews).

We also characterized the effect of mutational pressure on the ability of an evolving popula-

tion to grow better (or worse) than its ancestor in a variety of chemically novel environments,

which contain chemical agents that include heavy metal stressors, antibiotics, or acids. Impor-

tantly, our populations were never exposed to any of these conditions during the evolution

experiment. A priori, we reasoned that two outcomes were possible. First, populations with

high mutation rates may grow better in novel environments, because they can accumulate

more beneficial mutations while evolving in their original environment, and these mutations

may also be beneficial in novel environments through pleiotropy. High mutation rate popula-

tions can also generate more genotypic diversity, which in turn increases the chances that a

population harbors a clone with a latent beneficial mutation that allows it to grow better in a

novel environment. Such latent beneficial mutations can indeed occur, as demonstrated by the

classic fluctuation test, which relies on such mutations to estimate mutation rates towards

resistance to lethal selection [96,97]. Second, populations with high mutation rates may grow

worse in novel environments, because they may accumulate more mutations that are either

beneficial or neutral in the current environment, but deleterious in a novel environment. Such

latent deleterious mutations do indeed exist [36,70,98]. In sum, strains with high mutational

pressure may harbor more latent beneficial alleles, but also more latent deleterious alleles, and

it is not clear a priori which dominates in their effect on fitness.

We conducted two tests on how mutational pressure can affect growth in novel conditions.

In the first, we measured the growth of eight evolved replicate populations (two each from

MRS, MRM, MRL, and MRXL) in 96 chemically novel environments. This test did not yield a

clear association between mutation rate and growth for our MRS, MRM, and MRL populations.

However, it yielded a very clear pattern for our MRXL populations: They were not able to grow

in any one of these environments, which illustrates that at the highest mutation rates we con-

sider, latent deleterious mutations outweigh beneficial ones in both the ancestor and evolved

populations. One possible explanation is that the MRXL strain is inherently more sensitive to

novel environments, including the assay environment. Because the MRXL ancestor population

could not grow at all, we were unable to further quantify the effect of the highest mutation rate

in these 96 novel environments. In the second test, we periodically measured growth of all 32

replicate populations (relative to their ancestors) in two stressful conditions: the antibiotic

nitrofurantoin (a specific narrow stressor) and an acidic medium (a broader stressor). For

both, we found that strains with higher ancestral mutation rates could grow better than those

with lower mutation rates, except for MRXL replicate populations, which grew worst of all pop-

ulations. This experiment shows that latent beneficial alleles may predominate at low and

intermediate mutational pressure, but no longer at high mutational pressure. Our observations

are consistent with a previous study showing that multidrug resistance in E. coli is favored by

intermediate mutation rates [99].

In sum, a modest increase in mutation rates can provide an evolutionary advantage in both

the constant environment of our long-term laboratory evolution experiment and in novel

environments. This advantage disappears at the highest mutation rates (U = 0.036) we consid-

ered, where populations show signs of decaying adaptation and poor performance in novel

environments. These mutation rates are below those commonly considered to limit adapta-

tion, and highlight the need for additional theoretical work. Our observations show that bio-

logical systems may be more sensitive to mutational pressure than simple theoretical models

suggest, at least when the effects of mutations are allowed to accumulate over many genera-

tions. This observation may improve the prospects of using elevated mutagenesis to drive
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pathogen or tumor populations to extinction [20,100–104], if high mutation rates can be sus-

tained for a sufficiently long amount of time.

Methods

Bacterial strains

We utilized four isogenic E. coli strains derived from K12 MG1655 that have increasing muta-

tion rates. We refer to these strains as the MRS, MRM, MRL, and MRXL strains, corresponding

to small (S), medium (M), large (L), and extra-large (XL) mutation rates. Strain genotypes are

summarized in Table 1. We obtained MRM and MRXL strains from our previous experiments

(therein called the single- and double-mutator, respectively) [35]. MRM has a non-synony-

mous (A120T) mutation in the mutL gene relative to the E. coli wild type. This gene is involved

in the methyl-directed mismatch repair system. We previously constructed the MRXL strain by

P1 transduction of the dnaQ gene from the E. coli CSH116 strain, which has a non-synony-

mous mutation, T15I, in the dnaQ gene, into the MRM strain [35]. The dnaQ gene encodes the

epsilon subunit of DNA Polymerase III; mutations in this gene can disrupt proofreading. We

constructed the mutator strain MRL by replacing the mutL region in MRM with the mutL
region from ES4 with a kanamycin resistance gene inserted upstream of the region, using the

method of Datsenko and Wanner [105]. We then excised the kanamycin resistance gene using

pCP20 [106], which left a small scar immediately upstream of the mutL gene. We constructed

the low mutation rate strain MRS by using P1 transduction to replace the error-prone mutL
region in MRM with the wildtype allele from CAG12073 [107]. We confirmed the mutation

rates of these ancestral strains using fluctuation tests [108] (see "Mutation rate measurements

and calculations" for details), and found that the MRM, MRL, and MRXL strains had 16-, 22-,

and 139-fold higher mutation rates to rifampicin resistance than MRS. We also confirmed our

manipulations of the MRS, MRM, MRL, and MRXL strains by sequencing their genomes (S1

Table). In additional to these strains, we used the strain E. coli K12 MG1655, which we

obtained from Yale’s Coli Genetic Stock Center.

Table 1. Strains and plasmids used in this work.

