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Abstract: Yellow Peach Moth (YPM), Conogethes punctiferalis (Guenée), is one of the most destructive
maize pests in the Huang-Huai-Hai summer maize region of China. Transgenic Bacillus thuringiensis
(Bt) maize provides an effective means to control this insect pest in field trials. However, the
establishment of Bt resistance to target pests is endangering the continued success of Bt crops. To
use Bt maize against YPM, the baseline susceptibility of the local populations in the targeted areas
needs to be verified. Diet-overlay bioassay results showed that all the fourteen YPM populations
in China are highly susceptible to Cry1Ab. The LC50 values ranged from 0.35 to 2.38 ng/cm2 over
the two years of the collection, and the difference between the most susceptible and most tolerant
populations was sevenfold. The upper limit of the LC99 estimates of six pooled populations produced
>99% larval mortality for representative eight populations collected in 2020 and was designated as
diagnostic concentrations for monitoring susceptibility in YPM populations in China. Hence, we
evaluated the laboratory selection of resistance in YPM to Cry1Ab using the diet-overlay bioassay
method. Although the resistant ratio was generally low, YPM potentially could evolve resistance to
Cry1Ab. The potential developmentof resistance by target pests points out the necessity to implement
resistance management strategies for delaying the establishment of pest resistance to Bt crops.

Keywords: baseline susceptibility; Conogethes punctiferalis; Cry1Ab; diagnostic concentration; resis-
tance monitoring

Key Contribution: In our research, we collected YPM from 14 sites across China and assessed
the baseline susceptibility of YPM to Cry1Ab. Diet-overlay bioassay results showed that all the
fourteen YPM populations are highly susceptible to Cry1Ab. The upper limit of LC99 values of
pooled populations could be designated as a diagnostic concentration for future monitoring work.
Laboratory selection of YPM to Cry1Ab resulted in gradual development of resistance.

1. Introduction

Bacillus thuringiensis (Berliner), a ubiquitous Gram-positive and endospore-forming
soil bacterium, produce insecticidal crystal proteins during the sporulation phase of its
growth cycle [1,2]. It has been using as an alternative to chemical insecticides to control
the critical agricultural pests in the orders Lepidoptera, Coleoptera, and Diptera [3–5].
Since 1996, transgenic maize expressing Bt insecticidal proteins has been commercialized
and used successfully to manage corn borer problems. It is widely grown in the key
maize growing regions such as the USA, Brazil, Argentina, Canada, South Africa, and the
Philippines and the estimated acreage reached 58.9 million hectares in 2018 [6].
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Planting of Bt-transgenic maize can suppress target pest populations, reduce chemical
insecticide use, and increase economic benefits to growers [7–10]. Although the envi-
ronmental and economic benefits of planting Bt transgenic maize are widely recognized,
concernshave been raised regarding possible insectsresistance to Bt crops [11]. Laboratory
and field selection studies have presented that the potential to develop Bt toxin resistance
is widespread among insect pest species [12–19]. Consequently, the growing of Bt crops
must be carefully managed to delay insect resistance and prolong Bt productslifetime.

To maintain the effectiveness of Bt maize, the implementation of robust and experiment-
based insect resistance management strategies is essential for target pest management [20].
These management strategies should include the effective resistance monitoring program,
which can perceive as the evolution of resistance at an initial stage that will allow timely
information to develop appropriate management decisions [21]. Before the commercial
adoption of Bt maize, the development of target pests’ baseline susceptibility to Bt protein
is crucial for establishing effective resistance management and monitoring program [22].
These data establish a diagnostic concentration used to control 99% of susceptible pop-
ulations for resistance monitoring. [23,24]. Therefore, the implementation of resistance
monitoring strategies would provide early warning information to breeders and growers.

