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Cancer cells generally harbor hundreds of alterations in the
cancer genomes and act as crucial factors in the development
and progression of cancer. Gene alterations in the cancer
genome form genetic interactions, which affect the response
of patients to drugs. We developed an algorithm that mines
copy number alteration and whole-exome mutation profiles
from The Cancer Genome Atlas (TCGA), as well as functional
screen data generated to identify potential genetic interactions
for specific cancer types. As a result, 4,529 synthetic viability
(SV) interactions and 10,637 synthetic lethality (SL) interac-
tions were detected. The pharmacogenomic datasets revealed
that SV interactions induced drug resistance in cancer cells
and that SL interactions mediated drug sensitivity in cancer
cells. Deletions ofHDAC1 andDVL1, both of which participate
in the Notch signaling pathway, had an SV effect in cancer cells,
and deletion of DVL1 induced resistance to HDAC1 inhibitors
in cancer cells. In addition, patients with low expression of both
HDAC1 and DVL1 had poor prognosis. Finally, by integrating
current reported genetic interactions from other studies, the
Cancer Genetic Interaction database (CGIdb) (http://www.
medsysbio.org/CGIdb) was constructed, providing a conve-
nient retrieval for genetic interactions in cancer.
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INTRODUCTION
Traditional cancer therapy predominantly involves chemotherapy,
which provides limited improvements in patient survival. Patients
frequently acquire resistance to chemotherapy, significantly
decreasing the usefulness of anticancer drugs in the clinic.1 As a
new approach of precision medicine, target therapy has brought a
new opportunity for cancer treatment. Target therapy refers to
formulating the best treatment regimens for patients according to
personalized genome characteristics, maximizing the treatment effect
and minimizing patient injury.2 There are hundreds of genomic alter-
ations in tumor cells, such as copy number alterations (CNAs) and
somatic mutations. Cancer patients, even with the same cancer
type, have high heterogeneous genomic alterations,3 which induce
complex drug responses. It is still a great challenge to identify effective
biomarkers to predict drug resistance and drug sensitivity for target
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therapy. Inevitable drug resistance in target therapy is also a major
obstacle. Tremendous efforts and progress have been made over the
past few years to reveal the specific mechanism of drug resistance
and sensitivity, including genetic interactions among gene alterations
in the cancer genome.4,5

The generation of an unexpected phenotypic outcome when
combining two alterations is referred to as a genetic interaction,
including synthetic viability and synthetic lethality.6 Synthetic viability
(SV) describes the scenario in which the synthesis or combination of
two gene effects remedy the effect of single-gene defects, such as cell
death or a significant impairment of fitness, and enhance cell survival,
which may be a potential mechanism for drug resistance.5 Synthetic
lethality (SL) describes the scenario in which single-gene defects are
compatible with cell viability, but the combination of alterations in
both genes induces cell death, which is generally used to identify
drug-sensitive biomarkers or drug targets.7 A well-known example of
an SL effect is the selective impediment of PARP inhibitors on the
growth of BRCA1/2-mutated cancer cells, and this SL effect has been
successfully applied to clinical therapy.8 Olaparib was approved by
the US Food and Drug Administration (FDA) for treatment of
BRCA1/2-mutated advanced ovarian cancer patients in 2014. However,
many ovarian cancer patients carrying mutations of BRCA1/2 have
resistance to olaparib in clinical applications.9 Hu et al.10 found that
GPBP1 loss causes resistance to PARP inhibitors by regulating the
expression of factors involved in homologous recombination (HR)
according to a quantitative chemotherapy genetic interaction map.
The Authors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Gene alterations in the cancer genome present specific patterns, such
as co-occurrence or mutual exclusivity.11 Mutual exclusivity indicates
that both gene alterations rarely occur in the same patients, and
mutual exclusivity has been used to identify synthetic lethal interac-
tions in cancer cells. For example, Unni et al.12 reported that an SL
effect underlies the mutual exclusivity of oncogenic KRAS and
EGFR mutations in lung adenocarcinoma. Co-occurring alterations,
in which both gene alterations significantly and simultaneously occur
in cancer patients, may have an SV effect on cancer cells, and these
alterations have been validated in our previous work.5 Recent ad-
vances in functional screening technology provide an avenue to
explore genetic interactions in cancer cells.13 However, most studies
have focused on the identification of SL interactions and further
detection of drug targets while ignoring SV interactions involved in
the cancer genome. Thus, besides SL interactions, the present work
identified and analyzed SV interactions in cancer cells using The
Cancer Genome Atlas (TCGA) cancer genome data and validating
by short hairpin RNA (shRNA), CRISPR, and yeast datasets. More-
over, the present study further detected drug-resistance biomarkers
using SV interactions based on the hypothesis that cancer cells with
alterations in partner genes are resistant to specific drugs if drug
targets and partner genes have SV effects.