Strain Description Details Source

MRS mutL, dnaQ wildtype F-, fhuA2, lacY1, tsx-1 or tsx-70, glnV44 (AS), gal-6, λ-, xyl-7, mtlA2, cycA30::
Tn10

This

experiment

MRM Impaired mismatch repair (mutL) F-, fhuA2, lacY1, tsx-1 or tsx-70, glnV44 (AS), gal-6, λ-, xyl-7, mtlA2, mutL13
(Yale’s Coli Genetic Stock # 4816)

[35]

MRL mutL, dnaQ wildtype F-, fhuA2, lacY1, tsx-1 or tsx-70, glnV44 (AS), gal-6, λ-, xyl-7, mtlA2 This

experiment

MRXL Impaired mismatch repair (mutL), impaired

proofreading (dnaQ)

F-, fhuA2, lacY1, tsx-1 or tsx-70, glnV44 (AS), gal-6, λ-, xyl-7, mtlA2, mutL13,

yafC502::Tn10, dnaQ905

[35]

ES4 Source for wildtype mismatch repair gene (mutL)

in MRL
F-, fhuA2, lacY1, tsx-1 or tsx-70, glnV44 (AS), gal-6, λ-, xyl-7, mtlA2, purA45 [109]

E. coli K12

MG1655

Previously sequenced as the E. coli K12 reference

genome

F-, LAM-, rph-1 (Yale’s Coli Genetic Stock # 7740) [110]

CAG12073 Wildtype mismatch repair (mutL) linked to

tetracycline resistance

λ-, rph-1, cycA30::Tn10 [107]

pKD4 Plasmid containing bla, FRT, and kan [105]

pKD46 Plasmid containing bla and araBp-gam-bet-exo [105]

pCP20 Plasmid containing FLP and cat [106]

https://doi.org/10.1371/journal.pgen.1007324.t001
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Evolution experiment

See Fig 1 for an overview. We evolved eight independent replicates from populations starting

from a single clone for each of the MRS, MRM, MRL, and MRXL strains for 175 days (2907 gen-

erations) in 48-well plates (Fluka 15758-500G-F) in 2 mL of Davis Minimal broth [111] supple-

mented with 1000 mg/L glucose (‘DM1000’) at 37˚C with shaking at 400 rpm in a microtiter

plate shaker (Stuart Microtiter 51505).

Each plate held 24 populations arranged in a checkerboard pattern, such that each well was

surrounded only by wells with blank medium, and the populations were assigned to the 24

wells at random by a custom R script. We diluted each culture 100,000-fold every 24 hours

into fresh DM1000 medium, which allows almost 17 generations of growth per day. Every 7

days, we archived each evolving population by adding 400 μL of 50% glycerol to 800 μL of sta-

tionary phase culture and freezing at -76˚C, estimated the cell density by plating subsamples

onto LB (Difco 244620) plates with 1.5% agar (Sigma A1296-1KG), and froze cell pellets from

800 μL of stationary phase culture for eventual genome sequencing. We delayed the start of the

MRS replicates by 63 days for technical reasons.

We controlled for contamination in several ways. First, if we observed growth in an empty

well, we repeated the transfer from the previous day’s 48 well plate stored at 4˚C. Second, we

periodically checked each evolving culture for contamination by confirming its resistance pro-

file and approximate mutation rate using spot tests. In short, we spotted 25 μL from each

evolving culture onto tetracycline (10 μg / mL) and rifampicin (100 μg / mL) plates, and incu-

bated overnight at 37˚C. MRS and MRXL replicates can grow on tetracycline, and the replicates

with higher mutation rates display more colonies on rifampicin. Cross-contamination

occurred once, which prompted us to restart the experiment from the most recent set of

uncontaminated glycerol stocks (day 98 for MRM, MRL, and MRXL replicates; day 35 for MRS

replicates). Third, we examined the genome sequence data for cross-contamination, but

detected no evidence for cross-contamination in it.

Effective population size

For populations that do not have a constant number of cells, the effective population size is

given by the harmonic mean of population sizes over the course of the dilution and growth

cycles of the experiment. Previous studies have estimated the effective population size only

from the size of the bottleneck measured during one dilution [112,113]. In contrast, because

we recorded the census size of the population at carrying capacity (Nmax) every 7 days, we were

able to estimate the effective population size as the harmonic mean of the population sizes

both at the beginning and at the end of a cycle of growth and dilution. To obtain Nmax,d at any

one day d, we counted the number of cells in each evolving replicate population in stationary

phase just before transferring the population into fresh media. We did so by plating serial dilu-

tions in duplicate on LB agar plates and incubating overnight at 37˚C. We discarded plates

with fewer than 20 or more than 700 colonies for the purpose of this analysis. Because at the

end of each growth cycle we diluted our cultures 100,000-fold into fresh medium, a total of

G = log2z(105) = 16.61 cell generations (floor(log2(105))�16 complete cell generations) elapsed

during each growth cycle, and the minimum population size was Nmin,d = Nmax,d × 10−5. Thus,

during each generation g of each growth cycle, a population assumed population sizes

Nd;g ¼
2gNmin;d; if 0 � g � 16

Nmax;d; if g ¼ 17
:

(
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(Because the precise number of generations in each dilution cycle is log2(105) = 16.61, we

included the final number of cells Nd,17 = Nmax,d in this calculation). We then determined the

nominal effective population size (Ne) of a replicate population during its entire lab evolution

as

Ne ¼ 25� 18

�
X25

d¼1

X18

g¼0

1

Ng;d

which is the harmonic mean of all the population sizes. We calculated it for all 25 days on

which we collected population size data. The number 18 corresponds to the total number of

generations g for which we computed population sizes during any one of these 25 days. We

also estimated the effect of linkage on reducing the effective population size due to background

selection or interference selection [53–55,114]. To this end, we used the R functions (GordoNe

and GoodNe, respectively, available from [53]), where we take the size of the deleterious selec-

tive effect as s = 0.03 [115] and use U as an upper bound on Ud to obtain rough estimates of lin-

kage’s effect on effective population size.