There are six major maize-growing regions in China; North Spring Corn Region,
Huang-Huai-Hai Summer Maize Region, Southeast Hilly Maize Region, Southwest Hilly
Maize Region, Northwest Inland Maize Region, and Qing-Zang Plateau Maize Region. The
Huang-Huai-Hai Summer Maize Region is the second most extensive region and estimates
for up to 37% of China’s cumulative maize production acreage [25,26]. Among the pests
damaging to maize, the Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Cram-
bidae), yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae), fall
armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), cotton bollworm,
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), black cutworm, Agrotis ipsilon
(Hufnagel) (Lepidoptera: Noctuidae), and oriental armyworm, Mythimna separata (Walker)
(Lepidoptera: Noctuidae), count as the significant Lepidopteran pests from seedling stage
to mature of maize [27–30].

Yellow peach moth (YPM) is a polyphagous pest attacking several crops, including
peach, chestnut, sunflower, sorghum, and maize [31–33], and broadly spread in South
and East Asia, Australia, and Papua New Guinea [34]. In China, it distributed from north
to south across the country, including Liaoning, Shaanxi, Shanxi, Hebei, Beijing, Tianjin,
Henan, Shandong, Anhui, Jiangsu, Jiangxi, Zhejiang, Fujian, Taiwan, Guangdong, Hainan,
Guangxi, Hunan, Hubei, Sichuan, Yunnan, and Tibet [35]. In recent years, YPM has become
the most destructive maize pest especially in the Huang-Huai-Hai summer maize region
in China [36]. It mainly feeds on the maize ear, inducing ear rot, reducing grain quality,
and causing severe economic yield losses [37]. The larva of YPM is an atypical generalist
and potentially can spread to long distances, and its multivoltine nature helps the YPM
maintain its population constantly [38]. Although chemical pesticides are currently the
significant control measure of managing YPM, there are extreme consequences because
of their adverse effects on non-target pests, beneficial organisms, human health, and the
environment [39]. Therefore, using biological insecticides that are the product of Bt is an
alternative to chemical insecticides to control the critical agricultural pests consisting of
orders Lepidoptera, Coleoptera, and Diptera [3–5]. Accordingly, before Bt maize’s compre-
hensive commercial cultivation in China, it plays a crucialrole in formulating new strategies
to control this pest and establish a science-basedpest management program. Therefore, this
study was taken to establish YPM’s baseline sensitivity to Cry1Ab in distinct geographical
populations in China. Here we describe the first survey of baseline susceptibility to Cry1Ab
of different YPM geographical populations across major maize growing regions in China,
which will be an initial step for the future resistance monitoring program.
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2. Results
2.1. Baseline Susceptibility of YPM to Bt Cry1Ab Protein

Fourteen YPM larvae populations were collected in the non-Bt maize fields from
China’s different geographical areas in 2019 and 2020 (Table 1). The largest populations
were collected in the Shandong, Henan, Hebei, and Anhui provinces from the Huang-
Huai-Hai summer maize production region which is the China’s second largest maize-
growing region (Figure 1). The susceptibility of YPM larvae to Cry1Ab for fourteen field
and lab populations was presented in Table 2. Diet-overlay bioassay results showed
that all the fourteen YPM populations in China are highly susceptible to Cry1Ab. The
LC50 values ranged from 0.35 to 2.38 ng/cm2 for the populations over the two years
of the collection, while the LC99 values ranged between 40.13 and 409.65 ng/cm2. The
population from Luohe had the lowest LC50 value (0.35 ng/cm2); it was not significantly
different from Luoyang (0.55 ng/cm2) and Jiyuan population (0.65 ng/cm2), all from
Henan province. Tangshan population produced the highest LC50 value (2.38 ng/cm2),
followed by Handan (2.19 ng/cm2), Suzhou (2.14 ng/cm2), and Linyi (1.72 ng/cm2)
populations.
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Table 1. Source description of Conogethes punctiferalis populations used to establish baseline susceptibility to Bt Cry1Ab protein.

