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Abstract: Posttranslational modifications (PTMs) dramatically expand the functional diversity of
the proteome. The precise addition and removal of PTMs appears to modulate protein structure
and function and control key regulatory processes in living systems. Deciphering how particular
PTMs affect protein activity is a current frontier in biology and medicine. The large number of
PTMs which can appear in several distinct positions, states, and combinations makes preparing such
complex analogs using conventional biological and chemical tools challenging. Strategies to access
homogeneous and precisely modified proteins with desired PTMs at selected sites and in feasible
quantities are critical to interpreting their molecular code. Here, we summarize recent advances in
posttranslational chemical mutagenesis and late-stage functionalization chemistry to transfer novel
PTM mimicry into recombinant proteins with emphasis on novel transformations.

Keywords: posttranslational modifications; proteins; alkylation; dehydroalanine; cysteine;
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1. Introduction

Posttranslational modifications (PTMs) are dynamic transformations that regulate
protein structure and function and impact central biological processes [1]. These dynamic
modifications can alter protein stability, interaction, cellular localization, and overall activity.
Therefore, they play a central regulatory task in proteome diversity and cell biology. A
wide range of PTMs have been reported in the past decades through the use of chemical
biology tools coupled with mass spectrometry and bioinformatic techniques [2]. These
modifications have been detected in the amino-acid side-chains, polypeptide backbone,
and terminus. While the structural role of these modifications can be interpreted and
predicted, the functional consequence of many PTMs is still elusive, as the availability of
site-specifically modified proteins remains limited [3,4].

Abnormal posttranslational modification of proteins or misregulation of these marks
is implicated in many human diseases. Access to homogeneously modified proteins with
desired PTMs is critical to interpreting their molecular role and physiological outcome.
Unfortunately, investigating a specific PTM poses many challenges. Many PTMs have
been discovered at several positions, which could also appear in different combinations
to “crosstalk” and yield a new complex phenotypic outcome. In nature, many PTMs are
attached enzymatically to proteins in a very controlled manner (Figure 1A). However,
in vitro enzymatic modification of isolated proteins is challenging, as it often results in a
heterogeneous product due to insufficient specificity and a lack of control over the degree
of modification. Other biological approaches, such as genetic code expansion technology,
allow site-specific incorporation of unnatural amino acids into any protein of interest in
cells using engineered orthogonal aminoacyl-tRNA synthetase/tRNA [5,6]. Importantly,
this strategy has enabled selective insertion of several PTMs into recombinant proteins,
including methylation, acetylation, nitration, and phosphorylation. Despite the enormous
potential of this approach, this method relies on the availability of an orthogonal tRNA
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synthetase for desired modification, and it is difficult to apply for transferring multiple
PTMs into the same protein [5,6].
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proteins in high homogeneity [9,10]. In this method, short synthetic peptides are prepared 
using solid-phase peptide synthesis (SPPS), which allows for the incorporation of the de-
sired PTM during the peptide elongation at the solid support. Next, the produced syn-
thetic peptides are reacted in a stepwise manner in solution using chemoselective ligation 
approaches to furnish full-length, modified proteins [11,12]. Many effective chemical liga-
tion reactions have been developed in the past decades. The most frequently employed 
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(KAHA) ligation [14], diselenide–selenoester ligation (DSL) [15], and Ser/Thr ligation 
(STL) [16]. The NCL approach is the most utilized ligation method, owing to the accessi-
bility of the building blocks and the mild reaction conditions. Recent advances in protect-
ing group chemistry [17,18], functional tags [19,20], continuous flow synthesis [21,22], and 
post-synthetic modifications [7,9] allow for the preparation of large and complex protein 
targets with a broad range of PTMs for various applications. Moreover, the development 
of the protein semi-synthesis technique has expanded the scope of modified protein pro-
duction by combining synthetic peptides and large recombinant protein fragments in 

Figure 1. Enzymatic and synthetic posttranslational modification of proteins. (A) Posttranslational
modification in nature via enzymes. (B) Chemoselective installation of posttranslational modification
mimics via S-alkylation of Cys or dehydroalanine (Dha) functionalization via Michael addition or
carbon–carbon bond formation.