Fitness measurements

We periodically obtained a proxy for the fitness of the evolving strains by measuring growth

curves of the archived populations. For each time point, we restarted all evolving populations

as well as three replicates from each ancestral population and three replicates of wild type E.

coli K12 MG1655 from glycerol stocks in 2 mL of DM1000 and incubated them overnight at

37˚C with shaking. We then diluted the overnight cultures 50-fold into 200 μL final volume

of DM1000 in 96-well plates (TPP 92096), and incubated them in a plate reader (Tecan Infi-

nite Pro F200) for 18 hours at 37˚C with shaking. During this time, we read the absorbance

at 600 nm every 10 minutes. We fit the classic logistic equation describing population growth

to the data [116], using the Growthcurver R package [117], and defined the relative fitness of

each population as revo—ranc. Here, revo is the growth rate of the evolved population and ranc
is the mean growth rate of the three replicates of the ancestor grown in the same plate

reported in units of cell divisions per hour. We measured each growth curve three times. We

used the R package lme4 v1.1–12 [118] to perform a linear mixed effects analysis of the rela-

tionship between the evolved fitness relative to the ancestor and the mutation rate class. In

this analysis, we chose the mutation rate classes as fixed effects, and the replicate population

as well as the 96-well plate as random effects. For all linear mixed effects analyses conducted

in this paper, we observed no deviations from homoscedasticity according to Levene’s test

for homogeneity of variance [119] implemented in the R package car v2.1–2 [120]. Also, all

residuals were normally distributed unless otherwise specified. We obtained significance val-

ues using a likelihood ratio test of the full model against a null model that did not contain the

fixed effects. Using the data from the above growth curve experiments, we also compared the

fitness of the ancestor populations against each other by obtaining the relative fitness of the

ancestors as ranc—rK12, where ranc is the growth rate of the ancestor population and rK12 is

the mean growth rate of the three replicates of E. coli MG1655 K12 grown in the same plate.

We performed a linear mixed effects analysis of the relationship between the ancestral fitness

relative to E. coli K12 and the mutation rate class using the lme4 package, as just described.

In this analysis, we chose the mutation rate classes as fixed effects, and the identity of the

original glycerol stock and of the 96-well plate as random effects. We used the R package

multcomp v1.4–6 [121] to test whether fitness values had changed from the ancestral or ref-

erence state of 0.

High mutation rates limit evolutionary adaptation in Escherichia coli

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007324 April 27, 2018 16 / 31

https://doi.org/10.1371/journal.pgen.1007324


Sequencing

We sequenced samples from the four ancestral populations (day 0, generation 7) and from

each of the 32 evolving replicate populations at days 63, 119, and 175 (generations 1046, 1977,

and 2907). In total, we thus sequenced 100 populations (4 + 3×32). For simplicity, we hereafter

designate these time points as generations 0, 1000, 2000, and 3000. For each, we isolated the

DNA directly from cell pellets obtained from the evolving populations using Qiagen’s DNeasy

Blood and Tissue kit (cat. No 69582), with modifications as previously described [122]. We

used the TruSeq DNA PCR-Free kit (Illumina FC-121-3002) to prepare and barcode the librar-

ies for paired-end sequencing, as previously described [122]. Importantly, we used no PCR

steps in preparing the libraries. We employed qPCR with Roche’s FastStart Essential DNA

Green Master kit (Cat no. 06402712001) to quantify the libraries, which were then mixed in

equimolar amounts for sequencing. We sequenced the populations (paired-end, 125 bp) on a

single lane of Illumina’s HiSeq 2500 v2. We used breseq v0.26.1 [56] to align the reads, and call

and annotate the variants relative to the E. coli K12 MG1655 reference genome NC_000913.3

[110], downloaded from the NCBI (https://www.ncbi.nlm.nih.gov/nuccore/556503834) on

January 6, 2015. We developed scripts in R to identify the alterations that occurred in the

evolved populations, but were not fixed in their ancestors. We determined mutational spectra

by identifying all mutations that occurred at any detectable frequency in each population at

every sequenced time point, and classified them into the following categories: A!C, A!G,

A!T, C!A, C!G, or C!T. (Because DNA is double-stranded, the remaining possible point

mutations are covered by their reverse complements, e.g., T!G corresponds to A!C.) We

computed the relative frequencies of each mutational class for each replicate population, and

used these to perform a principal component analysis (PCA) in R with prcomp, which uses

singular value decomposition for the PCA. All data are available from the Dryad Digital Repos-

itory: https://doi.org/10.5061/dryad.mh206.