Province Location Coordinates Collected Month Number of
Collected Larvae

Shandong Dezhou (1) 37◦26′10′′ N; 116◦21′32′′ E August 2019 250
Shandong Jining (2) 35◦24′54′′ N; 116◦35′14′′ E August 2019 350

Hebei Tangshan (3) 39◦37′52′′ N; 118◦10′48′′ E August 2019 350
Henan Luoyang (4) 34◦37′11” N; 112◦27′14′′ E September 2019 300
Henan Jiyuan (5) 35◦04′01′′ N; 112◦36′07′′ E September 2019 200

Shaanxi Xi’an (6) 35◦04′01′′ N; 112◦36′07′′ E September 2019 300
Shandong Yantai (7) 37◦28′35′′ N; 121◦26′26′′ E September 2020 340
Shandong Linyi (8) 35◦6′16.82′′ N; 118◦21′23.21′′ E September 2020 270

Anhui Suzhou (9) 33◦38′46.89′′ N; 116◦57′51.69′′ E September 2020 230
Anhui Hefei (10) 31◦51′50′′ N; 117◦16′50′′ E September 2020 220
Henan Luohe (11) 33◦34′53.09′′ N; 114◦0′59.54′′ E September 2020 320
Hebei Handan (12) 36◦37′32.37′′ N; 114◦32′20.26′′ E September 2020 330
Beijing Shunyi (13) 40◦7′49.25′′ N; 116◦39′16.74′′ E September 2020 340

Sichuan Chengdu (14) 30◦39′25.2000′′ N;
104◦3′57.6072′′ E October 2020 65

All YPM larvae across China were collected in the maize field.

Table 2. Diet-overlay bioassay to Bt Cry1Ab protein of fourteen field populations of Conogethes punctiferalis collected in 2019
and 2020 in China and laboratory susceptible population.

Year Province Location g n Slope ± SE LC50 (95% FL)
ng/cm2 * LC99 (95% FL) ng/cm2 * x2

2019

Shandong Dezhou (1) F1 576 0.98 ±.071 1.48 (1.05–2.10) bc 350.61 (160.66–967.20) b 7.80
Shandong Jining (2) F1 576 1.32 ± 0.10 1.04 (0.78–1.40) bc 59.42 (32.67–129.88) ab 8.32

Hebei Tangshan (3) F1 576 1.12 ± 0.12 2.38 (1.52–3.49) c 282.32 (125.59–951.33) b 8.38
Henan Luoyang (4) F1 576 0.93 ± 0.07 0.55 (0.39–0.79) ab 178.28 (79.98–506.09) ab 8.96
Henan Jiyuan (5) F2 576 1.03 ± 0.07 0.65 (0.47–0.91) ab 117.92 (56.96–302.38) ab 9.44

Shaanxi Xi’an (6) F1 576 1.06 ± 0.08 0.88 (0.64–1.22) b 136.95 (67.55–340.90) ab 9.48

2020

Shandong Yantai (7) F1 576 1.16 ± 0.14 1.76 (1.05–2.64) bc 181.37 (80.55–654.10) ab 9.46
Shandong Linyi (8) F1 576 1.02 ± 0.07 1.72 (1.23–2.42) c 321.31 (150.70–860.99) b 14.37

Hebei Handan (9) F1 576 1.19 ± 0.12 2.19 (1.50–3.10) c 199.27 (96.07–563.99) ab 9.83
Henan Luohe (10) F1 576 0.97 ± 0.07 0.35 (0.25–0.48) a 87.94 (40.98–237.27) ab 7.40
Anhui Suzhou (11) F1 576 1.83 ± 0.28 2.14 (1.38–2.96) c 40.13 (21.97–114.96) a 6.06
Anhui Hefei (12) F1 576 1.16 ± 0.09 1.60 (1.18–2.20) bc 163.83 (83.12–397.19) ab 11.74
Beijing Shunyi (13) F1 576 0.93 ± 0.07 1.32 (0.93–1.88) bc 409.65 (182.33–1171.81) b 7.03
Sichuan Chengdu (14) F3 576 1.20 ± 0.13 0.97 (0.61–1.42) bc 84.63 (41.05–247.33) ab 5.56