In the present study, CNAs and the mutation and expression profiles
of 8,580 samples were integrated across 32 cancer types from TCGA
to identify co-occurrence and mutual exclusivity gene pairs (Figures
1A and 1B). Reliable co-occurrence and mutual exclusivity interac-
tions were then selected from functional screening data, including
shRNA and CRISPR datasets (Figure 1C). The strategy was based
on the notion that knockdown of one gene causes a selective enhance-
ment (SV) or reduction (SL) in cell viability, with simultaneous
alterations in another gene. In addition, the positive and negative in-
teractions in yeast genetic interactions were also used to infer SV and
SL relationships in human cancer cells, respectively. Ultimately, the
co-occurrence and mutual exclusivity gene pairs verified in at least
one type of dataset (shRNA, CRISPR, or yeast) were selected as candi-
date genetic interactions (Figure 1C). SV and SL interactions were
validated by (1) showing the expected drug response detected by
four pharmacogenomic datasets (Figure 1D) as well as (2) observing
worse survival of patients with alterations in SV interactions and bet-
ter survival of patients with alterations in SL interactions in the prog-
nosis analysis (Figure 1E). Moreover, network analysis and pathway
enrichment analysis were performed to investigate the functional
relationship between genes with genetic interactions. The biomarkers
identified by the present work will contribute to predict the mecha-
nism of drug resistance or sensitivity in clinical application and will
guide precise targeting of existing therapies.

RESULTS
Identification of Candidate SV Interactions and SL Interactions

in Cancers

To identify significant co-occurring and mutual exclusive relationships
among genomic alterations, mutation and CNA data from 8,580 sam-
ples of 32 different cancer types studied by the TCGA consortium were
utilized (Figure 1A). Considering the heterogeneous distribution of
alterations across genes and samples, a randomization procedure was
applied to detect gene pairs with significant co-occurring or mutual
exclusive alterations (see Materials and Methods; false discovery rate
[FDR] < 0.05; Figure 1B). The statistics of co-occurring and mutual
exclusive gene pairs within each cancer type are shown in Figure 2A.

The co-occurring and mutual exclusive gene pairs, which had a com-
bined effect verified by at least one of the shRNA, CRISPR, and yeast
datasets, were selected as candidate SV and SL interactions. Accord-
ing to the criteria to select candidate SV and SL interactions (see
Materials andMethods), 15,928, 103,879, and 191 candidate SV inter-
actions were separately identified in the shRNA, CRISPR, and yeast
datasets (Figure 2B). In total, 11,001, 12,421 and 196 candidate SL
interactions were separately identified in the shRNA, CRISPR, and
yeast datasets (Figure 2C). The SL and SV interactions from 16 studies
were integrated for follow-up research accompanied by our predic-
tions. The information of 16 studies is provided in the Supplemental
Materials and Methods. In total, 490 SV interactions and 29,171 SL
interactions were selected from current studies (Table S1). An inte-
grative confidence score combining scores from all evidence sources
and our prediction were calculated to estimate the reliability of SL
or SV genetic interaction (see Supplemental Materials and Methods).
The quantitative score according to the experimental methods was
annotated in evidence sources (Table S2).

SV Interactions and SL Interactions Associated with Drug

Response

Four drug datasets (from CCLE, GDSC, Cancer Therapeutics
Response Portal [CTRP], and NCI60) were used to identify drug bio-
markers by investigating the SV and SL interactions in cancer cells.
Our previous studies have demonstrated that drug response heteroge-
neity exists among tissue-specific cell lines.14 In the present study,
there were significant differences in drug sensitivity among different
tissues according to ANOVA (p < 0.05; Figure S1). Therefore, the
drug responses of SV and SL interactions were analyzed in tissue-spe-
cific cell lines, which limited the number of cell lines to three. For SV
interactions, if one gene was targeted by a particular drug, the drug
response measures (IC50 or AUC) in cell lines with alterations of
the partner gene were significantly higher than those in the cell lines
with the wild-type (WT) partner gene. For SL interactions, if one gene
targeted was by a particular drug, the drug response measures (IC50 or
AUC) in cell lines with alterations of the partner gene were signifi-
cantly lower than those in the cell lines with the WT partner gene.
The SV and SL interactions conformed to the expected drug response
were different for each tissue (Figures S2A and S2C). The significant
overlapping of drug-response-related SV (or SL) interactions identi-
fied by AUC and LN_IC50 (natural log of the fitted half maximal
inhibitory concentration) values from GDSC indicated the reliability
of the present study (p < 0.001; Figures S2B and S2D). A well-known
example of SL is that ovarian cancer patients with BRCA1/2 muta-
tions are treated with PARP inhibitors. Figure S3 demonstrates that
the BRCA2 mutation was associated with sensitivity to olaparib, a
PARP inhibitor, in cancer cells.
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Figure 1. Workflow of the Present Study

(A) Statistics of 32 cancers in TCGA. (B) Identification of co-occurring and mutual exclusive interactions across 32 cancer types. (C) Identification of candidate genetic

interactions using shRNA, CRISPR screening data, and yeast genetic interaction data. (D) Prediction of biomarkers for cancer cell drug sensitivity and resistance.

