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Abstract: Melt electrospinning is a promising approach to manufacture biocompatible scaffolds for
tissue engineering. In this study, melt electrospinning of poly(ε-caprolactone) onto structured, metallic
collectors resulted in scaffolds with an average pore size of 250–300 µm and an average fibre diameter
of 15 µm. Scaffolds were seeded with ovine osteoblasts in vitro. Cell proliferation and deposition of
mineralised extracellular matrix was assessed using PicoGreen® (Thermo Fisher Scientific, Scoresby,
Australia) and WAKO® HR II (WAKO, Osaka, Japan) calcium assays. Biocompatibility, cell infiltration
and the growth pattern of osteoblasts on scaffolds was investigated using confocal microscopy and
scanning electron microscopy. Osteoblasts proliferated on the scaffolds over an entire 40-day culture
period, with excellent survival rates and deposited mineralized extracellular matrix. In general, the
3D environment of the structured melt electrospun scaffold was favourable for osteoblast cultures.
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1. Introduction

Tissue engineering (TE) unites principles of engineering with biology to develop constructs that
restore, maintain or improve tissue functions [1]. One key area of TE research is the production of
porous materials (scaffolds) to provide three-dimensional (3D) support for cell migration, proliferation
and differentiation [2]. TE scaffolds are made from biocompatible materials to promote cell
adhesion, cell migration as well as cell invasiveness and provide sufficient mechanical strength
and stiffness to allow a certain amount of movement in the damaged tissue [3]. Ideally, the scaffold
fabrication process should allow systematic alteration of scaffold design to ensure a customisable
and individualised scaffold architecture depending on the desired cell or tissue type [4]. Multiple
scaffold fabrication processes exist, each with their own advantages and disadvantages in processing
and biocompatibility [5]. Conventional scaffold fabrication methods including particulate leaching,
gas foaming, solvent casting, phase separation and solution electrospinning are based on chemical
processes and lack sufficient control over pore size, pore geometry and pore distribution to control
cell–scaffold interactions [6]. Above mentioned fabrication methods use organic solvents to dissolve
synthetic polymers resulting in concerns regarding cell toxicity and carcinogenic potential [7].

Recently, additive manufacturing (AM) approaches to fabricate scaffolds allow improved control
over pore size and distribution [8]. AM is a collective term for a number of fabrication processes in TE
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that create 3D scaffolds in a layer-by-layer approach following a computer programmed design [9].
Widely used AM processes in TE include 3D inkjet printing, selected laser sintering, stereolithography
and melt-extrusion based fused deposition modelling (FDM) [10]. FDM allows accurate control over
scaffold architecture and properties, however, the relatively high viscosity of the polymer melt restricts
the ability to be extruded through a small diameter nozzle, where the fibre diameter achievable is
restricted to 100 µm [5]. Significantly lower filament resolutions as low as 0.5–10 µm can be reached in
AM 3D colloidal inkjet printing [10,11]. However, the generation of clinically-relevant biomaterials
from such colloidal inks is difficult from a regulatory perspective [11].

An alternative scaffold fabrication technique in TE that achieves small diameter filaments is
electrospinning [12]. Electrospinning is based on electrohydrodynamic principles relying on an
electrified viscous fluid jet being drawn through the air towards a collector at a different electric
potential [13]. While solution electrospinning dominates the research area, there are an increasing
number of papers on melt electrospinning, where a fibre is solidified by cooling rather than solvent
evaporation [13]. Solution electrospun fibre diameters typically vary between 2 nm and several
micrometres and provide high specific areas for cell attachment [12]. However, the chaotic nature
of fibre deposition in solution electrospinning results in tightly packed non-woven meshes with
pore sizes too small for cell penetration serving rather as substrates than as 3D scaffolds [14,15].
The use of volatile and often toxic solvents is another challenge of solution electrospinning scaffold
production and should be removed before use [7]. To increase cell-invasiveness in electrospinning,
several methods such as retrieving fibres collected onto water (hydrospinning) [16], salt leaching [17]
and electrospinning onto ice crystals [18] have been developed. In addition, structured collectors
have been used to produce open pore scaffolds. Whenever such approaches are employed, however,
the mechanical strength is also greatly diminished. In order to achieve large pore sizes, bimodal
scaffold production techniques combining solution electrospinning with larger scale AM fabrication
methods to increase cell infiltration have recently been investigated [19]. Recently, a combination of
solution electrospinning and melt electrospinning to produce a 3D cell-invasive scaffold has been
described [20].