Diversity and mutational cloud metrics

To quantify the movement and spread of a population as a “cloud” of sequences in sequence

space, we first defined the center of this mutational cloud at any given site n in the genome as

the majority allele en2{A,C,G,T}, i.e., the allele whose frequency p exceeded 0.5 (all sites we

analyzed had one such allele). We defined the center of the mutational cloud of genomes as the

location in genotype space defined by the majority allele at each site. It can also be viewed as

the location of the population’s consensus sequence. If we denote the fraction of a population

with the majority allele at site n as p, then the distance of the population to a given majority

allele at site n can be thought of as the fraction of the population not having the majority allele,

which is given as Cn = (1—p). We define the population spread metric C as the average of Cn
over all sites in the genome. A related quantity is the approximate sequence distance D that an

evolving population has moved from its ancestral genotype, i.e.,

D ¼
X

n

0; if an ¼ en
1; otherwise

(

where an2{A,C,G,T} is the ancestral allele of the population at generation 0. In other words, D
corresponds to the total number of sites at which the majority allele is different from the ances-

tral allele. We also computed each population’s average genome-scale nucleotide site diversity

[123,124] using the pairwise alignment position nucleotide counting approach [125,126]. We

High mutation rates limit evolutionary adaptation in Escherichia coli

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007324 April 27, 2018 17 / 31

https://www.ncbi.nlm.nih.gov/nuccore/556503834
https://doi.org/10.5061/dryad.mh206
https://doi.org/10.1371/journal.pgen.1007324


estimated the proportion of pairwise nucleotide differences at each site n as

pn ¼
mpð1 � mpÞ

mðm � 1Þ=2
;

where mp is the number of reads corresponding to the majority allele and m is the total number

of reads at site n. We estimated the average nucleotide diversity for the L positions in our

genome having non-zero coverage as

p ¼
XL

n¼1

Pn
L
:

We used the R package lme4 v1.1–12 [118] to perform a linear mixed effects analysis of the

relationship between the cube root of C orD (taken to ensure homoscedasticy) and the mutation

rate class. In this analysis, we chose the mutation rate classes as fixed effects, and the time points

and each of the 32 evolving replicates as random effects. We obtained significance values using a

likelihood ratio test of the full model against a null model that did not contain the fixed effects.

Identification of putatively beneficial mutations

We identified putatively beneficial mutations as mutations that occurred in a genomic region

more often than one would expect by chance alone. To identify such mutations, we used a

numerical approach that focuses on a given gene g among a larger set of genes or genomic

regions G (e.g., a gene among the set of all genes), and asked whether more replicate popula-

tion experienced a high-frequency genetic change than expected by chance. To this end, we

first counted the number ng of replicate populations with a mutation in gene g that had reached

a frequency greater than 50% at generation 3000.

If all sites in the genomes of all samples were equally likely to experience a mutation, and if

different genes were likely to experience mutations only in proportion to their length, then the

probability pg that any one gene g receives such a mutation in any given replicate would

depend only on the length of the gene lg,

pg ¼
lg

P
g2G lg

:

The ng total mutations found in gene g could be distributed in 32

ng

� �
ways across the 32 repli-

cate populations R = {MRS1,. . .MRS8,MRM1,. . .MRM8,MRL1,. . .MRL8,MRXL1,. . .MRXL8}. For

example, for ng = 2, the mutations could be distributed across the 32 replicate populations in
32

2

� �
= 496 ways, i.e., one could occur in MRS

1 and the other in MRS
2, one could occur in MRS

1

and the other in MRS
3, etc. We computed the probability of observing the ng mutations in any

given set of replicates as the probability that gene g was mutated in each member of the set of

replicates times the probability that it was not mutated in any of the other replicates. For ng = 2

and replicate populations ri,rj ∊R, this quantity is given by the binomial distribution adjusted

to account for the number of observed mutant genes in the replicate populations, nri and nrj

pri;rj ¼ nrinrjp
ng
g ð1 � pgÞ

ðntot � nri � nrj Þ;

where

ntot ¼
X

r2R

nr:
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The probability of observing exactly ng = 2 mutations in gene g in any pair of replicate pop-

ulations is the sum of the probabilities that ng mutations occurred in each of the 496 pairs, and

is given by

Pg ¼
X

ri ;rj2R; ri 6¼rj

pri;rj :

This quantity Pg is our null expectation that two replicates acquire mutations in gene g, if

each replicate population’s mutations were randomly distributed across its genome. We were

interested in genes containing mutations in improbably many replicate populations, which we

identified as those genes having less than a 0.005 percent chance of finding ng replicate popula-

tions with a high frequency derived allele in the gene. We performed analogous analyses for ng
> 2. For example, for genes in which we observed three replicates with mutations (ng = 3), we

computed the probability that three replicates ri, rj, and rk each contained a mutation in gene g
as

pri;rj;rk ¼ nrinrjnrkp
ng
g ð1 � pgÞ

ðntot � nri � nrj � nrk Þ:

Similarly, the probability of observing a mutation in exactly 3 replicate populations is given

by

Pg ¼
X

ri ;rj;rk2R; ri 6¼rj 6¼rk

pri ;rj;rk :

Mutation rate measurements and calculations

We estimated the mutation rate of a single clone isolated from each ancestor and from each

evolved replicate population through fluctuation assays that screened for mutants resistant to

rifampicin [127], which can be caused by mutations in the rpoB gene. Specifically, we per-

formed the following procedure for each replicate population. We isolated a single random

clone and incubated it overnight in 2 mL DM1000 in 48 well plates at 37˚C with shaking. We

diluted the resulting overnight culture 100,000-fold to yield a culture with approximately 1000

cells in 100 μL. We then transferred 100 μL of the diluted culture into 5–7 sterile 50 mL tubes

(Sarstedt 62.547.254) containing 30 mL of DM1000, and incubated for 48 hours at 37˚C with

shaking. We estimated the number of cells in each tube by plating dilutions on LB agar plates,

and estimated the number of resistant cells in each tube by plating dilutions on LB agar plates

supplemented with 50 mg/mL rifampicin (Sigma R3501-5G). We calculated the mutation

rate to rifampicin μrif using the method and program provided by Philip Gerrish [108]. We

obtained the genomic mutation rate U using Drake’s approach [74] by first determining the

"correction factor" C, which counts the number of single nucleotide mutations in rpoB that

show rifampicin resistance. By counting all possible nucleotide changes underlying the amino

acid changes in rpoB previously shown to confer rifampicin resistance [57], we determined

that C = 71. Finally, we estimated the genomic mutation rate as U = Lμrif/C, and the mutation

rate per base pair as μ = μrif/C, where L = 4641652 is the number of nucleotides in the E. coli
K12 genome. This mutation rate may be an underestimate because we neglected other types of

mutations (e.g., indels) and mutations in other genes that may lead to rifampicin resistance.