(E) Prognostic analysis.
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Here, we calculated the percentage of the SV (SL) interactions that
conformed to our hypothesis relative to all significant SV (SL) inter-
actions and defined it as consistency ratio. The consistency ratios of
four drugs (including erlotinib, lapatinib, nilotinib, and paclitaxel)
were simultaneously screened in four drug datasets, which are shown
in Figures 3A and 3B. In the NCI60 dataset, no SV and SL interactions
exhibited the expected drug response due to the small number of cell
lines. As shown in Figure 3A, the SV interactions associated with
690 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
paclitaxel resistance had a higher consistency ratio in breast cancer,
stomach cancer, and lung cancer. Overall, the response rate to pacli-
taxel is 50% as first-line chemotherapy, decreasing to 20%–30%
when used as second- or third-line chemotherapy; nearly half of the
patients with breast cancer do not respond to paclitaxel.15 According
to the present results, the breast cancer cell lines with alterations of
PSEN1 were related to paclitaxel resistance (Figure S4), which has
been reported in esophageal cancer.16
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Figure 2. Identification of Candidate Synthetic Viable and Synthetic Lethal Interactions in Cancer

(A) Statistics of co-occurring andmutually exclusive gene pairs in different types of cancer. (B) Overlapping of the candidate synthetic viable interactions verified in the shRNA,

CRISPR, and yeast datasets. (C) Overlapping of candidate synthetic lethal interactions verified in the shRNA, CRISPR, and yeast datasets.
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Erlotinib is an oralHER1/EGFR tyrosine kinase inhibitor approved for
patientswithnon-small-cell lung cancer. In thepresent results, erlotinib
showed a high consistency ratio in lung cancer tissue (Figure 3B), and
the consistency ratio was 100% in the CCLE, GDSC (AUC), andGDSC
(LN_IC50) datasets, p < 0.01 (Figure 3C). Cell lines with alterations of
EGFR were more sensitive to erlotinib in the CCLE (Figure 3D),
CTRP (Figure 3E), and GDSC (Figures 3F and 3G) datasets, which
demonstrated the reliability of the present results. Together, these find-
ings suggested that SV interactions are associated with drug resistance
and that SL interactions are related to drug sensitivity.

Drug-Response-Related Genetic Interaction Network Shows

Biological Characteristics

By integrating drug-resistance-related SV interactions and drug-sensi-
tivity-related SL interactions, SV and SL networks, respectively, were
constructed. The SV interaction network consisted of 2,516 genes and
4,529 target-partner gene relationships (Figure 4A), and the SL interac-
tion network consisted of 3,184 genes and 10,637 target-partner gene
relationships (Figure 4B); within two networks, 80% of SV interactions
and 90% of SL interactions had one-step (red edge) or two-step (pink
edge) neighbors in theprotein-protein interaction (PPI) network,which
was not expected by random chance (p < 0.001). Random SV and SL
networks were constructed by randomly selecting the same number
of gene pairs from the cancer alteration profiles and counting the
number of one- or two-step interactions that overlapped with the PPI
network, which was performed 1,000 times. Also, we calculated the
empirical p value. Both SL and SV networks showed scale-free charac-
teristics (Figures 4C and 4D). The aforementioned results indicated that
the SV and SL networks had biological functions.17 The top 10 genes
with the highest degrees in the SV and SL networks are shown inFigures
4E and 4F. Several drug targets, such asAKT1,PARP1, andHDAC1, had
high degrees in the SV or SL network. Moreover, partner genes of these
drug targets also hadhighdegrees. For example, theRHOApartner gene
in the SV network is a member of the Rho family of small GTPases,
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 691
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Figure 3. Genetic Interactions Related to Drug Response in Tissue-Specific Cell Lines

(A and B) Consistency ratio of (A) SV interactions related to drug resistance and (B) SL interactions related to drug sensitivity of four drugs (p < 0.05, Wilcoxon rank-sum test,

white; and p < 0.01, Wilcoxon rank-sum test, black) in CCLE, CTRP, and GDSC datasets. Dark purple indicates a higher consistency ratio, and grids lacking purple indicate

no detection. Different colors represent different tissues. The blank grid indicates that the consistency ratio cannot be tested because of a limited number of cell lines.

(C) Consistency ratio of erlotinib in lung cancer tissue. (D–G) Cell lines with EGFR amplification or mutation are sensitive to the ERBB2-related drug, erlotinib, in CCLE, CTRP,

and GDSC (AUC, LN_IC50) datasets (Wilcoxon rank-sum test). (D) IC50 of erlotinib in CCLE. (E) AUC of erlotinib in CTRP. (F) AUC of erlotinib in GDSC. (G) LN_IC50 of erlotinib

in GDSC.
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Figure 4. Analysis of Genetic Interaction Networks

(A) SV interaction network. (B) SL interaction network.