While melt electrospinning produces sub-micron diameter fibres, it can also result in much larger
sized filaments than solution electrospinning, up to 250 µm [4,21]. A slightly larger, low micron
diameter fibre should allow improved mechanical handling when the pore size is increased. Direct
writing with melt electrospinning has recently shown that scaffolds with porosities as high as 98%
can be readily handled [22]. Fibres can be stacked on top of each other (i.e., electrostatic repulsion
from previously deposited fibres is minimal) to produce true 3D scaffolds [23]. To ensure both cell
infiltration and vascularisation in bone TE, melt electrospun scaffolds need to provide highly ordered
and sufficiently large pores >100 µm [24]. Recent studies have demonstrated the ability to produce TE
scaffolds with a pore size >100 µm to allow vascularisation through collector modifications [17,25].

This paper details melt electrospinning poly-(ε-caprolactone) (PCL) in a static way onto structured
metallic collector substrates to produce open pore morphologies without using direct writing.
Microscale and biocompatible 3D scaffolds with suitable pore sizes and fibre diameters for cell
penetration with osteoblasts as bone forming cells were manufactured. Cell viability, cell morphology
and growth pattern as well as proliferation and extracellular matrix (ECM) deposition of osteoblasts
were investigated using scanning electron microscopy (SEM), confocal laser microscopy, proliferation
and calcium assays in vitro to assess the biocompatibility of the melt electrospun PCL scaffolds and
their suitability for bone TE applications.

2. Results

2.1. Scaffold Fabrication and Characterisation

Melt electrospinning successfully produced homogenous batches of scaffolds with an average
diameter of 6 mm and an average thickness of 3 mm (Figure 1B,D). The average fibre diameter was
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approximately 15 µm (Figure 1A). The fibres were smooth and without defects and the scaffold had
significant pore interconnectivity. The average pore size varied between the concave scaffold underside
contacting the metallic collector substrate during collection process and the convex-shaped top side.
The average pore size on the concave side varied between 250 and 300 µm and matched the collector
mesh architecture (Figure 1D,E). Average pore size on the convex-shaped top side was smaller and
varied between 20 and 80 µm (Figure 1B,C). The performed NaOH treatment did not significantly
affect pore size or fibre diameter, as shown in previous experiments from the Hutmacher group [26].
The scaffolds could be easily handled without breaking or folding, although pressure applied with a
forceps was able to deform the scaffolds (Figure 1D, left side). In general, the scaffolds rebounded to
their original shape, even with significant deformation.
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Figure 1. Melt electrospinning of PCL was used to produce 3D scaffolds. (A) Optical microscopy
image of a representative melt electrospun PCL fibre; (B,C) Due to structured and curved metallic
collector substrates, the scaffold possessed a convex-shaped architecture on the upper side of the
scaffold. The average pore size on the convex side of the scaffold was 20–80 µm; (D,E) On the concave
underside of the scaffold that was orientated towards metal collector substrate, the average pore size
was 250–300 µm and matched the architecture of collector mesh. Scale bars: 15 µm (A); 2 mm (B,D);
and 500 µm (C,E).

2.2. Cell Proliferation and Calcium Deposition

Osteoblasts were introduced onto PCL scaffolds using a static top seeding method onto the
convex-shaped top side of the scaffold, with approximately a third of the seeded cells attaching to
the scaffold after Day 1 (Figure 2A). These osteoblasts proliferated over the full 40-day culture period
in osteogenic differentiation media. After 20 days, the cells reached a plateau-like phase showing a
slower increase in DNA values per scaffold than before. After 40 days, the scaffold was populated by a
significantly higher number of cells than at Day 0 (p < 0.05).

