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Abstract
Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes that plays a vital role in protecting and 
maintaining the functional integrity of deregulated signaling proteins in tumors. We have previously reported that the stabil-
ity and activity of the mitotic checkpoint kinase Mps1 depend on Hsp90. In turn, Mps1-mediated phosphorylation Hsp90 
regulates its chaperone function and is essential for the mitotic arrest. Cdc14-assisted dephosphorylation of Hsp90 is vital 
for the mitotic exit. Post-translational regulation of Hsp90 function is also known as the Hsp90 “Chaperone Code.” Here, we 
demonstrate that only the active Mps1 is ubiquitinated on K86, K827, and K848 by the tumor suppressor von Hippel-Lindau 
(VHL) containing E3 enzyme, in a prolyl hydroxylation-independent manner and degraded in the proteasome. Furthermore, 
we show that this process regulates cell exit from the mitotic checkpoint. Collectively, our data demonstrates an interplay 
between the Hsp90 chaperone and VHL degradation machinery in regulating mitosis.
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Introduction

The mitotic checkpoint, also known as mitotic spindle 
assembly checkpoint, regulates chromosome segregation 
by arresting cells in metaphase until all chromosomes are 
correctly aligned. The dual specificity protein kinase, Mps1/
TTK, is evolutionarily conserved and the master switch for 
the mitotic checkpoint (Liu and Winey 2012). Mps1 activ-
ity fluctuates during the cell cycle, peaking at early mitosis 
and abruptly declining during mitotic exit and progression 

into the G1 phase (Benzi and Piatti 2020; Liu and Winey 
2012). High expression and post-translational modification 
of Mps1 are involved in its activation, whereas the major 
route of Mps1 inactivation is degradation (Benzi and Piatti 
2020; Liu and Winey 2012). Mps1 degrades by the ubiqui-
tin–proteasome pathway in a cell cycle dependent manner 
through the sequential actions of anaphase promoting com-
plexes–cyclosome (APC–CCdc20 and APC–CCdh1) (Cui et al. 
2010). In addition, Ufd2, a U-box-containing ubiquitylation 
enzyme, is also involved in Mps1 degradation (Liu et al. 
2011). Autophosphorylation of serine and threonine residues 
on Mps1 regulate its kinase activity and its association with 
centrosomes in mitotic human cells (Thoma et al. 2009). 
Previous work has shown that Mps1 requires Cdc37, a pro-
tein kinase targeting subunit of Hsp90 chaperone complex, 
for its activity (Schutz et al. 1997).

Heat shock protein-90 (Hsp90) is an essential molecular 
chaperone in eukaryotes and it is responsible for the matu-
ration, protection, and activation of select proteins referred 
to as “clients” (Dean and Johnson 2021; Genest et al. 2019; 
Schopf et al. 2017). The vast majority of Hsp90 clients are 
protein kinases involved in key signal transduction pathways. 
Cancer cells rely on the Hsp90 chaperone machinery to 
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protect an array of mutated and over-expressed oncoproteins 
from misfolding and degradation (Mollapour and Neckers 
2012; Neckers et al. 2018). Thus, Hsp90 is a critical facilita-
tor of “oncogene addiction” and cancer cell survival.

Hsp90 chaperone activity is regulated by co-chaperone 
proteins and PTMs such as phosphorylation, acetylation, 
ubiquitination, and SUMOylation (Backe et  al. 2020; 
Mayer 2010; Mollapour et  al. 2010; Walton-Diaz et  al. 
2013; Woodford et al. 2016). We have previously identi-
fied a conserved threonine residue in the amino-domain of 
Hsp90 that is phosphorylated by the client serine/threonine 
kinase Mps1. Hsp90-T115 phosphorylation promotes Mps1 
stabilization via strengthened Hsp90-Mps1 interaction 
and increases Mps1 activity, which contributes to mitotic 
checkpoint arrest (Woodford et al. 2016). Phosphorylation 
of this residue also dissociates Hsp90 from the phosphatase 
Cdc14, a protein whose activity is associated with mitotic 
checkpoint release. Cdc14 dephosphorylates Hsp90-T115 
and this dephosphorylation and subsequent dissociation of 
Mps1 from Hsp90 allows for release of cells from the mitotic 
checkpoint (Woodford et al. 2016). In addition to the mitotic 
checkpoint, Mps1 overexpression is observed in many can-
cers (Ling et al. 2014; Yen and Kao 2005).