Nodes depict genes, and edges represent SV interactions

between genes. The light red line indicates that two genes

with SV interactions also have direct protein-protein in-

teractions, and the pink line indicates that two genes with SV

or SL interactions have common neighbors in the protein-

protein interaction network. (C) Distribution of the degree

of genes in the SV network. (D) Distribution of the degree of

genes in the SL network. (E) Histogram shows the degree of

genes in the SV interaction network. (F) Histogram shows

the degree of genes in the SL interaction network.
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which functions as molecular switches in signal transduction cascades.
The present study predicted that alterations ofRHOAmay induce resis-
tance to drugs, such as fluorouracil, in cancer cells. Several studies have
reported that alterations of RHOA mediate tumor invasion and drug
resistance in cancer. Misek et al.18 found that RHOA contributes to
BRAF inhibitor resistance in Sox9High/Sox10Low melanoma cells by
regulating activation of the RhoA family signaling pathway. In addition,
partner genes with high degrees in the SL network, such as NAE1 and
TP53, alsoplayed an important role in thedevelopment andprogression
of cancer. The present work predicted that alterations of TP53 were
related to drug sensitivity, which has been validated in other studies.19

Thus, the partner genes of drug targets in the SL and SV networks
may be regarded as candidate biomarkers for cancer therapies.

SV Interactions Induce Drug Resistance

Among the genes with the top 10 highest degrees in the SV network,
HDAC1 is a key drug target approved by the FDA. In the SV network,
Molecular Thera
many genes interacted with HDAC1, whose alter-
ations may induce resistance to a HDAC1 inhibi-
tor in cancer cells. The partner genes of HDAC1
were significantly enriched in 35 pathways
(hypergeometric test, p < 0.05; Figure S5),
including Notch, Wnt, and mTOR signaling path-
ways (Figure 5A). Both HDAC1 and the DVL1
partner gene were important regulators in the
Notch signaling pathway (Figure 5B), which gov-
erns the growth and proliferation of cancer cells.
In the pharmacogenomic dataset of CTRP, the
deletions of DVL1 were related to HDAC1 inhib-
itor (pandacostat) resistance in the cell lines of
CNS tissues (p = 0.01, Wilcoxon rank-sum test;
Figure 5C). Knockout of HDAC1 by CRISPR
demonstrated that cell lines with DVL1 deletion
survived better than those with WT DVL1 (p =
0.003, Wilcoxon rank-sum test; Figure 5D).
HDAC1 is a member of the histone deacetylase/
AcuC/AphA family whose main function is to
remove acetyl from histone. HDAC1 is an inhibi-
tor of the CSL protein in the Notch pathway,
which can form a transcriptionally active complex
with the Notch1 intracellular domain (NICD) to
activate downstream targets of the transcriptional suppressor family,
such as HES1/5 and HERP (Figure 5B). If HDAC1 is suppressed by
pandacostat, transcriptional inhibition can be promoted. However,
deletion of DVL1 may compensate for transcriptional inhibition.
DVL1 inhibits the Notch1 receptor, and deletion of DVL1 may upre-
gulate Notch1, which produces anti-apoptotic signals by regulating
the phosphatidylinositol 3-kinase (PI3K)-PKB/Akt pathway.20 To
confirm this conjecture, differentially expressed genes were examined
in liver hepatocellular carcinoma (LIHC) samples containing both de-
letions of HDAC1 and DVL1 versus LIHC samples with WT HDAC1
and DVL1. Notch1 was significantly upregulated in samples contain-
ing deletions of both HDAC1 and DVL1 (p = 0.001, t test; Figure S6).
Thus, when HDAC1 inhibitors promote transcriptional inhibition,
the deletion of DVL1 may lead to an increase in the activity of the
Notch receptor, which promotes cell proliferation by regulating the
mitogen-activated protein kinase (MAPK) signaling pathway. To
test whether this SV interaction affects patient survival, a log-rank
py: Nucleic Acids Vol. 17 September 2019 693
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Figure 5. Functional Analysis of Drug-Resistance-Related SV Interactions

(A) KEGG pathways enriched with the partner genes of HDAC1 in the SV interaction network. The y axis represents significantly enriched pathways, and the x axis is the

negative log10-transformed hypergeometric test p value. (B) Notch signaling pathway. The pathway is composed of receptors, ligands, and the CSL DNA-binding protein.

DVL1 is located in functional extracellular domains, acting as an inhibitor for Notch receptors, and HDAC1 plays a key role in regulating transcriptional activity by inhibiting

CSL. (C) Deletions ofDVL1were related to pandacostat resistance in cell lines compared to wild-typeDVL1 (p = 0.01,Wilcoxon rank-sum test). (D) Deletions ofDVL1 showed

higher viability in HDAC1 knockout cell lines compared to wild-type DVL1 (p = 0.003, Wilcoxon rank-sum test). (E) The Kaplan-Meier overall survival analysis of patients in

three groups as follows: HDAC1 deletion, DVL1 deletion, and HDAC1 and DVL1 deletion (p = 0.0303, log-rank test).
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test was applied to analyze the survival data of patients from TCGA.
In ovarian cancer, patients with deletions of both HDAC1 and DVL1
showed worse survival than patients with deletions of either HDAC1
or DVL1 (p = 0.0303, log-rank test).