Population pooled from 2019 collection F2 576 1.39 ± 0.11 0.92 (0.70–1.22) b 43.33 (24.28–92.73) a 9.50
Laboratory strain F19 576 0.93 ± 0.07 1.08 (0.76–1.55) bc 349.77 (154.29–1012.84) b 10.46

g = Generation. n = Number of tested larvae. SE = Standard error. 95% FL = 95% fiducial limits. * = Values followed by the same lowercase
letter in the same column indicate no significant difference (overlapping 95% fiducial limits). Degree of freedom (df) in each population
is 19.

2.2. YPM Larval Growth Inhibition to Bt Cry1Ab Protein

For the larval growth inhibition, YPM larvae showed high susceptibility to Cry1Ab in
all tested populations (Table 3). The larval growth inhibition recorded >50% in the Cry1Ab
lowest concentration (0.004 ng/cm2) and above 99% larval growth inhibition was observed
in the concentration of 13.68 ng/cm2 and 68.42 ng/cm2, respectively.

2.3. Development of Diagnostic Concentration

After pooling the six populations collected in 2019 in the F2 generation, the LC99 for
Cry1Ab was 43.33 ng/cm2, with a lower and upper limit 24.28 ng/cm2 and 92.73 ng/cm2,
respectively. The upper limit of 92.73 ng/cm2 exhibited larval mortality >99% for all eight
populations collected in 2020 (Table 4). However, both LC99 (24.28 ng/cm2) and the lower
limit of 43.33 ng/cm2 produced larval mortality <99% for eight populations. Based on
this, the upper limit of the LC99 estimates could be potentially suitable as the diagnostic
concentration for future monitoring work of Cry1Ab resistance in the YPM population.
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Table 3. Conogethes punctiferalis larval growth inhibition was observed for different Bt Cry1Ab concentrations after one week of treatment.

Cry1Ab
(ng/cm2)

Larval Growth Inhibition (%)

Mean ± SEM
Dezhou Jining Yantai Linyi Tang-

shan Handan Luo-
yang Jiyuan Luohe Xi’an Suzhou Hefei Shunyi Cheng-du

0.004 51.17 52.26 51.52 52.41 54.02 54.35 54.52 58.89 54.49 57.91 52.29 52.21 51.69 55.94 53.83 ± 0.64
0.02 57.00 61.45 57.86 58.47 63.44 61.97 61.13 62.19 61.60 59.85 55.92 54.47 57.90 59.86 59.51 ± 0.71
0.11 61.68 66.23 61.85 63.23 69.73 66.47 70.67 70.59 70.45 70.67 63.12 63.60 60.46 62.96 65.84 ± 1.04
0.55 76.10 70.00 76.96 75.70 74.11 73.79 74.59 72.62 74.90 71.23 75.61 75.66 79.10 77.42 74.84 ± 0.65
2.74 85.01 90.83 86.21 85.12 93.89 94.05 88.98 88.79 92.85 92.19 83.35 83.43 86.21 91.36 88.73 ± 1.03

13.68 99.78 99.98 99.79 99.76 99.84 99.92 99.91 99.67 99.91 99.85 99.78 99.80 99.70 99.83 99.82 ± 0.02
68.42 99.99 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00 ± 0.00

The number of tested larvae in each location is 576. SEM = Standard error mean. Growth inhibition (%) = (Weight of the control larva—Weight of the survivors from treatment)/Weight of the control larva × 100 [40].
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Table 4. Conogethes punctiferalis mortality % in the lower limit of LC99, LC99 and upper limit of LC99

of Bt Cry1Ab protein.