Chemical protein synthesis provides a powerful means to prepare native and modified
proteins in an effective and controlled manner [7,8]. Protein synthesis allows for protein
production with selective insertion of virtually any desired PTM to produce modified
proteins in high homogeneity [9,10]. In this method, short synthetic peptides are prepared
using solid-phase peptide synthesis (SPPS), which allows for the incorporation of the de-
sired PTM during the peptide elongation at the solid support. Next, the produced synthetic
peptides are reacted in a stepwise manner in solution using chemoselective ligation ap-
proaches to furnish full-length, modified proteins [11,12]. Many effective chemical ligation
reactions have been developed in the past decades. The most frequently employed liga-
tion methods are native chemical ligation (NCL) [13], α-ketoacid–hydroxylamine (KAHA)
ligation [14], diselenide–selenoester ligation (DSL) [15], and Ser/Thr ligation (STL) [16].
The NCL approach is the most utilized ligation method, owing to the accessibility of the
building blocks and the mild reaction conditions. Recent advances in protecting group
chemistry [17,18], functional tags [19,20], continuous flow synthesis [21,22], and post-
synthetic modifications [7,9] allow for the preparation of large and complex protein targets
with a broad range of PTMs for various applications. Moreover, the development of the
protein semi-synthesis technique has expanded the scope of modified protein production
by combining synthetic peptides and large recombinant protein fragments in solution using
intein technology [23,24]. Chemical protein synthesis and semi-synthetic strategies have
enabled the production of phosphorylated [25,26], methylated [27,28], glycosylated [29,30],
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acetylated [31,32], sulfonated [33,34], sumoylated [35,36], and ubiquitinated [37,38] pro-
teins for various applications. Despite the significant advantages of current chemical tools,
current methods are usually used to prepare medium-size proteins (~200 AA) or modified
proteins at the C- or N-termini [39].

Late-stage protein modification allows for rapid and direct installation of desired
transformations into recombinant folded proteins (Figure 1B) [40,41] The low abundancy
and unique reactivity of Cys residue within the human proteome rendered it the site of
choice for numerous transformations. The high nucleophilicity of the sulfhydryl residue
(pKa ∼8) in physiological conditions enables orthogonal transformations in the presence of
other reactive residues [42,43], including Cys elimination [44,45], alkylation [46,47], and
arylation [48,49]. For example, Cys alkylation is a wildly used approach for chemose-
lective installation of PTM mimics into proteins pre-engineered with Cys residue at the
modification site via site-specific mutagenesis [50]. Another powerful strategy is using the
nonproteinogenic residue dehydroalanine (Dha), which has been proven as an effective
and reliable approach to chemoselectivity, to incorporate various PTMs into recombinant
proteins [51]. In this stepwise method, the protein of interest is usually engineered with
Cys/Sec mutation at the desired modification site, followed by residue elimination to pro-
vide Dha-tagged proteins at a predetermined site. Finally, the incorporated Dha undergoes
a chemoselective Michael-type addition or novel carbon–carbon bond formation reaction to
install the desired PTM [51]. Current chemical mutagenesis reactions enable rapid insertion
of PTM mimics to recombinant proteins with minor alteration on the modification site
(e.g., single-atom variation (C to S) or loss of a stereocenter). These alterations were found
to have a minor effect on protein integrity and activity [51]. This review covers recent
developments in chemical protein mutagenesis and late-stage functionalization chemistry
for the transfer of novel PTM mimicry into recombinant proteins while emphasizing novel
transformations [52].

2. Late-Stage Cys Functionalization

Late-stage conjugation strategies allow facile protein diversification by rapidly trans-
ferring an array of unique modifications into proteins [53]. The unique nucleophilic nature
and low abundance of Cys compared to other residues enables facile protein function-
alization with various PTMs in high homogeneity [54]. In this strategy, the protein of
interest is recombinantly expressed with Cys mutation at the desired modification site to
allow chemoselective transfer of electrophilic PTM precursors. These approaches enable
direct protein functionalization with “small” PTMs such as mono-/di-/trimethylation [47],
succinylation [55], glycosylation [46], acetylation [56] marks, and large complex analogs
(e.g., ubiquitylation and sumoylation) [57].

Early seminal work on protein functionalization with carbohydrates was conducted
by Flitsch and coworkers using Cys alkylation chemistry (Figure 2A) [46]. Using a site-
directed mutagenesis technology, the authors expressed target proteins with a single point
mutation: Asn to Cys. Next, recombinant proteins were selectively glycosylated via
the S-alkylation reaction using glycosyl-β-N-iodoacetamides (GlcNAcI). This approach
enabled the synthesis of homogeneously glycosylated proteins that carried saccharide
side-chains at programmed natural and unnatural positions. The authors employed this
strategy to modify essential therapeutic targets such as erythropoietin (EPO) hormone
with different N-glycosylation sites essential for its biological activity. Several EPO analogs
with a single Asn-to-Cys mutation on native glycosylation sites (N24C, N38C, or N83C,
individually) were successfully expressed and reacted with GlcNAcI in the presence of
imidazole additive to achieve selective glycosylation only on Cys residue. Notably, these
conditions enabled the production of the desired glycoprotein even in the presence of native
protein disulfide bonds. It has also been shown via dynamic light scattering assay that
the N-acetyl glucosamine residue did not considerably affect the stability of the muteins
relative to the wildtype EPO.
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Figure 2. Chemical mutagenesis via late-stage Cys functionalization. Chemoselective incorporation
of PTM mimics via direct Cys modification: (A) Asn glycosylation; (B) Lys methylation; (C) Lys
acetylation; (D) Lys succinylation; (E) Arg methylation.