The VHL gene is responsible for inherited familial VHL 
cancer syndrome, and mutations of the VHL gene, accompa-
nied by loss of heterozygosity, are also found in 70–80% of 
sporadic clear cell renal cell carcinoma (ccRCC). VHL forms 
a multi-protein complex VCB-Cul2 (VHL-Elongin C-Elongin 
B-Cullin-2) and Rbx1 that acts as a ubiquitin-ligase (E3) and 
directs proteasome-dependent degradation of target proteins 
(Kuznetsova et al. 2003). In addition, VHL regulates microtu-
bule stabilization and cell cycle progression (Hergovich et al. 
2003; Pause et al. 1998), negatively regulates Mad2 (mitotic 
arrest deficient 2) protein levels, and maintains chromosomal 
stability (Hell et al. 2014; Thoma et al. 2009). Phosphorylation 
of VHL by the mitotic Aurora-A serine/threonine kinase has 
also been reported (Martin et al. 2013). Here we have shown 
that Mps1 is subject to ubiquitination and degradation by VHL 
in an oxygen-independent manner. Our data also reveals that 
VHL-mediated turnover of Mps1 hastens cell exit from the 
G2/M checkpoint.

Materials and methods

Protein extraction, immunoprecipitation, 
and immunoblotting

Proteins were extracted from transiently transfected human 
embryonic kidney (HEK293) as previously described. 
(Woodford et  al. 2016) For immunoprecipitation, cell 
lysates were incubated with anti-FLAG antibody conju-
gated beads (Sigma) for 2 h at 4ºC. Immunopellets were 

washed 3 times with lysis buffer (20 mM HEPES (pH7.0), 
100-mM NaCl, 1-mM  MgCl2, 0.1% NP40, protease inhibi-
tor cocktail (Roche), and PhosSTOP (Roche)). Precipitated 
proteins were resuspended in 5X Laemmli buffer, boiled, 
separated by SDS-PAGE, and transferred to nitrocellulose 
membranes. Co-immunoprecipitated proteins were detected 
by immunoblotting. Immunoblotting was performed with 
the indicated antibodies recognizing VHL, HA, HIF1α, 
human Mps1 (TTK) (Cell Signaling), Ubiquitin (Santa 

Fig. 1  VHL-mediated ubiquitination of the Mps1 kinase. (A) FLAG 
human Mps1 was transiently expressed and immunoprecipitated 
from HEK293 cells. Co-immunoprecipitation (Co-IP) of endogenous 
 VHL30 and  VHL19 was assessed by immunoblotting. Empty vector 
(EV) was used as a control. (B) VHL-elongin C, elongin B, cullin and 
RBX1 complex (VCB-CR), ubiquitin ligase UbcH5c, human Mps1 
and its catalytic inactive mutant D664A were bacterially expressed 
and purified. 50 ng of each purified protein was resolved on the SDS-
PAGE gel and stained with Coomassie Brilliant Blue. (C) Wild-type 
human Mps1 and the D664A mutant were ubiquitinated in  vitro. 
Total Mps1 was detected by immunoblotting using anti-hexahistidine 
antibody and ubiquitination with anti-ubiquitin antibody
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Cruz Biotechnology), Hsp90, GAPDH (ENZO Life Sci-
ences), 6x-His, and FLAG (Thermo Fisher Scientific).