SL Interactions Mediate Drug Sensitivity

AKT1, as a key gene encoding serine and threonine protein kinase in
the PI3K/AKT pathway, interacted with gefitinib. Among genes that
interacted with drugs in the SL network, AKT1 had the second
largest number of partner genes (Figure S7). Pathway enrichment
analysis showed that the partner genes of AKT1 were mainly en-
riched in the Neurotrophin signaling pathway, p53 signaling
pathway, apoptosis pathway, and cell cycle (hypergeometric distri-
bution, p < 0.05; Figures 6A and 6B). These results indicated that
the alterations of the partner genes, which had an SL effect with
deletion of AKT1, were related to gefitinib sensitivity in cancer cells.
For example, ARHGDIA-deficient cell lines were related to gefitinib
sensitivity in hematopoietic and lymphoid tissues (p = 0.05,
Wilcoxon rank-sum test; Figure 6C). Knockout of AKT1 by CRISPR
in cells with ARHGDIA deletion showed worse survival than cells
with WT ARHGDIA (p = 0.02, Wilcoxon rank-sum test; Fig-
694 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
ure 6D). Both AKT1 and ARHGDIA participated in the Neurotro-
phin signaling pathway (Figure 6B), which regulates the growth,
development, survival, and repair of the nervous system. AKT1, as
the direct downstream target of PI3K, plays an important role in
maintaining the survival of cerebellar cells.21 ARHGDIA, a down-
stream gene of p75NTR, has been proven to regulate the survival
of neurons.22 Monje et al.23 confirmed that neuron-mediated devel-
opmental mechanisms are recapitulated in cancers. Cancer patient
prognostic data were used to test whether co-deletions of AKT1
and ARHGDIA are beneficial to patient survival. As shown in Fig-
ure 6E, the prognosis of lung squamous cell carcinoma patients
with AKT1 and ARHGDIA deletions was better than that for
patients with single-gene deletions (p = 0.0582, log-rank test).
Thus, alterations of ARHGDIA in cancer cells are beneficial for
gefitinib treatment, and patients with co-alterations of AKT1 and
ARHGDIA have better prognosis.

SL Interactions Suggest New Therapeutic Strategy

SL interactions provide a conceptual framework for the develop-
ment of cancer-specific drugs.24 In the present results, alterations
of partner genes involved in the SL network were related to drug
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Figure 6. Functional Analysis of Drug-Sensitivity-Related SL Interaction Genes

(A) KEGG pathways enriched with the partner genes of AKT1 in the SL interaction network. The y axis represents significantly enriched pathways, and the x axis represents

the negative log10-transformed hypergeometric test p value. (B) Neurotrophin signaling pathway is mainly regulated by two types of receptors, the Trk tyrosine kinase

receptors and the p75 neurotrophin receptor (p75NTR). AKT1 is the downstream effector of Trk, and ARHGDIA is the downstream gene of p75NTR. Both of these genes are

important regulators for neuronal growth. (C) Deletions of ARHGDIAwere related to gefitinib sensitivity in cell lines compared to wild-type ARHGDIA (p = 0.05, Wilcoxon rank-

sum test). (D) Deletions of ARHGDIA showed lower viability in AKT1 knockout cell lines compared to wild-type ARHGDIA (p = 0.02, Wilcoxon rank-sum test). (E) The Kaplan-

Meier overall survival (OS) analysis of patients in three groups as follows: AKT1 deletion, ARHGDIA deletion, and AKT1 and ARHGDIA deletion (p = 0.0582, log-rank test).
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sensitivity in tissue-specific cell lines, which indicated that drugs in
the SL network may be new targeted therapeutics for specific cancer
types (Figure 7A). To investigate whether drugs could be applied to
specific cancers, the GI50 values for 90 drugs screened in breast
cancer lines were evaluated.25 As expected, breast cancer cell lines
with LAMP1 amplifications were related to paclitaxel sensitivity
compared to WT cell lines (p = 0.02, Wilcoxon rank-sum test; Fig-
ure 7B). Knockout of TUBB3 by CRISPR in cells with LAMP1
amplifications showed worse survival than cells with WT LAMP1
(p = 0.006, Wilcoxon rank-sum test; Figure 7C). These results indi-
cated that breast cancer patients with amplifications of LAMP1may
benefit from paclitaxel chemotherapy.

Database of Genetic Interaction in Cancer

In the present work, we report that CancerGeneticInteractiondb
(CGIdb) is a comprehensive platform for genetic interaction in
cancer. In addition to providing candidate SV and SL interactions
predicted by the present methods, CancerGeneticInteractiondb also
collected a large number of SV and SL interactions predicted by other
studies (Table S1). With a user-friendly interface, the website is
composed of four sections: Search, Browse, Data, and About. On
the Search page, the user can enter genes of interest and search for
SV or SL interactions containing those genes. Furthermore, the
drug response of SV (SL) interactions can be viewed by clicking the
Detail button. In the Browse page, users can search SV and SL inter-
actions by tissue types, and this page also provides drug information.
Users can download and upload data on the Data page. For user
convenience, all SV and SL interactions are grouped by tissues and
data sources. Additional details for CancerGeneticInteractiondb are
provided on the About page (also see Supplemental Materials and
Methods). The website for accessing the database is located at
http://www.medsysbio.org/CGIdb.
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 695
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Figure 7. SL Interactions Suggest New Therapeutic

Strategy

(A) Network of potential anti-cancer therapies. Ellipse

nodes represent genes, and the gene alteration rates in

the specific cancer types are shown below the gene sym-

bols. Capsules represent drugs. The black lines between

capsules and ellipse node depict drug-target relationship.