The concentrations of intra- and extracellular calcium deposition (measured in ng/scaffold) from
osteoblasts on PCL scaffolds was determined using a WAKO® HR II calcium assay and is shown in
Figure 2B. Calcium desposition increased over time and at 20 and 40 days of culture in osteogenic
differentiation media, the cells had produced significantly more mineralised ECM than at Day 0
(p < 0.05).
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Figure 2. (A) Proliferation potential of osteoblasts (n = 6) was determined on Days 0 (seeding), 1, 10,
20, 30 and 40. Approximately one-third of seeded cells attached to the scaffold (Day 1). Osteoblasts
proliferated over 40 days on scaffolds and the number of cells after 40 days was significantly higher
than at Day 0 (p < 0.05) as measured in µg DNA per scaffold. A plateau-like phase was reached
after 20 days; (B) Extracellular matrix deposition of osteoblasts was measured with significantly more
calcium deposited at later time points than at seeding (p < 0.05). Intra- and extracellular calcium was
measured in µg/scaffold and showed a linear fashion.

2.3. Cell Morphology, Viability and Growth Pattern

The osteoblast viability, morphology and growth on PCL scaffolds was investigated after 20
and 40 days of culture by confocal laser microscopy using live/dead cell staining (Figure 3C,D) and
actin/nuclei staining (Figure 3A,B) and SEM (Figure 4).
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Figure 3. After 20 (A) and 40 (B) days, Actin/nuclei (Phalloidin/PicoGreen®) staining revealed an
elongated and spindle-shaped morphology for the osteoblasts. The nuclei appear blue while actin
cytoskeleton is visualised red; After 20 days (A,C), cell ingrowth into the scaffolds following the
scaffold fibres could be observed with pores not yet completely bridged; After 20 (C) and 40 (D) days,
live/dead cell staining revealed a cell viability of >90%. Alive cells are stained green while dead cells
are being shown red. Scale bars: 100 µm (A–D).
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Figure 4. SEM of osteoblasts cultured for 40 days in osteogenic differentiation media on melt
electrospun scaffolds. (A) Overview revealed a solid layer of osteoblasts covering the entire scaffold on
both the convex (B) and concave (C) side; (D) Cell detection and calcium deposition on the inside of
the scaffold demonstrating infiltration of cells into the porous scaffold structure; (E,F) High resolution
image of calcium deposits formed by osteoblasts on the cell layer surface. Scale bars: 2 mm (A);
25 µm (B–D); 10 µm (E); and 2 µm (F).
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At both 20 and 40 days of culture, cell viability as assessed via FDA/PI dead-live cell staining
showed >90% living cells (Figure 3C,D).

Actin/nuclei staining revealed an typical elongated, spindle-shaped, osteoblast like morphology
(Figure 3A,B).

After 20 days, cell ingrowth into the scaffold following individual fibres could be observed while
pores were not yet completely filled (Figure 3A,C). However, after 40 days, the scaffold surface was
entirely covered with osteoblasts (Figure 3B,D).

SEM after 40 days of culture in osteogenic differentaition media revealed, similar to confocal
laser microscopy, a spindle-shaped and elongated cell morphology of osteoblasts (Figure 4B,C). The
scaffold was completely covered with a thick layer of osteoblasts (Figure 4A). Cell layer formation
of osteoblasts did not differ between the large-pored concave scaffold side and the convex-shaped
scaffold side with smaller pores (Figure 4B,C). Cell infiltration into and deposition of ECM on the
inside of the scaffold could be observed (Figure 4D) and the evidence is supported by Actin/nuclei
staining at Day 20 (Figure 3A). Osteoblasts deposited mineralised ECM on the scaffolds as visualised
by Figure 4E,F. The sizes of the calcium deposits varied between 0.5 and 15 µm (Figure 4F).