Bacterial expression and purification of proteins

All proteins were expressed in E. coli strain BL21 (DE3) 
and included an N-terminal 6x-His tag. Purification buff-
ers included 20–50  mM tris or phosphate pH 8.0 and 
10 mM β-mercaptoethanol. Chromatography resins were 
purchased from GE Healthcare Bio-Sciences (Malbor-
ough, MA) except for Ni–NTA agarose, which was pur-
chased from Qiagen (Valencia, CA). Transformed cells 
were grown at 37˚C in LB with 50 mg/L ampicillin until 
 OD600 = 0.6. For Hsp90α, and cultures were then cooled 
to 20˚C and induced with 20 mg/L IPTG overnight. Cells 
were harvested by centrifugation and lysed enzymatically. 
Hsp90α expressed in the supernatant and was isolated by 
sequential Ni–NTA metal affinity (10–250 mM imidazole 
step gradient), Q-Sepharose anion exchange (0–1 M NaCl 

gradient), and Superdex-75 size exclusion chromatogra-
phy. Purified Mps1 and catalytic inactive Mps1-mutant 
D664A were nucleotide free evidenced by an  A280/260 
ratio of 1.83. Proteins were > 90% pure by SDS-PAGE. 
Concentrations were determined using calculated extinc-
tion coefficients as previously described (Woodford et al. 
2017). Proteins were flash frozen on dry ice and stored 
at − 80˚C until use.

VHL‑mediated ubiquitination of Mps1

50 ng Mps1-His6 and its catalytic inactive mutant D664A 
were bound to Ni–NTA agarose and then incubated with 
VHL complex (Millipore), containing 25 mM MOPS pH7.5, 
0.01% Tween 20, 5 mM MgCl2, 10 μM ATP, 1 ng UBE1 
(Millipore), 1 ng UbcH5c (Millipore), and 2 ng GST-ubiq-
uitin. The reaction is initiated with the addition of GST-
ubiquitin. After 30 min at 30˚C, the reaction Ni–NTA aga-
rose was washed with lysis buffer. The Ni–NTA agarose 

Fig. 2  VHL degrades Mps1 in prolyl-hydroxylation independent 
manner. (A) Mps1 levels were detected by immunoblot in VHL null 
ccRCC cells 786-O and A498 expressing either  VHL30 or  VHL19. 
(B) VHL null 786-O ccRCC cells expressing either  VHL30 or  VHL19 
were treated with the proteasome inhibitor Bortezomib (0.5 µM, 4 h). 
Mps1 levels were detected by immunoblotting with anti-human Mps1 
(TTK) antibody. (C) Prolyl-hydroxylases Egln1-HA, Egln2-HA and 

Egln3-HA were over-expressed in HEK293 cells and Mps1 protein 
levels were assessed by immunoblotting with anti-Mps1 antibody. (D) 
HEK293 cells were treated with the prolyl hydroxylase (PHD) inhibi-
tor dimethyloxaloylglycine (DMOG; 500 µM) or the hypoxia mimetic 
compounds deferoxamine (DFX; 250  µM) or  CoCl2 (150  µM) for 
18 h. Mps1 and HIF1α protein levels were examined by immunoblot-
ting. GAPDH was used as a loading control
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was resuspended in 5X Laemmli buffer, boiled, separated 
by SDS-PAGE, and transferred to nitrocellulose membranes. 
Ubiquitination was detected with by immunoblotting using 
anti-ubiquitin antibody.

Flow cytometry

FACS analysis was performed according the protocol in the 
Annexin V/FITC kit (Bio-Rad). In brief, following release 
from nocodazole, cells were trypsinized, collected, and 
washed once with 1x binding buffer (included in kit). Pro-
pidium iodide was added and immediately run on a Becton 
Dickinson LSRFortessa (BD Biosciences). Data were ana-
lyzed using FlowJo software v10.6.2 (BD).

Results

Mps1 kinase activity is essential for its 
VHL‑mediated ubiquitination

We have previously shown that Mps1 is upregulated in the 
VHL deficient ccRCC cell line 786-O. In order to determine 
whether Mps1 is a substrate of VHL, we first established 
Mps1 interaction with VHL, by transiently expressing and 
immunoprecipitating Mps1-FLAG in HEK293 cells. The 
VHL protein is expressed as two isoforms:  VHL30, a pro-
tein of 30 kDa, and  VHL19, roughly 19 kDa in size (Kim and 
Kaelin 2004). Both isoforms appear to retain tumor suppres-
sor activity, and for simplicity, the term “VHL” is used when 
referring to both isoforms generically. Mps1-FLAG interacts 
with both VHL isoforms (Fig. 1A).