A few years later, Shokat and coworkers applied the same concept to generate mod-
ified proteins with site- and degree-specific Lys methylation (Figure 2B) [47]. In this
approach, proteins of interest (e.g., histone H3 analogs) were recombinantly expressed with
Cys substituting the Lys residue at the modification site. Next, the authors installed sev-
eral methylated Lys analogs (mono-, di-, and trimethylation) using different electrophilic
2-haloethylamine (HEA) analogs bearing the desired methylation state. To achieve selectiv-
ity, native Cys-110 in H3 protein was mutated to Ala without disrupting H3 folding and
nucleosome function. Importantly, aminoethylcysteine has a minor structural alteration
compared to Lys; substituting the lysine γ-methylene with a sulfide led to a slight lengthen-
ing of the side-chain. It has been demonstrated that methyl-Lys analog (MLA) side-chains
do not significantly differ from the natural methyl-Lys epitopes, leading to the overall
conclusion that MLAs are reasonable mimics to natural methyl-Lys residues as found in
different binding assays. Several more functional tests were presented (e.g., binding and
enzymatic assays), concluding that MLAs function similarly to natural Lys methylations in
the context of histones PTM and nucleosome remodeling. This work proves the potential
of MLA histones for investigating nucleosome-level properties of methylated nucleosomes.
Although MLAs are stable, it is worth keeping in mind that they contain a thioether bond
and are, therefore, sensitive to oxidation.

The success in transferring several PTMs via Cys alkylation with electrophilic alkyl
halide substances has triggered the use of this approach to install acetyl-Lys into proteins.
For instance, following the success of using aminoethylation of Cys residue to convert Cys
to 4-thialysine as a functional mimic to methyl-Lys, a similar method was tested to prepare
acetyl-Lys mimics [58]. However, this approach failed to provide the acetyl-Lys product
with a feasible yield after several attempts of using N-acetyl-aminoethyl bromide/iodide
or N-acetylaziridine for Cys alkylation [56,58]. Alternatively, the Cole group introduced
the synthesis of acetyl-Lys mimic to generate methylthiocarbonyl-thiaLys (MTCTK) [58], a
thiocarbamate analog of acetyl-Lys. This result was achieved by using Cys alkylation with
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methylthiocarbonyl-aziridine. Finally, the authors exploited this methodology to prepare
site-specifically acetylated H3 analogs at three different positions (Lys-9, Lys-18, and Lys-27,
individually) starting from recombinantly expressed H3 with Cys substituting a desired
Lys residue at the modification site. It has been shown that even though MTCTK is not
identical to the acetyl-Lys structure, it appears to maintain aspects of molecular recognition
through protein binding and enzymatic regulation. In addition, it has been shown that this
acetylation mimic has resistance to histone deacetylase cleavage, which may provide utility
in the complex environments found in transcriptional and chromatin assays.

To facilitate the production of acetylated proteins with an ideal acetyl-Lys mimic,
Liu and coworkers developed an effective insertion of acetyl-Lys mimic using a radical
thiol–ene-mediated addition of Cys thiol (Figure 2C) [56]. The potential of this approach
was investigated with several targets, including ubiquitin and histone H3 and H4 proteins
with Lys to Cys mutation at positions 48, 16, and 36, respectively. Exposing each of these
proteins to N-vinyl-acetamide (NVA) in the presence of the radical initiator VA-044 under
UV irradiation at 365 nm furnished the desired acetylated product. Functional studies
revealed that the generated acetyl analogs are a good functional mimic of the natural acetyl-
Lys. In addition to Cys alkylation with an electrophilic alkyl halide, this work introduced
the previously unexplored thiol–ene radical chemistry as an effective platform for the
S-acetamidoethylation of Cys residues in recombinant proteins.

Jing et al. extended this thiol–ene chemistry for site-specific installation of succinyl-
Lys (Ksuc) mimic into recombinant histone proteins (Figure 2D) [55]. This strategy was
used to functionalize Lys 34 of H2B (mutated to Cys) using the tert-butyl ester of N-vinyl-
succinamate (tBNVS) in the presence of VA-044 radical initiator. After this, tert-butyl
deprotection using trifluoroacetic acid (TFA) furnished the desired succinated H2B. Struc-
tural and functional assays (such as antibody-specific recognition and hydrolysis of succinyl
Lys via enzymatic reactions) confirmed that the Ksuc analog has similar properties to the
native Ksuc, allowing investigation of the role of H2BK34suc in regulating nucleosome
dynamics. This study, therefore, opens a new opportunity to examine the potential roles of
histone Ksuc in regulating nucleosome and chromatin structure and dynamics.