Phenotype screening

Our phenotype screening revolved around the density of cells after growth in various chemi-

cals. Specifically, we determined the cell density after 24 hours of growth using Biolog
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Phenotype MicroArrays PM11C, PM12B, PM13B, and PM14A MicroPlates (Biolog, Inc., Hay-

ward CA, USA), which assay the sensitivity of bacteria to diverse chemicals that range from

antibiotics to heavy metals. We screened the ancestors at generation 0, and two randomly

selected replicates of the evolved populations (MRS
1, MRS

6, MRM
3, MRM

4, MRL
2, MRL

7,

MRXL
3, MRXL

4) at the final time point of laboratory evolution. To do so, we streaked popula-

tion samples from glycerol stocks onto LB agar plates, incubated them at 37˚C for 24 hours,

restreaked the resulting colonies onto fresh LB agar plates (37˚C, 24 hours), and repeated this

streaking and incubation procedure once more. We resuspended the colonies from the final

(third round) plates in IF-0 solution (Biolog, Inc., Hayward CA, USA) to a final absorbance

reading at 600 nm of approximately 0.18 (200 μL suspension in a 96-well TPP plate, ref 92096).

We diluted this suspension 6-fold using IF-0+dye (Biolog, Inc., Hayward CA, USA), and

diluted the resulting suspension 201-fold using IF-10+dye (Biolog, Inc., Hayward CA, USA).

We added 100 μL of the final solution to each well of a Phenotype MicroArray and incubated

the array in the dark at 37˚C for 24 hours, taking absorbance readings at 600 nm after 10 min-

utes and 24 hours. We then computed the Biolog phenotype BS,C = AS,C,24h−AS,C,10m, where AS,

C,24h and AS,C,10m are the absorbance readings for each sample S and compound C at 600 nm

after 24 hours and 10 minutes.

To determine the minimum threshold for detection of growth in a given compound C, we

computed the absolute difference between the readings in a given well across all pairs of sam-

ples (i,j) after 10 minutes (before cells had started to grow and divide), i.e., Ai-j,C,10m = |Ai,
C,10m−Aj,C,10m|. The values of Ai-j,C,10m quantify the expected experimental noise of wells with

no growth. We found that Ai-j,C,10m<0.097 for more than 99% of sample pairs. Based on this

observation, we considered differences between readings smaller than the threshold value

Athresh = 0.097 as due to experimental noise.

Each compound in the Biolog Phenotype MicroArrays we used occurs in four wells at

increasing concentrations. For further analysis, we used data only from the concentration (the

well) that showed the highest variation in the difference between matched evolved and ances-

tor strains across all samples. We considered a sample to have evolved tolerance to a com-

pound C if it improved its phenotype after 3000 generations of evolution more than expected

based on experimental noise, i.e., BSEvo,C − BSAnc,C> Athresh. Likewise, we considered that a

sample had lost tolerance if its phenotype had degenerated after 3000 generations of evolution,

i.e., if BSAnc,C − BSEvo,C> Athresh. We note that both cellular growth and respiration contribute

to the Biolog phenotype BS,C, because respiration can occur independently of cellular growth

[70,128].

We were also interested in observing the evolutionary dynamics of phenotypes over time.

The phenotypes we selected for this analysis are the cell density after 24 hours of growth of the

evolved populations relative to their ancestors in two conditions: a narrow antibiotic (nitrofur-

antoin) stress, and a broader environmental (low pH) stress. Specifically, we chose DM1000

medium with 1.5–2.4 μg/mL nitrofurantoin for the narrow antibiotic stress, and acidic

DM1000 (pH 4–5.25) for the broad stress. Nitrofurantoin is one of the phenotypes where

evolved populations gained tolerance in the Biolog analyses, and acid stress has been well-stud-

ied in E. coli [72]. To control for changes in cell density at stationary phase, we also performed

a control measurement in the standard medium, DM1000. Specifically, we measured the

growth of evolved replicate populations at days 28, 63, 91, 119, 147, and 175 (generations 465,

1046, 1511, 1977, 2442, and 2907, hereafter designated as generations 500, 1000, 1500, 2000,

2500, and 3000). To do so, we inoculated each population in triplicate from glycerol stock in

DM1000 and grew it at 37˚C for at least 18 hours. We then diluted the resulting culture

50-fold into DM1000 medium immediately before adding 10 μL from the diluted culture to

190 μL media with nitrofurantoin, low pH, or just DM1000 in a 96-well plate. We incubated
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the resulting 96-well plates for 24 hours, and then measured the absorbance at 600 nm. We

computed the normalized fold change in cell density in each condition at six time points by

obtaining the average value of G = (AX,E / AX,A) / (ADM1000,E / ADM1000,A) for the three replicate

cultures, where AX,Y is the absorbance reading in condition X (e.g., 2.2 μg/mL nitrofurantoin

or acidic DM1000 medium) of a given replicate before evolution (Y = A for ancestral) or after

evolution (Y = E for evolved). The denominator, (ADM1000, E / ADM1000, A), removes the effect of

changes in the evolved carrying capacity, which otherwise could confound cell density changes

observed in stressful media with evolved cell density changes in the medium without stressor.