Location n
Mortality %

24.28 ng/cm2 * 43.33 ng/cm2 * 92.73 ng/cm2 *

Yantai 240 80.83a 93.33a 99.17a
Linyi 240 81.67a 94.58a 99.58a

Handan 240 82.50a 95.00a 99.58a
Luohe 240 82.92a 95.42a 100.00a

Suzhou 240 81.25a 94.17a 99.17a
Hefei 240 81.25a 93.33a 100.00a

Shunyi 240 82.08a 95.42a 100.00a
Chengdu 240 81.67a 95.00a 100.00a

n = Number of larvae tested for each candidate concentration. * = Values followed by the same lowercase letter in
the same column represent no significant difference at p > 0.05 (post hoc Tukey HSD test) by one-way ANOVA in
SPSS. (Mortality % = (Number of dead larvae/Total number of tested larvae) × 100.

2.4. Laboratory Selection

Large-scale diet-overlay bioassays similar to those described above were conducted
for the selection experiments. As mentioned in the methodology, the laboratory strain was
steadily selected with increasing doses of Cry1Ab from 1.08 to 6.16 ng/cm2 for the 14th
generation (Table 5). Resistance ratio increased 2.26-fold in 3rd generation, 3.30-fold in
6th generation, 4.76-fold in 9th generation, 5.42-fold in 11th generation, 6.08-fold in 13th
generation, and after the 14th generation of selection, the resistance ratio increased by
7.10-fold, respectively.

Table 5. Selection of resistance levels of Conogethes punctiferalis laboratory strain to Bt Cry1Ab protein at different generation.

Generation Concentration
ng/cm2

LC50 (95% FL)
ng/cm2 LC90 (95% FL) ng/cm2 Slope ± SE RR x2

Cry1AbS 1.08 (0.76–1.55) 26.07 (15.17–51.59) 0. 93 ± 0.07 10.46
F1 1.08 1.14 (0.82–1.59) 19.58 (12.07–35.89) 1.04 ± 0.08 1.06 7.29
F2 1.08 1.78 (1.25–2.58) 45.67 (25.99–93.42) 0.91 ± 0.07 1.65 4.50
F3 1.08 2.44 (1.61–3.55) 36.51 (22.04–72.45) 1.09 ± 0.11 2.26 9.90
F4 1.08 3.07 (2.233–4.08) 19.53 (13.42–32.83) 1.59 ± 0.17 2.84 7.96
F5 1.08 3.30 (2.37–4.66) 56.36 (33.70–108.74) 1.04 ± 0.08 3.06 9.76
F6 2.05 3.57 (2.58–4.87) 32.64 (21.34–57.60) 1.33 ± 0.13 3.30 6.97
F7 2.05 4.11 (2.94–5.68) 44.10 (27.95–81.19) 1.24 ± 0.12 3.81 6.51
F8 2.05 5.03 (3.42–7.35) 87.71 (49.78–191.88) 1.03 ± 0.10 4.67 7.05
F9 3.12 5.14 (3.57–7.61) 121.85 (66.25–269.96) 0.93 ± 0.07 4.76 7.62

F10 3.12 5.42 (3.80–7.97) 112.62 (62.34–243.97) 0.97 ± 0.08 5.02 9.01
F11 4.32 5.85 (3.94–8.59) 100.71 (56.21–230.14) 1.04 ± 0.11 5.42 5.91
F12 4.32 6.02 (4.17–9.01) 147.30 (78.36–338.77) 0.92 ± 0.08 5.57 5.94
F13 6.16 6.56 (4.04–11.59) 581.99 (224.53–2131.07) 0.66 ± 0.06 6.08 13.19
F14 6.16 7.67 (5.22–11.78) 210.74 (106.67–523.77) 0.89 ± 0.08 7.10 5.02

g = Generation. Cry1AbS = Cry1Ab susceptible strain. n = Number of tested larvae. df = Degree of freedom. RR = Resistant ratio is the
LC50 value of resistance strain divided by the LC50 value of susceptible strain. Degree of freedom (df) is 19 and the number of tested larvae
in each generation is 576.