Following the extensive work performed to install Lys PTM mimics, Fujimori and
coworkers developed an effective platform to incorporate all three methylarginine analogs
(MAAs) on recombinant protein with defined methylation status (Figure 2E) [59]. This
method was based on Cys alkylation with α,β-unsaturated amidine scaffold with three
degrees of N-methylation, as appears in the natural methylated Arg. This approach was
exploited to prepare methylated histone H3 at Arg 2 and H4 at Arg 3, which were mutated
to Cys to allow a conjugation reaction with the amidine precursors monomethylarginine
(MMA) and dimethylarginine (DMA). The synthesized Arg analogs bear two main dif-
ferences from the natural ones; γ-methylene is replaced with a sulfur, while ε-methylene
replaces the secondary amine (as a result of using amidine-based reactant rather than
guanidine). Several successful specific antibody Western blot (WB) analyses on different
analog-modified histones indicated that MAAs are reasonable mimics of native methylargi-
nine. The authors also examined the influence of asymmetric dimethylarginine analogs
on nucleosome reconstitution and showed that they have a minimal effect on nucleosome
reconstitution efficiency to form mono-nucleosomes.

Protein ubiquitylation is an essential PTM that controls various vital cellular pro-
cesses [60]. This modification involves an enzymatic cascade consisting of E1, E2, and E3,
which collaborate to install the ubiquitin (Ub, 76 AAs) monomer to the Lys residue of a
protein substrate. As described above, Cys alkylation has been extensively used to transfer
small electrophilic PTM mimics into proteins. Recently, this method was expanded to
transfer large and complex PTMs into recombinant proteins [61,62]. In this regard, several
novel synthetic approaches were developed to install Ub unit into the protein of interest
with high fidelity [57]. For example, early reports showed that Ub units could be connected
to the target protein via a disulfide linkage (Figure 3A) [63,64]. However, the suscepti-
bility of disulfide bonds in biochemical settings (e.g., reducing conditions) triggered the
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development of several other conjugation reactions with stable linkage, mainly by using
bifunctional linkers and chemoselective ligation chemistry. Strieter and coworkers used
thiol–ene chemistry to prepare several (poly)ubiquitylated variants (Figure 3B) [65]. The
authors used recombinant protein expression technology to prepare proteins harboring
a Cys residue instead of Lys via site-directed mutagenesis and Ub-bearing allylamine
tethered to the C-terminus (Ub-EA). Reacting both proteins in the presence of lithium
acyl phosphinate (LAP) photoinitiator and UV irradiation at 365 nm furnished the de-
sired monoubiquitylated substrates through the thioether linkage. Encouraged by these
results, several di- and triubiqutylated analogs were prepared in varied yields, starting
from protein substrates with multiple Cys residues. Notably, it has been found that the
accessibility of Cys residue within the substrate dramatically affects the efficiency of the
conjugation reaction. Enzymatic studies via deubiquitinases (DUBs) enzymes revealed that
the thioether–isopeptide bond is processed similarly to that of the native isopeptide linkage,
thus indicating the potential of thiol–ene reaction in the generation of ubiquitylated pro-
teins with amenable linkage. Biochemical analysis with the generated Ub analogs revealed
that the orientation of the Ub unit has a critical effect on DUBs activity, indicating that
(poly)ubiquitin topologies have a regulatory mechanism for linkage-selective interactions.
This agrees with previous studies showing that Ub chains bearing different linkages or at
different sites led to distinct structural and functional effects [61,62].
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To generate stable linked Ub proteins, Long et al. introduced the synthesis of nonhy-
drolyzable Ub mimics using 1,3-dichloroacetone (DCA) [66,67] as a crosslinker and applied
it to generate monoubiqutylated histone proteins (Figure 3C) [68]. To connect both proteins,
a Gly-to-Cys mutation at position 76 was inserted into the Ub’s C-terminus (UbG76C),
while the ubiquitylation site at Lys-119 in histone H2A was mutated to Cys. Using this
design, the authors managed to crosslink both proteins via DCA and reconstitute histone
dimers/octamers containing a stable Ub linkage. Furthermore, these analogs were success-
fully assembled to form monoubiqutylated nucleosomes, indicating that this method does
not interfere with histones assembly and nucleosome reconstitution.