The edge colors represent the cancer types within which

the synthetic lethal interactions were detected. (B) Breast

cancer cell lines with LAMP1 amplifications had signifi-

cantly lower GI50 of paclitaxel than breast cancer cell lines

with wild-type LAMP1 (p = 0.02, Wilcoxon rank-sum test).

(C) Knockout of TUBB3 by CRISPR in cancer cells with

LAMP1 amplification showed better survival than cells with

wild-type LAMP1 (p = 0.006, Wilcoxon rank-sum test).
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DISCUSSION
The use of genetic data, pharmacological data, and functional screening
datasets to gain valuable insights into themechanism of drug sensitivity
and drug resistance has been considered as the cornerstone of precision
cancer medicine.26 Cancer cells have frequent defects in specific genes
that drive growth andmetastasis, and alterations in different genesmay
induce a genetic interaction effect. Identification of genetic interaction
with cancer-promoting genes represents a compelling approach for the
development of cancer therapies. The present study developed a new
strategy for identifying genetic interactions in cancer cells based on
CNAs, mutations, and expression profiles across 8,580 samples from
32 cancer types from the TCGA dataset, which were further filtered
applying the shRNA, CRISPR, and yeast datasets. The present results
demonstrated that SV interactions induce drug resistance and that
SL interactions mediate drug sensitivity in cancer cells. The results
highlighted thatDVL1 deletion induces resistance toHDAC1 inhibitors
through disturbing the Notch signaling pathway, which was confirmed
by gene expression profiles. Within SL interactions, alterations of part-
ner genes were related to drug sensitivity in cancer cell lines, suggesting
that these genes may be new biomarkers for cancer therapies, thereby
maximizing the clinical effectiveness of drugs. An expected application
of genetic interaction screens is to optimize the therapeutic regimen of
696 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
patients and to make an improvement in overall
survival, which was verified in the clinical prog-
nostic data. Finally, the present study provided a
comprehensive CGIdb database for a convenient
retrieval of genetic interactions in cancer.

It is well known that amplifications and deletions
correspond to the upregulation and downregula-
tion of gene expression, respectively. However,
the functional effect of mutation on drug
response is unclear. Somatic mutations can be
classified as frameshift mutations, missense mu-
tations, and so on. It is common for researchers
to assume that frameshift insertions and dele-
tions (indels) are loss-of-function variants.27

Missense mutations result in a single-nucleotide

base change, which is difficult to use in predicting the effect on protein
stability or PPI.28,29 Investigating the functions of somatic mutation
from structure, protein expression, and so on warrants our future
work.

The different hypotheses of methods and original input data may
result in low concordance of genetic interactions (Figures 2B and
2C). Ye et al.30 collected and compared the SL interactions identified
by five studies. The results show that very little SL interactions are
overlapped among different studies, which provided an indispensable
reason that the genetic interaction relationships found in each work
were only a small part because of the different hypotheses. Thus,
beyond the predictions from our work, we collected results of 16
studies for follow-up research (Table S1).

Numerous studies have focused on identifying genetic interactions by
shRNA or CRISPR technology, which provide large-scale functional
screens in cell lines for genetic interaction detection.13,31–33 CRISPR,
a new technology of genome editing, has been widely applied to
loss-of-function screens for essential genes, which have uncovered
both core and cell-line-specific fitness genes. Large-scale CRISPR
screens have been performed, and they provide new data sources
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for identifying genetic interactions.34–36 In the present study, the
CRISPR screening dataset was added to further filter candidate SV
and SL interactions. However, the shRNA or CRISPR studies were
limited as follows: (1) lack of mutation information of cell lines—
for example, the CCLE collection of 1,000 cell lines contained no
acute myeloid leukemia (AML) cell line with IDH1 mutation, even
though the rate of mutation in the AML patients is up to 10%;37

and (2) the inevitable difference of tumor microenvironment between
in vitro screening conditions and in vivo tumors. The present method
used human primary tumor data to identify potential cancer-specific
SV and SL interactions to complement the limitations of existing cell-
line screening methods.

The distribution of drug response values in cell lines derived from
different tissues was significantly different. Therefore drug sensitivity
in cancer cell lines is tissue specific (Figure S1). By the drug sensitivity
analysis on the tissue-specific cell-line datasets of the large-scale phar-
macogenomic data, most identified SL interactions with significant
drug sensitivity conform with the SL hypothesis and most identified
SV interactions with significant drug resistance conform with the
SV hypothesis (Figure 3). However, the fewer cell-line samples for
specific cancer types limited the statistical power. A new approach
is urgently needed to estimate and remove the viability of drug sensi-
tivity of different cells.