3. Discussion

Before the broad commercial deployment of Bt maize, the establishment of baseline
susceptibility of target pests to Bt protein is the first step for generating an effective resis-
tance monitoring and management program [22]. In the present study, we conducted the
diet overlay bioassays to verify the baseline susceptibility of YPM to Cry1Ab from fourteen
diverse geographical populations of China. In general, Cry1Ab proteins have observed
high toxicity against the species of genus Ostrinia [25,41–43]. A previous report docu-
ments that YPM is highly susceptible to Cry1Ab proteins than other tested proteins [44].
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Zhang et al., 2010 [45] concluded that high genetic similarity among 11 populations but
Shandong populations showed lower genetic diversity than others and biggest genetic
distance was identified between Sichuan and Shandong populations. Here the LC50 of Shan-
dong populations were in general higher than those from inner land provinces (although
not significant).

The natural variation in baseline susceptibility associate with various factors such as
population vigor, the source of the Bt proteins, bioassay method, environmental condition,
time of exposure, and artificial diet [46–49]. Several studies have shown minor to moderate
variation in the Crambidae family to Cry1Ab among various countries. The Cry1Ab
susceptibility varied less than 10-fold among ten different O. furnacalis populations across
China [25]. Alcantara et al. (2011) reported less than sixfold limited variability in Cry1Ab
susceptibility of O. furnacalis populations in the Philippines. Another study in Vietnam
also showed threefold variations in the LC50 estimate values of O. furnacalis to Cry1Ab [42].
Li et al. (2020) reported that no significant natural variation in susceptibility to Cry1Ab
was found among 15 field populations of O. furnacalis in China. Moreover, Marçon et al.
(1999) did not find a relatively high level of variability (<4 fold) in susceptibility to Cry1Ab
for O. nubilalis. Furthermore, the two populations of O. nubilalis in Spain exhibited a
relatively low level of variability in susceptibility to the Cry1Ab [50]. However, the ranges
of LC50 among populations in response to Cry1Ac protein were 16-fold for Helicoverpa
zea in the USA [51]. H. armigera population from China displayed a 100-fold high level of
natural variability in response to Cry1Ac protein [52]. In this study, the LC50 values among
fourteen different populations ranged from 0.35 to 2.38 ng/cm2 with 7-fold variations,
while the LC99 values ranged between 40.13 and 409.65 ng/cm2 with 10-fold variations.
These findings collectively indicated that the Crambidae family exhibits relatively little
variability in response to the Cry1A protein compare with those of the Noctuidae.

The high sensitivity growth inhibition may be considered as an additional indica-
tor for diagnostic concentration response in future monitoring work [53]. In our study,
severe larval growth inhibition of YPM larvae byCry1Ab was detected in the different
geographical populations (Table 3). The results showed that >50% larval growth inhibition
in the Cry1Ab lowest concentration (0.004 ng/cm2) and >99% larval growth inhibition
in the concentration of 13.68 ng/cm2 and 68.42 ng/cm2, respectively. Accordingly, when
increasing the Cry1Ab concentration, YPM larval weight also reduced after one week of
treatment. Marçon et al. (1999) documented that high larval stunting was showed in
the low concentration of Cry1Ab is common among tested species, including Ostrinia
spp. Furthermore, in Vietnam, the Ostrinia population exhibited >90% larval stunting in a
concentration of above 0.82 ng/cm2 [42]. In addition, high larval growth inhibition was
observed to Bt Cry1A protein in the noctuid in different countries [52,54–57].