We next obtained further evidence that Mps1 is directly 
ubiquitinated by VCB-Cul2 complex using in vitro ubiq-
uitination assay kit (Millipore) with the VCB-Cul2 
 (VHL30-Elongin C-Elongin B-Cullin-2) complex. VHL 
is part of a multi-protein complex, VCB-Cul2 and Rbx1, 
acting as a ubiquitin-ligase (E3) and directing proteasome-
mediated degradation of the substrate proteins. Wild-type 
Mps1-His6 was bacterially expressed, purified (Fig. 1B), 
and used in our in vitro ubiquitination assay as previously 
described (Dushukyan et al. 2017). We show that the recom-
binant wild-type Mps1-His6 was subject to ubiquitination 
(Fig. 1C). Conversely the catalytic inactive recombinant 
Mps1-D664A-His6 mutant was not ubiquitinated (Fig. 1C). 

Fig. 3  Increased Mps1 stability delays G2/M progression. (A) 
Schematic of the Mps1 protein with the TPR domain (blue), kinase 
domain (green), and ubiquitinated residues K86, K827, and K848 
highlighted. (B) Structure of the Mps1 TPR domain (PDB ID: 4B94) 
in blue (Nijenhuis et al. 2013). The ubiquitinated lysine K86 is high-
lighted in red. (C) Expression of 2 µg wild-type Mps1-FLAG, indi-
vidual K86R, K827R, K848R, and triple mutant (RRR) in HEK293 
cells evaluated by immunoblot using an anti-FLAG antibody. (D) 
Immunoprecipitation of wild-type Mps1-FLAG or Mps1-RRR-FLAG 
from HEK293 cells. Ubiquitination of Mps1 was detected using an 
anti-ubiquitin antibody. Asterisks indicate ubiquitinated-Mps1 bands. 
(E) HEK293 cells expressing either wild-type Mps1-FLAG or Mps1-
RRR-FLAG were synchronized using nocodazole (20 µg/ml). Follow-
ing release from mitotic arrest, cells were collected at the specified 
timepoints, stained with propidium iodide, and assayed for cell cycle 
progression by flow cytometry. The data is representative of three 
independent experiments

◂

Fig. 4  Reciprocal regulatory 
mechanism between Mps1 and 
Hsp90. Schematic represen-
tation of Mps1-mediated 
phosphorylation and Cdc14-
facilitated dephosphoryla-
tion of T115-Hsp90. At early 
mitosis Mps1 levels and activity 
increases, therefore it binds 
and phosphorylates T115-
Hsp90 (Woodford et al. 2016). 
This promotes formation of 
Hsp90:Mps1 complex. Later 
in mitosis, Cdc14 dephospho-
rylates T115-Hsp90, disrupts 
Hsp90:Mps1 complex, and 
promotes VHL-mediated Mps1 
ubiquitination on K86, K827, 
and K848 proteasomal degrada-
tion. This is important for cells 
to exit mitosis. Dissociation of 
Cdc14 allows Mps1 binding 
to restart the phosphorylation 
cycle

969Hsp90 chaperone code and the tumor suppressor VHL cooperatively regulate the mitotic checkpoint
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Taken together, our data provides a switching off mechanism 
via ubiquitination and degradation of Mps1 kinase; however 
this feedback depends on the catalytic activity of Mps1.