The combination of hybrid conjugation reactions has also been examined for sequential
incorporation of multiple Ub units [69]. Brik and coworkers introduced a new strategy to
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generate a set of well-defined (poly)ubiquitylated proteins bearing an oxime and thioether
linkage between the chain and the substrate (Figure 3D). The authors demonstrated the
strategy on α-globin protein with a single Cys residue at position 104. The α-globin reacted
with chloroacetaldehyde (CAA) to convert Cys-104 into an aldehyde, while the target Ub
unit was modified with an oxyimino moiety at the C-terminus (Ub-ONH2). This design
enabled the connecting of both proteins by S-alkylation chemistry followed by oxime
ligation to provide monoUb-α-globin. Furthermore, combining oxime ligation with NCL
using bifunctional Ub analogs enabled the preparation of di-, tri-, and tetraUb-α-globin.
Notably, the authors found that the isopeptide replacement with an oxime–thioether linkage
is resistant to DUBs and the proteasome. Extensive biochemical studies coupled with
proteomics analysis with the (poly)ubiquitylated proteins achieved through this approach
revealed insight into the different molecular signals of Ub chain length in proteasomal
degradation [69].

Liu and coworkers reported a cysteine aminoethylation-assisted chemical ubiquity-
lation (CAACU) strategy for installing mono- and diUb into histone analogs and a small
ubiquitin-like modifier (Figure 3E) [70]. The authors first reacted N-alkylated protected
2-bromoethylamine (NABEA) with recombinant histone proteins with Lys to Cys muta-
tions (e.g., histone H2BK34C). Following the alkylation step, the thiol protecting group
was removed to enable auxiliary mediated NCL with the Ub thioester (Ub-SR) to yield
the ubiquitylated histone conjugate. Finally, removing the auxiliary via TFA provided the
desired modified analogs with thioether linkage. The modified histones with thioether–
isopeptide bonds were chemically stable and could be readily reconstituted into the native
nucleosomal context for structural and activity studies.

3. Dehydroalanine Coupled via Michael Addition Chemistry

Protein labeling has traditionally relied on nucleophilic amino-acid residues such
as Cys and Lys for chemoselective manipulations with electrophilic reagents. These ap-
proaches allowed rapid protein modification with a broad set of natural and non-natural
residues, including PTMs mimics. However, site selectivity remains the main limitation of
these methods. Therefore, there is growing attention toward incorporating a novel reactive
functionality at a predetermined site for general and selective protein modifications. The
ability to introduce the nonproteinogenic amino acid Dha into proteins has attracted several
groups because of its robust and selective reactivity toward thiol and amine nucleophiles,
which provides a novel electrophilic site amenable to varied transformations [71]. The inser-
tion of Dha functionality into recombinant proteins can be achieved in a stepwise manner
by incorporating orthogonal residue using site-directed mutagenesis technology or through
genetic incorporation method, followed by chemoselective elimination to convert the de-
sired residue to Dha. Different protocols have been reported for effective Dha insertion
into proteins, usually under mild and biocompatible conditions [51]. These methods are
based on β-elimination of Cys, Sec, or phosphorylated serine (pSer) residues to yield Dha
as an orthogonal handle for conjugation addition. Introducing Dha into proteins enabled
protein modifications with a broad range of thiolated PTM mimics through Michael-type
addition chemistry. This strategy enables effective insertion to access an array of PTM
mimics, including mono-, di-, trimethylation, phosphorylation, glycosylation, acetylation,
and ubiquitylation.

In 2008, Davis and coworkers reported a facile and rapid protocol for Dha formation on
recombinant proteins via oxidative elimination of Cys residue using O-mesitylenesulfonyl-
hydroxylamine (MSH) reagent (Figure 4A) [44]. The potential of this approach was investi-
gated on Subtilisin protein with a single Cys residue. Using MSH, the authors converted
Cys to Dha within minutes under an aqueous buffer in alkaline conditions. The installed
Dha handle enabled the practical addition of several thiol nucleophiles bearing PTM
analogs into the target protein, including Lys methylation, Ser phosphorylation, and Ser
glycosylation (GlcNAc). Importantly, modified Subtilisin protein was found to be catalyt-
ically active after both synthetic steps, indicating preserved protein integrity under the
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elimination and conjugation reactions. This report introduced the potential of Dha chem-
istry to transfer multiple PTM mimics into recombinant proteins with minimal alteration
on the modification site.
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Using the same concept, Schultz and coworkers introduced an alternative strategy to 
introduce Dha into recombinant proteins through the genetic incorporation of the unnat-
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were performed to transfer methyl and acetyl-Lys analogs into histone H3 protein, which 

Figure 4. Chemical mutagenesis via dehydroalanine coupled via Michael addition chemistry.
(A) Chemoselective transfer of multiple PTM mimics via Cys elimination using MSH followed
by Michael addition: mono-/di-/trimethylation, phosphorylation, and glycosylation. (B) Chemos-
elective transfer of PTM mimics to Lys via Sec elimination followed by Michael addition: mono-
/di-/trimethylation and acetylation. (C) Chemoselective transfer of multiple PTM mimics via Cys
elimination followed by Michael addition: mono-/di-/trimethylation, phosphorylation, glycosyla-
tion, acetylation, and ubiquitylation.