To monitor insect resistance’s evolution to Bt proteins, the diagnostic dose’s devel-
opment and estimation are necessary steps in the insect resistance monitoring program.
In some countries, the LC99 values have been applied to develop a diagnostic dose for
monitoring the evolution of insect resistance to Cry1 proteins [23,53,58]. In this study,
we collected six populations in 2019 to designate the diagnostic concentration of YPM to
Cry1Ab. The LC99 estimates for Cry1Ab were 43.33 ng/cm2, with a lower and upper limit
of 24.28 ng/cm2 and 92.73 ng/cm2, respectively. The upper limit of the LC99 (92.73 ng/cm2)
was selected as the candidate diagnostic concentration because of exhibited consistent
larval mortality above 99% when treated on eight representative YPM populations in China
(Table 4). A study from 2020, the LC99 estimate of Cry1Ab was 93 ng/cm2, killed >99% of
O. furnacalis populations, and was identified as the diagnostic dose for monitoring suscep-
tibility of O. furnacalis in China [59]. These observations suggested that the development of
effective diagnostic concentration could be successfully applied to control both YPM and
O. furnacalis in future monitoring work.

The establishment of Bt resistance to target pests is threatening to the continuous suc-
cess of Bt crops. Several studies found O. furnacalis population has been evolved resistant
to Bt Cry1 protein after several generations in the laboratory selection [60–62]. Besides,
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both a laboratory and field study observed that some noctuid could evolve resistance to
Cry1Ab [63,64]. We attempted the laboratory selection of resistance in YPM to Cry1Ab
using the diet-overlay bioassay method. Resistance ratio increased 2.26-fold in 3rd genera-
tion, 3.30-fold in 6th generation, 4.76-fold in 9th generation, 5.42-fold in 11th generation,
6.08-fold in 13th generation, and after the 14th generation of selection, the resistance ra-
tio increased by 7.10-fold, respectively (Table 5). Although the resistant proportion was
generally low, YPM potentially could evolve resistance to Cry1Ab. The possible evolution
of resistance to target pests points out the necessity to implement resistance management
strategies for delaying the establishment of pest resistance to Bt crops.

4. Conclusions

We report here on the baseline susceptibility of distinct geographical populations of
YPM to Cry1Ab, which is crucial to establish an effective resistance monitoring program
for YPM in China. Our findings collectively pointed that the Crambidae family exhibits
relatively little variability in response to the Cry1A protein compare with those of the
Noctuidae. Additionally, the upper limit of the LC99 (92.73 ng/cm2) was verified as
the candidate diagnostic concentration. Presently, a resistant strain of YPM is being
developed in the laboratory and can be potentially used for testing the efficacy of the
diagnostic technique. The diagnostic concentration validation study should compare the
YPM resistant population and the field-collected population to future monitoring programs.

5. Materials and Methods
5.1. Insects Collection

Fourteen YPM field populations were collected from the maize fields in seven provinces,
including Shandong, Hebei, Henan, Shaanxi, Beijing, and Anhui provinces across the Huang-
Huai-Hai summer maize region and Sichuan Province from Southeast Hilly Maize Region
in China. Approximately 200–350 larvae (4th–5th instar) were collected from maize ears at
each location in autumn before maize harvest. Only the Chengdu population was collected
about 65 larvae because of less population in that collected area. Collection sites were chosen
based upon their infestation history and were made in 2019 and 2020 (Figure 1).

5.2. Laboratory Rearing of Field-Collected YPM

Field collected larvae were reared on the freshly prepared artificial diet until pupa-
tion [65]. The pupae were transferred to mating cages for adult emergence. Inside the
adult rearing cages, the apple substrate wrapped with gauze was placed for oviposition.
A cotton swab soaked in 15% honey solution was provided for the adults and renewed
daily. The YPM was maintained in the rearing room at 27 ± 1 ◦C, 60–70% relative humidity
(RH), and a 16:8 h (L:D) photoperiod. Newly hatched neonate larvae (<24 h) from the F1
generation were used for diet-overlay bioassays and diagnostic concentration assays. The
Jiyuan and Chengdu populations were raised to F2 and F3 generation as not enough for
further experiment. YPM laboratory strain was collected in a maize field where Bt spraying
is not practiced at Langfang, Hebei Province, China. The collected larvae were reared
using the same method mentioned above for eighteen generations without exposure to
Bt protein.