VHL degrades Mps1 in an oxygen‑independent 
manner

Overexpression of either isoform of VHL  (VHL30-FLAG or 
 VHL19-FLAG) in 786-O and A498 cells (VHL null) reduced 
Mps1 levels (Fig. 2A). This observation is not at the transcrip-
tional level, as the presence or absence of VHL does not affect 
Mps1 transcription (data not shown). Although expression of 
both VHL isoforms leads to degradation of Mps1, we were 
able to prevent this process by pre-treatment with the protea-
some inhibitor bortezomib, providing further evidence that 
VHL-mediated degradation of Mps1 occurs via the protea-
some (Fig. 2B). It is very well known that VHL recognizes 
proline-hydroxylated substrates. We therefore expressed 
three isoforms of Egg laying 9 (Egln) proteins that catalyze 
prolyl-hydroxylation. Surprisingly, Mps1 degradation was 
not observed under these conditions, whereas the canonical 
VHL substrate HIF1α was destabilized (Fig. 2C). We obtained 
further evidence by chemically induced hypoxia which led to 
stabilization of HIF1α; however Mps1 levels were unaffected 
(Fig. 2D). Taken together, our data demonstrate that both VHL 
isoforms have the ability to recognize and ubiquitinate Mps1 
in an oxygen-independent manner.

Mps1 ubiquitination regulates cell cycle progression

In an attempt to map the lysine (K) sites in Mps1 that are 
subject to ubiquitination, we screened three residues pre-
viously reported to be subject to ubiquitination that are 
predicted to be important for Hsp90 interaction (Fig. 3A-
B; phosphosite.org). We therefore mutated lysine sites to 
arginine (R) and examined the stability of Mps1 in HEK293 
cells. Our data showed K86R, K827R, and K848R mutations 
stabilized Mps1 (Fig. 3C). The triple mutation K86, 827, and 
848R (Mps1-RRR) further stabilized Mps1 (Fig. 3C), and 
completely abolished Mps1 ubiquitination (Fig. 3D).

Mps1 is a mitotic checkpoint kinase with stability that 
fluctuates throughout the cell cycle. We therefore examined 
the impact of RRR triple mutation towards cell cycle regu-
lation. We arrested the cells at G2/M cell cycle checkpoint 
as a result of nocodazole treatment. Releasing the cells in 
nocodazole-free medium allowed the WT Mps1-expressing 
cells to progress through the cell cycle. However, this pro-
cess was mildly delayed in cells expressing the hyperstable 
Mps1-RRR mutant (Fig. 3E). Mps1-RRR mildly impacted 
G2/M progression. However, based on the known role of 
Mps1 in regulation of G2/M checkpoint, we expect VHL-
mediated ubiquitination and degradation of Mps1 to regulate 
the cell cycle.

Discussion

Post-translational modifications of Hsp90 have been shown 
to fine tune its chaperone function. This phenomenon is also 
known as the “chaperone code” (Backe et al. 2020). Our 
previous work has shown that the evolutionarily conserved 
dual specificity protein kinase Mps1 phosphorylates a con-
served threonine residue (T101 in yeast Hsp90 and T115 in 
human Hsp90α) in the amino-domain of Hsp90 (Woodford 
et al. 2016). This in turn regulates the chaperone function 
by reducing Hsp90 ATPase activity and promoting its asso-
ciation with kinase client proteins including Mps1. We also 
demonstrated that the Mps1-mediated phosphorylation of 
Hsp90 is essential for the mitotic checkpoint because it leads 
to both stability and activity of Mps1 kinase (Woodford et al. 
2016). We further showed Cdc14 as the phosphatase that 
dephosphorylates T101 and disrupts Msp1-Hsp90 complex. 
Consequently, this leads to Mps1 degradation, providing a 
unique regulatory mechanism for its inactivation and facili-
tating the exit from mitosis (Fig. 4) (Woodford et al. 2016).

In this study we show that the tumor suppressor VHL, the 
substrate recognition subunit of an E3 ligase, is involved in 
ubiquitination and degradation of Mps1 (Fig. 4). This pro-
cess depends on Mps1 catalytic activity, as the catalytically 
inactive Mps1-D664A is not ubiquitinated (Fig. 1C). Previ-
ous works have shown that APC-C and the U-box-containing 
ubiquitination enzyme Ufd2 are also involved in degrada-
tion of Mps1 (Cui et al. 2010; Liu et al. 2011). Therefore 
it is important to delineate the roles of VHL, APC-C, and 
Ufd2 in ubiquitination of Mps1 and regulation of the mitotic 
checkpoint. Collectively, our findings show that Hsp90 and 
VHL protect and degrade Mps1, respectively, consequently 
regulating the mitotic checkpoint.
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