Using the same concept, Schultz and coworkers introduced an alternative strategy to
introduce Dha into recombinant proteins through the genetic incorporation of the unnatural
amino acid phenylselenocysteine (PhSec), followed by elimination using hydrogen peroxide
(Figure 4B) [72]. Michael-type addition reactions with the corresponding thiols were
performed to transfer methyl and acetyl-Lys analogs into histone H3 protein, which was
found to function similarly to their native counterparts. While both described approaches
provide a facile method to obtain homogeneously modified proteins with a wide range of
PTM mimics, the use of MSH and hydrogen peroxide reagents to convert Cys or Sec to
Dha, respectively, has been found to oxidize native amino-acid residues (e.g., Met, His, Asp,
Glu, and Lys). These limitations triggered the development of milder and more effective
reaction conditions to insert Dha with minimal alteration of protein sequence and integrity.
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Several strategies have been developed to incorporate Dha into recombinant proteins
under biocompatible conditions [71]. Davis and coworkers reported a facile conversion
of Cys to Dha using a bis-alkylation reaction followed by thiol elimination under slightly
alkaline conditions. The authors introduced the commercially available and water-soluble
reagent 2,5-dibromohexanediamide (DBHDA) as an excellent reagent for Dha formation
starting from engineered Cys residue (Figure 4C) [71]. The facile introduction of Dha
into recombinant proteins and the unique electrophilicity of α,β-unsaturated carbonyl
moiety enabled the transfer of numerous PTM mimics via Michael-type addition reactions
with various nucleophiles. Chalker et al. demonstrated the potential of the Dha site to
prepare synthetic histone proteins bearing diverse PTM mimics [73]. The authors mutated
the desired modification site in histone H3 to Cys using site-directed mutagenesis and
then converted it to Dha using DBHDA. The introduction of the electrophilic moiety
enabled rapid and effective insertion of all three methylation states of Lys, acetylated Lys,
phosphorylated, and glycosylated Ser mimics by adding the appropriate thiol (Figure 4C).
Furthermore, the sequential formation of Dha and its conjugation with target PTM mimics
have been successfully achieved in a simple one-pot operation to provide the final modified
products in good yield.

The robustness of Dha chemistry has also enabled the transfer of complex PTM
mimics into large macromolecules for biochemical studies. For example, to elucidate
the molecular basis of the histone O-GlcNAcylation in epigenetic regulation and gene
transcription, Lercher et al. generated site-specifically GlcNAcylated histone H2A at Thr-
101 using DBHDA-mediated Dha formation followed by Michael addition reaction with a
thio-GlcNAc reagent [74]. Nucleosome assembly with GlcNAcylated histone H2A followed
by structural and functional analysis revealed that H2A GlcNAcylation can modulate
chromatin structure by directly destabilizing H2A/H2B dimers in the nucleosome. The
same group used the Dha approach to incorporate GlcNAcylated histone H2B at Ser-112 to
generate site-specifically modified nucleosomes [75]. Proteomic analyses revealed a direct
interaction between GlcNAcylated H2B and the facilitates chromatin transcription (FACT)
complex and suggested to trigger FACT-driven transcriptional control.

Dha chemistry has been used extensively to transfer PTM mimics into proteins using
small-molecule thiols, as described above (Figure 4) [76,77]. To expand the applicability of
Dha chemistry for installing large and complex modifications, Brik and coworkers demon-
strated a strategy for chemoselective protein ubiquitylation using Dha to prepare ubiquitin
conjugates bearing a close mimic of the native isopeptide bond (Figure 4C) [78]. The au-
thors used α-globin protein as a model system by first converting Cys-104 to Dha using
DBHDA, followed by Michael addition with the thiolated C-terminal peptide fragment
of Ub. NCL reaction with the conjugated peptide enabled the transfer of full-length Ub
into α-globin protein. This work demonstrated the expansion of Dha chemistry to transfer
large PTMs into proteins in an effective manner. In addition to its broad utility in chemical
protein modifications, the facile incorporation of Dha has demonstrated broad utility in
total chemical protein synthesis and protein semi-synthesis to prepare novel activity-based
probes of ubiquitylated proteins for structural and functional studies.