We considered that evolution had increased cell density relative to the ancestor when the

numerator of G was greater than its denominator, (AX, E / AX, A)> (ADM1000, E / ADM1000, A). In

order to quantify the relationship between the normalized fold-change in cell density G and

ancestral mutation rate, we performed a linear mixed effects analysis using the R package lme4

v1.1–12 [118] to obtain the relationship between G and the mutation rate class. In this analysis,

we chose the mutation rate classes (MRS, MRM, MRL, and MRXL) as fixed effects, and the mea-

surement time points, the experimental condition, and each of the 32 evolving replicates as

random effects. For the nitrofurantoin and pH stressors, we used data from the experimental

condition with the most variability between replicates (2.3 μg/mL nitrofurantoin and pH 5.25)

in this analysis. We tested for homoscedasticity using the R package car v 2.1–2 [120], and

found that the untransformed pH data and the log-transformed nitrofurantoin data were

homoscedastic (Levene’s test, pH 5.25: F3,188 = 1.71, p = 0.17; nitrofurantoin 2.3 μg/mL: F3,188 =

1.25, p = 0.29).

Supporting information

S1 Fig. Cell density (vertical axes) after 24 hours of growth as a function of generation

time (horizontal axes). We counted the number of cells in stationary phase just before our

daily transfer at regular intervals. Each point is the average cell density of an evolving replicate

population at a given generation. One standard deviation above and below the mean is

depicted with a shaded line. Different colors distinguish data from the MRS (blue), MRM (yel-

low), MRL (orange), and MRXL (red) strains.

(PDF)

S2 Fig. Effective population size (Ne) of replicate populations over the course of the evolu-

tion experiment. We counted the number of cells at regular intervals, and used these counts

to estimate (A) the nominal effective population size Ne for each replicate population. Because

our populations are asexual, the effects of selection on polymorphisms linked to neutral sites

will make drift at neutral sites appear much stronger than indicated by these estimates. To

account for such effects, we also made rough estimates of the effect of linkage on the effective

population size using two published methods (further described in Methods), which compute

the "Gordo" Ne (B), and the "Good" Ne (C). Together, panels B and C suggest that the effective

population size may be much smaller than the nominal population size. Each circle shows the

Ne estimate of a replicate population, the center line of the box plot is the median value, and

the top and bottom edges of the box correspond to the first and third quartiles. Different colors

distinguish data from the MRS (blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S3 Fig. (A) Fitness differences between ancestral replicate populations and E. coli K12

MG1655. Each circle shows the growth rate of a replicate population for a given strain (hori-

zontal axis) minus the growth rate of E. coli K12 MG1655 from the same experimental batch.

Overall, 54 experimental estimates were made for each strain. (B) Fitness differences between
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each evolving replicate population and a common reference strain E. coli K12 MG1655 over

time are depicted in separate panels for each strain and replicate. Shaded areas indicate one s.e.

m. Different colors distinguish data from the MRS (blue), MRM (yellow), MRL (orange), and

MRXL (red) strains.

(PDF)

S4 Fig. (A) (C) The fitness difference between each evolving replicate population and its

ancestor and its change over time is depicted in separate panels for each strain and replicate.

Panels corresponding to the replicates randomly chosen for further characterization in Biolog

plates are outlined with a heavy black border. Shaded areas indicate one s.e.m. (B) Variance in

relative fitness for the replicate populations of each strain. Strains with higher ancestral muta-

tion rates have more variability in the relative fitness of their evolving populations than those

with lower mutation rates. Different colors distinguish data from the MRS (blue), MRM (yel-

low), MRL (orange), and MRXL (red) strains.

(PDF)

S5 Fig. Percentage of the genome with no sequencing coverage for all 100 sequenced popu-

lations. Different colors distinguish data from the MRS (blue), MRM (yellow), MRL (orange),

and MRXL (red) strains.

(PDF)

S6 Fig. Frequency and type of SNP in each evolving population over time. Each line in a

given panel shows the frequency of one SNP in one replicate population (vertical axis) at gen-

erations 0, 1000, 2000, and 3000 (horizontal axis). The color of the line indicates the type of

SNP. Types of SNPs with likely functional consequences are emphasized in brown (nonsense

mutations) and green (nonsynonymous mutations). Data from all eight independently-evolv-

ing replicates (rows of panels) are plotted for each strain (MRS, MRM, MRL, and MRXL; col-

umns of panels).

(PDF)

S7 Fig. The frequency of newly-arising SNPs after one day of growth in the ancestral popula-

tions. Several of the observed SNPs, particularly those occurring at higher frequencies, may

have been transferred to the eight replicates. Different colors distinguish data from the MRS

(blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S8 Fig. The mutational spectra at four-fold degenerate sites for each evolving replicate

strain. (A) Nucleotide changes are depicted along the horizontal axis. For each type of muta-

tion, we computed how often it occurred at any time point during the evolution experiment

relative to all other types (Methods). (B) The mutational spectra from replicate populations

evolved from ancestors with different mutation rates do not clearly separate when projected

onto the first two principal components (PC1 and PC2) in a principal component analysis

(Methods). (C) The scree plot shows that PC1 and PC2 account for 43% and 32% of the vari-

ability, respectively. Different colors distinguish data from the MRS (blue), MRM (yellow),

MRL (orange), and MRXL (red) strains.