The purpose of the present work was to elucidate the mechanisms of
drug resistance and drug sensitivity to exploit cancer-specific vulner-
abilities and expand the scope of precision oncology. The partner
genes of SL or SV identified in the present work had a close functional
relationship with drug-interacted targets shown in Figures 4A and 4B.
HDAC1, with the highest degree in the SV network (Figure 4A), was
selected as a case study in the present work.HDAC1 is a transcription
inhibitor and plays a key role in the regulation of eukaryotic gene
expression accompanied by decreasing activity of transcription.38

Many studies have shown that HDAC1 may form a co-inhibitory
complex with other chromatin regulatory proteins to regulate impor-
tant biological processes, such as cell cycle and cell differentiation.39

At present, several HDAC inhibitors have been approved by the
FDA for treatment of cancer. In the present results, several partner
genes of HDAC1 induced drug resistance to HDAC1 inhibitors and
participated in the same pathway with HDAC1. For example, DVL1
andHDAC1 participated in the Notch signaling pathway, which relies
on the proteolytic cascade to release the transcriptional activity of the
intracellular domain.40 When HDAC1 is inhibited by drugs to pro-
mote transcriptional inhibition in the Notch signaling pathway,
DVL1 deletion activates the MAPK signaling pathway by the Notch
receptor and further promotes cell proliferation. Thus, interactions
between HDAC1 inhibition and DVL1 deletion may enhance cancer
cell survival. Therefore, DVL1 deletion may induce resistance to
HDAC1 inhibitors in cancer cells by disturbing the Notch signaling
pathway, which was confirmed by the gene expression profile.
NOTCH1 was significantly upregulated in samples with deletions of
both HDAC1 and DVL1 compared to samples with single-gene dele-
tions. Importantly, ovarian cancer patients with deletions of both
HDAC1 and DVL1 had worse survival than patients with deletions
of either HDAC1 or DVL1. Specific mechanisms were conjectured
by bioinformatics statistics, but they should be verified by subsequent
cell and animal experiments.

PARP1, as a well-known drug target, had high degrees in the SL
network. PARP inhibitors are the first clinically approved drugs de-
signed to exploit SL.8 Therefore, it would be meaningful to expand
the application of PARP inhibitors in the clinic. The present analysis
identified the well-known SL interaction between PARP inhibition
and BRCA1mutation. In the present results, alterations of the partner
genes of PARP in the SL network were significantly related to the
sensitivity of PARP inhibitors in cancer cell lines. For example, the
mutation of POLE mediated sensitivity to the PARP inhibitor veli-
parib in lung cancer cell lines, which was previously characterized
by Safiri et al.41 In addition, there were many newly discovered alter-
ations of genes that enhanced cell-line sensitivity to PARP inhibitors,
such as DOCK3, CLASP2, CMTM6, and MAP4. The new discoveries
warrant additional detailed research, and experimental verification
(cell and animal models) is required to unravel the mechanism of
drug sensitivity, which will be the major focus in our future studies.

MATERIALS AND METHODS
Identification of Candidate Genetic Interactions

The present study used mutation, CNA, and expression profiles
derived across 32 cancer types from the TCGA consortium, including
8,580 patient samples. High-frequency somatic mutations were iden-
tified via the MutSig algorithm from whole-exome sequencing data.42

CNAs were determined by Genomic Identification of Significant
Targets in Cancer (GISTIC).43 Similar to Shi et al.,44 the log2 ratio
cutoff values >0.25 were defined as amplification. In contrast, the
log2 ratio cutoff values < �0.25 were defined as deletion. To further
optimize CNAs, Pearson’s correlation test was used to select genes
whose copy number and expression value had a positive correlation
coefficient. The p value was corrected using the Benjamini-Hochberg
(BH) correction for multiple tests, and the results with an FDR < 0.05
were reported in the present study.

Integration of mutation and CNA data allowed generation of alter-
ation profiles for 32 cancer types. The alteration profile columns
represent samples, and the rows represent altered genes (Figure 1B).
To discover gene pairs with significant co-occurrence or mutual
exclusivity, a permutation strategy that controls for alteration
heterogeneity within and across tumor samples was applied.3 Permu-
tated genomic alteration matrices were implemented by the permats-
wap function in the R package vegan (http://vegan.r-forge.r-project.
org/), which maintains the total number of alterations for each
gene across samples as well as the total number of alterations per
sample. In addition, due to the bias in alteration frequencies
among cancer types, perturbations for different cancer samples
were separately performed. The proportion of 10,000 permutations
in which the observed co-occurrence was higher (Pco) or lower
(Pme) than in the real data was taken as an empirical p value (Fig-
ure 1B). To avoid bias of limited number of permutation experiments,
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the hypergeometric test was used to further filter co-occurrence and
mutually exclusive gene pairs. Bonferroni was used to correct the
p value, and FDR < 0.001 was reported as significant. In addition,
we have removed the co-occurring gene pairs from the same region
of CNAs.

shRNA-Based Screening

shRNA data were downloaded from The Project Achilles database,
which provides shRNA depletion scores from pooled genomic library
tests across 216 cancer cell lines. A gene-level composite score
(shRNA score) was obtained by Analytic Technique for Assessment
of RNAi by Similarity (ATARiS) (https://www.broadinstitute.org/
achilles/datasets/all). Higher shRNA scores indicated enhancement
of cell viability. The genetic background of these cell lines was ob-
tained from the Cancer Cell Line Encyclopedia (CCLE; https://
www.broadinstitute.org/ccle/home), including mutation and copy
number variation. Genomic alteration profiles of cell lines were built.
In the genomic alteration profile, the row represented the gene, and
the column represented the cell line. For each pair of genes (G1 and
G2), shRNA scores of G1 knockdown were compared between the
cell lines with and without G2 alterations using one-sided Wilcoxon
rank-sum test (Figure 1C).