4. Carbon–Carbon Bond-Forming Reactions

The vast majority of current chemical transformations to install PTMs rely on un-
natural carbon–heteroatom linkages (e.g., Cys and Dha conjugation addition chemistry)
(Figure 5). While such methods enable PTMs to be investigated, methods that form the
native modification are ideal. Access to synthetic transformations via carbon–carbon bond-
forming reactions enables PTM installation with “perfect” connectivity by forming a native
side-chain linkage. However, the ability to transfer PTMs to protein with minimal alteration
represents a challenge due to the need for chemical handles with unique reactivity to allow
chemoselective covalent bond formation.
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In 2016, the Davis and Park groups separately reported a brilliant strategy for modi-
fying recombinant proteins on a preinstalled Dha site using radical-mediated β,γ carbon–
carbon forming chemistry (Figure 6) [79,80]. This versatile technique enabled selective
protein functionalization at a programmed Dha tag with a set of transformations with
minimal alteration on the modification site. Davis and coworkers developed C(sp3)–C(sp3)
bond-forming reactions through carbon free-radical chemistry under biocompatible con-
ditions (Figure 6A) [79]. Unlike traditional two-electron chemistry, this method is based
on water-tolerated free radicals in the presence of NaBH4/In(0) and alkyl halides (R-Hal)
through the generation of single-electron species via C–Hal homolytic bond division or
through single-electron transfer. The designed reaction enabled a wide diversity installation
of native, non-native, and PTMs mimics into recombinant proteins, such as phosphorylated,
hydroxylated, methylated, and glycosylated analogs, with excellent site and regioselectivity.
To prevent side reactions, using NaBH4 as a quenching reagent and removing molecular
oxygen from the buffer solutions have proven to be essential. The versatility of this strategy
was demonstrated in the construction of >25 modified side-chains on different protein
targets. Importantly, this approach revealed insight into the biological functions of essential
PTMs, such as glycosylation, phosphorylation, and methylation. For example, synthetic
nucleosomes with site-specifically methylated Lys and Arg residues were prepared via
this method, including radiolabeled analogs. Spectroscopic and cellular studies revealed
insight into the functional mechanistic role of the methylation mark with other associated
proteins (e.g., readers and erasers).

Using the same concept, Park and coworkers designed a “three-step” strategy to
transfer Lys-methylation mimics into recombinant proteins (Figure 6B) [80]. The authors
first introduced pSer through an orthogonal E. coli translation system to furnish pSer-
containing recombinant proteins. Then, the PSer residue was converted by phosphate
elimination to Dha using Ba(OH)2. Finally, conjugate addition of alkyl iodides to Dha,
promoted by Zn(II) and Cu(II), enabled chemoselective C(sp3)–C(sp3) bond formation on
target proteins. The applicability of this approach was exploited to modify several proteins,
including different methylation states of histone H3 at Lys79. The homogeneous histone
H3 analogs elucidated the effect of H3K79 methylation on chromatin transcription, which
was found to stimulate transcription through histone acetylation via the transcriptional
coactivator p300. Notably, H3K79 methylation states differently affect p300-mediated
chromatin acetylation, indicating a potential regulatory role of the methylation level in the
gene transcription process. Similar to the report by Davis and coworkers, the conjugation
addition reaction is believed to be mediated through radical chemistry. Both reports offer a
powerful platform to install PTMs with unique connectivity and close mimicry to native
counterparts to decipher their molecular role.
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multiple PTM mimics via Cys elimination followed by radical additions: mono-/di-/trimethylation,
acetylation, citrullination, glycosylation, and phosphorylation. (B) Chemoselective transfer of Lys
PTM mimics via pSer elimination followed by radical additions: mono-/di-/trimethylation.

In 2020, Davis and coworkers introduced a robust alternative strategy to incorporate
a range of challenging functional groups and PTMs into recombinant proteins through
carbon–carbon bond formation using a single-electron transfer method (Figure 7A) [81]. The
authors described a visible-light-driven installation of several natural and non-natural side-
chains, as well as PTMs, at Dha-tagged proteins under mild conditions. The Dha-tagged
proteins reacted in the presence of Ru(II) photocatalysts with blue LED light (450 nm) to
enable carbon–carbon bond formation in high fidelity. Like the previous methods, the
reaction was driven by radical generation from radical precursors such as boronic acid
catechol ester or pyridylsulfonyl derivatives coupled with Fe(II). These conditions enabled
the versatile transfer of a broad range of native and modified amino-acid side-chains
(>50 unique analogs) into a set of recombinant proteins. Importantly, this approach allowed
for the insertion of several PTM analogs into histone proteins with acetyl-, methyl-, and
benzyl-Lys mimics to probe the interaction of posttranslational enzymes (e.g., readers and
erasers) and modified histones.
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Figure 7. Chemical mutagenesis via visible-light-mediated carbon–carbon bond formation.
(A) Chemoselective transfer of multiple Lys PTM mimics via Cys elimination followed by visible-
light-driven Dha functionalization: mono-/di-/trimethylation, acetylation, and benzylation.
(B) Chemoselective transfer of native acetyl-Lys via visible-light-mediated desulfurative carbon–
carbon bond formation approach.