(PDF)

S9 Fig. The number of replicates for which at least half of the population harbors any

mutation in a putatively beneficial gene. Each dot indicates that a single replicate acquired a

mutation within the gene and that this mutation rose to a frequency of at least 50% in a given

generation (horizontal axes). In this analysis, we included all genes (rows, labeled in left-most

subpanel of each row) that rose to a frequency of>50% in significantly more replicate

High mutation rates limit evolutionary adaptation in Escherichia coli

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007324 April 27, 2018 22 / 31

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007324.s009
https://doi.org/10.1371/journal.pgen.1007324


populations at generation 3000 than expected by chance alone (see Methods). Because we

evolved eight replicate populations for each strain, each vertical stack of dots can harbor at

most eight dots. For many genes, all MRXL replicates share the same nucleotide change, which

likely already occurred in the shared ancestor. (A) Genes with different mutations in the same

gene in different replicates, and (B) genes where all the MRXL replicates share the same nucleo-

tide change (the nucleotide changes found in the MRL replicate populations for betI and torA
are not the same as found in the MRXL populations). Different colors distinguish data from the

MRS (blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S10 Fig. The evolutionary dynamics of mutations in the eight putatively beneficial genes.

Each circle corresponds to one evolving replicate population. The size of a circle is propor-

tional to the frequency at which a mutation is found in a population, and can change over time

(horizontal axes). All replicates for all strains (circles inside each panel) are depicted for each

gene (labeled in the top, left of each panel). Different colors distinguish data from the MRS

(blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S11 Fig. Cell density of two randomly selected evolved and ancestral strains in 96 different

environments on Biolog plates. Importantly, all tested ancestor and evolved MRXL strains

failed to grow in every one of the 96 environments. Each circle represents the ancestor’s density

(horizontal axes) and the evolved replicate population’s density (vertical axes) in a particular

environment. Points above the diagonal line correspond to conditions in which an evolved rep-

licate population outperformed its ancestor; points below the line correspond to conditions in

which an evolved replicate population underperformed its ancestor. We consider a population

to have evolved tolerance to a condition when its density is larger than the ancestral density in

the same condition, excluding differences attributable to experimental noise. Conversely, we

consider a population as having experienced decay if its density after evolution is smaller than

that of its ancestor (see Methods). Both gains and decays are indicated by solid circles. Open cir-

cles indicate that no gain or decay was detected for that condition, or that the difference

between the evolved and ancestral cell density could be due to experimental noise. Different col-

ors distinguish data from the MRS (blue), MRM (yellow), and MRL (orange) strains.

(PDF)

S12 Fig. The fold-change in cell density after 24 hours of growth of evolved replicate popu-

lations (relative to their ancestor) in media with nitrofurantoin and low pH media. We

measured the cell density of the MRS, MRM, MRL, and MRXL evolved replicate populations rel-

ative to their ancestors over the course of the experiment (horizontal axis) in (A) the antibiotic

nitrofurantoin (1.5 μg/mL—2.4 μg/mL), and (B) acidic media (pH 4.0–5.25). Different colors

distinguish data from the MRS (blue), MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S13 Fig. Comparisons of multiple population properties (matrix diagonal) for the experi-

mental data from each evolved replicate population. We plotted each property in a pairwise

fashion to identify correlations between properties. Each property is listed on the diagonal

("log(U)" is the logarithm of the genomic mutation rate, "relative fitness" is the evolved growth

rate relative to the ancestor, "Ne" is the effective population size, "cell density at 3000" is the

absorbance reading at 600 nm at generation 3000 after 24 hours of growth in minimal

medium, "log(derived alleles)" is the logarithm of the number of high frequency derived alleles

at generation 3000, "log(cloud size)" is the logarithm of the population’s average distance to

the center of the cloud at generation 3000, "log(pH cell density)" is the logarithm of the
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normalized fold change in cell density after 24 hours of growth in acidic media at pH 5.25, and

"log(nitro cell density)" is the logarithm of the normalized fold change in cell density after 24

hours of growth in media containing 2.2 μg/mL nitrofurantoin). Pairwise comparisons are

plotted below the diagonal; each circle corresponds to a different replicate population. The

Spearman correlation coefficient of each panel below the diagonal is reported in the corre-

sponding panel above the diagonal. Different colors distinguish data from the MRS (blue),

MRM (yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S14 Fig. No evidence that the mutation rate genome is preferentially subject to genetic

change. (A) We calculated the percentage of synonymous nucleotide changes (at any fre-

quency) that occurred within genes belonging to the mutation rate genome (vertical axes) dur-

ing the evolution experiment (horizontal axes) at any frequency in each evolving replicate

population (circles). Horizontal gray lines indicate the percentage of coding regions in the E.

coli genome that belong to the mutation rate genome (2.8%). There are no more mutations in

the mutation rate genome than expected by chance alone at generation 3000 (one-sided bino-

mial test, MRS:n = 55,p = 1.0; MRM:n = 48,p = 1.0; MRL:n = 433,p = 0.79; MRXL:n = 1050,

p = 0.99). (B) We calculated the mean synonymous nucleotide site diversity and its standard

error (Methods). The mean synonymous nucleotide site diversity for the mutation rate

genome is depicted in the right panel, and for all other genes in the left panel. Note that no or

very few sites may contribute to average diversity at low mutation rates. Shaded areas indicate

one standard error of the mean. Different colors distinguish data from the MRS (blue), MRM

(yellow), MRL (orange), and MRXL (red) strains.