CRISPR-Based Screening

High-throughput CRISPR-Cas9 screening data, including 63 cancer
cell lines, were downloaded from the GenomeCRISPR database. To
compare fitness phenotypes of CRISPR-Cas9 screens, all screens
were reanalyzed through the Bayesian Analysis of Gene Essentiality
(BAGEL).45 The Bayesian factor serves as a quantitative measure of
the essentiality of the gene in the screen, in which higher Bayesian fac-
tors indicate more essential genes. Negative Bayesian factors were
used as fitness scores. A lower fitness score represents higher confi-
dence that a given gene knockout causes a decrease in fitness.17

CNA and mutation data of cell lines were obtained from CCLE. In
cell lines with knockout of G1, a one-sided Wilcoxon rank-sum test
was used to test whether the fitness scores were significantly higher
or lower in cell lines with and without alterations of G2 (Figure 1C).

Yeast-Based Comparative Genomic Strategy

A genome-scale genetic interaction map in yeast was obtained from
Costanzo et al.,46 who generated quantitative genetic interaction pro-
files for approximately 75% of all genes in budding yeast. Deshpande
et al.47 developed a comparative genomic algorithm to identify can-
cer-related genetic interactions. The present study used a cutoff of ε
> 0.08 with p < 0.05 (yeast p value) to detect yeast SV interactions
and ε <�0.08 with p < 0.05 to detect yeast SL interactions (ε is a mea-
sure of genetic interaction strength) (Figure 1C). A positive ε repre-
sents an increase in cell fitness, and a negative ε represents a decrease
in cell fitness. InParanoid7 was applied to map yeast genes to human
genes. Only 1:1 orthologs were used in the present study.

Lastly, the co-occurrence and mutual exclusivity gene pairs verified in
at least one type of the aforementioned three datasets were selected as
candidate genetic interactions (Figure 1C).
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The original pharmacological screening data were downloaded from
CCLE,48 Genomics of Drug Sensitivity in Cancer (GDSC),49 Broad
CTRP (https://www.broadinstitute.org/ctrp/), and NCI60.50,51 The
CCLE dataset contained IC50 values of 24 anti-cancer compounds
across 501 cancer cell lines derived from 23 cancer types. The
GDSC data contained IC50 values and the area under the drug inhi-
bition curve (AUC) of 251 drugs detected in 1,012 cell lines from
30 cancer types. The CTRP data contained the AUC of 481 small mol-
ecules used to treat 823 cancer cell lines from 23 cancer types.
The NCI60 data contained the concentration required for cell growth
inhibition by 50% (GI50) of 4,329 anti-cancer compounds across 60
cancer cell lines. The information of drug and targeted genes or
affected genes was collected from Drug Bank,52 ChEMBL,53 CCLE,
and Catalogue of Somatic Mutations in Cancer (COSMIC).54

For a G1 and G2 gene pair, the IC50 (or AUC or GI50) of cell lines car-
rying G2 alterations and cell lines containing WT G2 were compared
using a one-sided Wilcoxon rank-sum test if G1 in the SV pair was
targeted by a drug. Only cancer types with more than 3 cell lines
were included for statistical analyses.

Generation of Genetic Interaction Network and Functional

Analysis

The network of SV related to drug resistance and the network of SL
related to drug sensitivity were constructed. Cytoscape software was
used to visualize the networks (https://cytoscape.org/). PPI data was
downloaded from the Pathway Commons database.55 A hypergeomet-
ric distributionmodel was used to test whether the partner genes in the
SV (SL) network were significantly enriched in biological pathways
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database.56

Prognosis Analysis

Themutation and CNA profiles from TCGAwere analyzed to examine
the prognostic value embedded in the SV and SL networks. The pa-
tients were divided into three groups according to the status of genes
in the SV (SL) interactions as follows: G1 alteration only, G2 alteration
only, and G1 and G2 alteration groups. The overall survival time of the
three patient groups for specific cancer types was tested by using
log-rank test, and the results were represented by Kaplan-Meier plots.

CGIdb Construction

CGIdb is freely available at http://www.medsysbio.org/CGIdb with
no registration or login. CGIdb was implemented by HTML and
Django, which is a high-level Python web framework. The dynamic
backend of CGIdb was realized through the Linux, Apache, MySQL,
and Python (LAMP) architecture. The interface component was de-
signed using the Cascading Styling Sheet (CSS) and JavaScript, which
have been tested in Google Chrome and Firefox browsers.
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