5.3. Baseline Susceptibility Bioassay

Trypsin-activated Cry1Ab protein was purchased from Envirologix (Portland, OR, USA).
Cry1Ab protein’s insecticidal activity against YPM larvae was assessed in concentration-
response bioassays by applying Cry1Ab preparations on the artificial diet’s surface. Seven
protein concentrations ranged from 0.004 to 68.42 ng/cm2 (protein/diet). All bioassays
were performed by transferring neonate larvae (<24 h) with a fine brush to contaminated
diet surfaces in a 24-well plate. The plates were sealed with a membrane (Cat# 3M-9733,
Minnesota Mining, and Manufacturing Company, Saint Paul, MN, USA) perforated with
a sharp pin on each cell to provide aeration. Plates were maintained in the rearing room
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at 27 ± 1 ◦C, 60–70% RH, and a 16:8 h (L:D) photoperiod. Three replicates of 24 larvae per
concentration (n = 72) were applied for each Bt protein dose, and double-distilled water
(no Bt) was applied for the control. The larval mortality and larval weight were scored one
week after treatment. The larvae that failed to move when prodded with a fine pin were
considered dead.

5.4. Establishment of Diagnostic Concentrations of Bt Cry1Ab Protein

Diagnostic concentrations were established with the pooled population from six
locations during 2019 field collections. A pooled analysis using the logistic option in
the PROBIT procedure was performed across populations to estimate LC99 and its lower
and upper limit, which was considered the diagnostic concentration for future resistance
monitoring purposes. To evaluate the LC99, lower limit, and the upper limit for use as
the diagnostic concentration, eight YPM populations were collected in Shandong, Hebei,
Henan, Beijing, Anhui, and Sichuan provinces in 2020. About 240 neonate larvae from
each population were tested with each of the three candidates’ diagnostic concentrations of
Cry1Ab using the diet overlay bioassay described above.

5.5. Laboratory Selection

Laboratory strains of YPM originated from the maize field at Langfang experimen-
tal station of Chinese Academy of Agricultural Sciences, Hebei Province, China, and
reared on the artificial diet in the laboratory for eighteen generations without exposure
to Bt proteins. Diet overlay bioassay was conducted to evaluate this strain’s suscepti-
bility to Cry1Ab before conducting a selection experiment, and the LC50 estimate was
1.08 ng/cm2 (toxin/diet). The population was initially treated with LC50 value of Cry1Ab
for ten days and transferred to an untreated artificial diet to complete its life cycle. It
was selected steadily with increasing the concentrations of Cry1Ab (2.05 ng/cm2) for 6th
generation, (3.12 ng/cm2) for 9th generation, and (4.32 ng/cm2) for 11th generation and
then maintained at (6.16 ng/cm2) for 14th generation, respectively. The resistance ratio
was calculated LC50 value of the Cry1Ab resistance strain divided by LC50 value of the
Cry1Ab susceptible strain.

5.6. Statistical Analysis

Fifty percent lethal concentration (LC50) with 95% fiducial limits (FL) and LC99 were
determined using the PoloPlus (v 1.0, LeOra Software, Parma, MO, USA) for Cry1Ab
protein and the slope for all bioassays by probit analysis. The difference between LC50
values and LC99 values in diet-overlay bioassays was considered significantly different if
their 95% fiducial limits did not overlap. The mortality percentage for each concentration
was analyzed by one-way ANOVA, followed by post hoc Tukey HSD test. Statistical data
analysis was based on the software package SPSS v.20 (IBM Corporation, Armonk, NY,
USA). The percentage of larval growth inhibition was calculated using the formula below
based on [40]:

Growth inhibition (%) =
weight of the control larva − weight of the survivor from treatment

weight of the control larva
× 100
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