(PDF)

S15 Fig. The evolutionary dynamics of possibly function-altering mutations in the muta-

tion rate genome. Each circle corresponds to a putatively function-altering mutation (nonsy-

nonymous or nonsense mutations in protein-coding genes, or any mutation in tRNA-

encoding genes) in one evolving replicate population. The size of a circle is proportional to the

frequency at which a mutation is found in a population, and can change over time (horizontal

axes). All replicates for all strains (circles inside each panel) are depicted for each gene (labeled

on the top left of each panel). Different colors distinguish data from the MRS (blue), MRM (yel-

low), MRL (orange), and MRXL (red) strains.

(PDF)

S1 Table. All single nucleotide differences between the ancestor strains MRS, MRM, MRL,

and MRXL. The columns are as follows: "Position" is the genomic coordinate of the SNP; "Ref"

is the consensus ancestral sequence; "MRS", "MRM", "MRL", and " MRXL " display the SNPs in

the each of the respective ancestral strains (a period means that the nucleotide is the same as in

the consensus ancestral sequence); "Gene" is the name of the gene in or near which the SNP

occurs; "SNP type" defines what effect the polymorphism may have (e.g., nonsynonymous,

intergenic, noncoding); and "AA effect" is a SNP’s effect on the protein sequence for SNPs

occurring within protein-coding genes. SNPs occurring in intergenic regions are annotated

with the nearest 5’ and 3’ genes.

(XLSX)

S2 Table. Genes putatively involved in modulating the mutation rate.

(XLSX)

S3 Table. Genomic mutation rates. The columns are as follows: "Strain" is the identity of the

ancestral strain (e.g., MRS, MRM, MRL, MRXL); "Replicate" identifies the replicate population;
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"μ" is the mutation rate in units of number of mutations per bp per cell generation; "μ 95% con-

fidence intervals" "Upper" and "Lower" give the confidence in the mutation rate estimate; "U"

is the genomic mutation rate in number of mutations per genome and per cell generation; "U
95% confidence intervals" "Upper" and "Lower" give the confidence in the genomic mutation

rate estimate; "NeU" is the estimated number of mutations to occur in an evolving population

each generation. Mutation rates were measured at generations 0 ("Ancestor" replicates) and

3000 (all other replicates).
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102. Solé RV, Deisboeck TS. An error catastrophe in cancer? J Theor Biol. 2004; 228: 47–54. https://doi.

org/10.1016/j.jtbi.2003.08.018 PMID: 15064082

103. Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol.

2010; 20: 353–359. https://doi.org/10.1016/j.semcancer.2010.10.005 PMID: 20934515

104. Frank SA, Nowak MA. Problems of somatic mutation and cancer. BioEssays. 2004; 26: 291–299.

https://doi.org/10.1002/bies.20000 PMID: 14988930

105. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using

PCR products. Proc Natl Acad Sci. 2000; 97: 6640–6645. https://doi.org/10.1073/pnas.120163297

PMID: 10829079

106. Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with

the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995; 158: 9–14.

PMID: 7789817

107. Singer M, Baker TA, Schnitzler G, Deischel SM, Goel M, Dove W, et al. A collection of strains contain-

ing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia

coli. Microbiol Rev. 1989; 53: 1–24. PMID: 2540407

108. Gerrish P. A simple formula for obtaining markedly improved mutation rate estimates. Genetics. 2008;

180: 1773–1778. https://doi.org/10.1534/genetics.108.091777 PMID: 18832356

109. Siegel EC, Kamel F. Reversion of frameshift mutations by mutator genes in Escherichia coli. J Bacter-

iol. 1974; 117: 994–1001. PMID: 4360543

110. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome

sequence of Escherichia coli K-12. Science. 1997; 277: 1453–1462. PMID: 9278503

111. Carlton BC, Brown BJ. Gene mutation. In: Gerhardt P, editor. Manual of methods of general bacteriol-

ogy. Washington, DC: American Society for Microbiology Press; 1981. pp. 222–242.

112. Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution in Escherichia coli. I.

Adaptation and divergence during 2,000 generations. Am Nat. 1991; 138: 1315.

113. Samani P, Bell G. Adaptation of experimental yeast populations to stressful conditions in relation to

population size. J Evol Biol. 2010; 23: 791–796. https://doi.org/10.1111/j.1420-9101.2010.01945.x

PMID: 20149025

114. Gessler DD. The constraints of finite size in asexual populations and the rate of the ratchet. Genet

Res. 1995; 66: 241–253. PMID: 16553995

115. Trindade S, Perfeito L, Gordo I. Rate and effects of spontaneous mutations that affect fitness in muta-

tor Escherichia coli. Philos Trans R Soc Lond B Biol Sci. 2010; 365: 1177–1186. https://doi.org/10.

1098/rstb.2009.0287 PMID: 20308092

116. Crow JF, Kimura M. An introduction to population genetics theory. (reprinted by Blackburn Press,

Caldwell, NJ). New York, NY: Harper and Row, Publishers, Inc.; 1970.

117. Sprouffske K, Wagner A. Growthcurver: An R package for obtaining interpretable metrics from micro-

bial growth curves. BMC Bioinformatics. 2016; 17: 172. https://doi.org/10.1186/s12859-016-1016-7

PMID: 27094401
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