The development of carbon–carbon bond-forming reactions enabled protein function-
alization with closer mimicry to the natural PTMs compared to the C–S bond formation as
presented in the S-alkylation of Cys and Michael addition to Dha (Figure 5). Althoughsuch
methods solved the issue of the noncanonical C–S bond, current C–C bond-forming reac-
tions provide desired products with loss of native stereochemistry at the modified residue
(Figure 5). While these seminal studies enable the investigation of the biological outcome of
several PTMs in complex systems (e.g., histones), synthetic methods that lead to the native
modification have also been investigated. Mitchel and coworkers reported a site-selective
installation of ε-amine modifications into peptide and protein via a visible-light-mediated
desulfurative carbon–carbon bond formation method (Figure 7B) [82]. This reaction is
mediated via the desulfurization of Cys to generate an alanyl-radical intermediate trapped
in situ with an appropriately modified allylamine with retention of stereochemistry at the
modified residue. This approach was extensively investigated to selectively install Lys-
PTMs through native C(sp3)–C(sp3) bond formation. The reactions were performed using
functionalized N-allyl analogs to directly modify Cys residue in the presence of Ir(III) photo-
catalyst when irradiated under blue light. The conjugation reactions were conducted using
tris(2-carboxyethyl)-phosphine (TCEP) additive to facilitate the desulfurization process to
generate reactive alanyl radical through phosphoranyl radical intermediate (Figure 7B).
While several native Lys PTMs analogs were inserted into synthetic peptides using this
method, only the acetylation mark was installed into recombinantly expressed protein (Ub
at Lys 48). This work represents the first example of site-selective installation of Lys PTMs
into proteins through a native carbon–carbon bond without disrupting the stereochemistry
of the target residue. The potential of this approach to transfer other important PTMs
remains to be investigated.
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5. Conclusions and Outlook

Synthetic tools have been increasingly employed to modify protein using natural
and non-natural modifications. This practice has dramatically expanded the capability
to generate complex and uniquely modified proteins for functional analysis. This review
has highlighted the versatility of current synthetic strategies to functionalize proteins
with essential PTMs. Most reactions are capitalized on Cys residue as a modification site
either through direct functionalization or in a stepwise manner via converting it to Dha
followed by Michal addition [42,51]. These approaches enable precise and rapid installation
of several PTM mimics into recombinant proteins. The molecular code of, for example,
glycosylation, methylation, phosphorylation, acylation, and ubiquitination can, therefore,
be studied in proteins of interest. Notably, current strategies rely on the formation of
unnatural carbon–heteroatom linkage due to the need for orthogonal chemical handles for
chemoselective covalent bond formation. The non-natural connectivity often achieved in
Cys and Dha conjugation chemistry leads to slight lengthening of the side chain or loss
of a stereocenter (formation of epimeric (L-/D-) mixtures in the case of Dha chemistry).
While these alterations have been found to have a minor effect on protein integrity and
activity, opportunities remain for the development of new synthetic strategies to transfer
native PTMs through natural linkage and preserved chirality [51]. For example, recently,
Dha chemistry has dramatically evolved to enable the installation of novel PTMs into
proteins through natural linkage using carbon–carbon bond-forming chemistry. However,
controlling the stereochemical outcome using this chemistry is still challenging [80,81].
More recently, a visible-light-mediated desulfurative carbon–carbon bond formation at Cys
residues was introduced, which enables the incorporation of native PTMs with retention of
stereochemistry at the modified residue [82]. This approach was extensively investigated
to transfer Lys PTMs mainly to peptides; thus, the applicability of this approach to transfer
PTMs to other residues remains to be explored. While novel transformations have been
achieved using state-of-the-art methods to decipher fundamental biological systems, the re-
giospecificity of current chemical tools is still limited. The main challenge of these methods
is the complexity of modifying a specific Cys residue in the presence of other reactive sites.
Some reports demonstrated the ability to modify a specific solvent-exposed site/sequence
but still lack generality [83,84]. Recent developments in the selective incorporation of Dha
residue into Cys-rich protein [85] can, in principle, provide an opportunity to install PTMs
in a site-specific manner. However, transferring different PTMs into the same protein is
still challenging. Therefore, selective, and controllable strategies are required to expand
the available toolbox for the production of novel complex proteins. Chemical protein
synthesis provides a powerful platform to prepare homogeneously modified proteins by
allowing selective insertion of virtually any desired PTM in a highly controlled manner.
Recent developments in the field of protein synthesis, such as flow-based protein synthesis,
chemoselective ligation technology, and post-synthetic modifications, have enabled the
production of large and complex protein targets [86–88]. Thus, combining these synthetic
strategies with molecular biology and enzymatic approaches is anticipated to extend the
scope of protein production with desired PTMs to decipher their molecular code.
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