3. Discussion

The suitability of scaffolds for TE applications depends on multiple parameters including
fabrication method, fibre diameter, employed polymer, pore size, porosity, mechanical properties
and pore geometry [27]. Scaffolds in this study were prepared by melt electrospinning a biodegradable
polymer with a history of clinical use onto structured metallic collectors with the aim to provide
optimal cell culture conditions for osteoblasts for bone TE applications. PCL is a linear polyester
with a melting temperature of 60 ˝C, long degradation kinetics and can be readily blended with other
polymers. As a result of this, and its adaptability to different processing technologies, PCL has been
widely used in TE applications [27,28].

The average fibre diameter of fabricated scaffolds in this study was determined to be 15 µm
and fibre structure was observed to be smooth and uniform with a homogenous fibre surface. Melt
electrospun fibre diameters in other studies range from 270 nm to 350 µm, so there is the capacity
to significantly modulate the fibre [21,23,29]. Due to extrudate die swell, fibre diameters in AM
approaches such as FDM are a magnitude larger than melt electrospun fibres with a typical diameter of
100 µm [30]. Fibre diameters in solution electrospinning vary between 2 nm and several micrometres
and are typically in the nanometre range [12,31]. The ideal fibre diameter for TE applications is
controversially discussed. Recently, a number of groups have found superior cell proliferation on
fibres in the low micrometre range compared with nanofibres [15,32,33]. Badami et al. [33] used
electrospinning to produce scaffolds from different polymers with fibre diameters ranging from 0.14 to
2.1 µm. Following scaffold seeding with osteoprogenitor cells, an increased proliferative potential was
observed on microfibres compared to nanofibres while cell adhesion was increased on nanofibres due
to the large surface area [33]. The larger diameters of melt electrospun fibres offer the potential to create
truly 3D structures with increased pore sizes for cell invasiveness, so far unachievable using nanoscale
methods as solution electrospinning [34]. Random fibre deposition in solution electrospinning results
in pore sizes too small for adequate cell penetration, therefore being perceived as 2D structures by
cells [14]. AM approaches such as FDM with large fibre diameters of 100 µm are although initially
perceived as 2D structures by cells, while a 3D effect is only observed after a certain time of cell culture
by pore spanning [10]. Hence, melt electrospinning offers a promising approach to bridge the gap
between nanoscale production methods with insufficient fibre deposition control such as solution
electrospinning and resolution-limited AM approaches like FDM.
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Melt electrospinning allows FDA approved polymers such as PCL to be processed in their pure
form without the use of toxic solvents as in solution electrospinning or FDM [7,26]. Hence, potential
approval times can be reduced and post-production costs to remove cytotoxic remnants are redundant.
A disadvantage of PCL, however, is the poor wettability of the polymer due to its hydrophobicity
resulting in generally poor cell adhesion. To ameliorate surface properties of our scaffolds, chemical
surface modification with sodium hydroxide was applied prior to seeding the scaffolds [27]. Ideal
attachment conditions depend on multiple factors including cell type and surface modification method
to achieve the required hydrophile surface environment [26,35]. Chemical surface modification with
sodium hydroxide is the most common and cheapest method available [26], reducing hydrophobicity
through introduction of hydroxyl- and carboxyl-groups into the mPCL side branches, therefore
increasing fibre surface and ameliorating cell attachment [36]. The cells used in our experiments
showed a satisfying attachment of approximately 34% of initially seeded cells. Other groups using PCL
scaffolds report significantly higher attachment rates than in our experiments [37]. Kim et al. reported
attachment rates of 60%–80% for a bimodal collagen scaffold combining an AM with a nanofibre
fabrication approach to increase cell adhesion [37]. Beside the known higher attachment rates of
scaffolds produced with nanoscale fabrication methods, different surface modification methods for
mPCL have emerged offering promising approaches to increase scaffold surface and cell adhesion.
These include plasma treatment of mPCL scaffolds [38], blending biologically active materials such
as bone morphogenic protein, hydroxyapatite, calcium phosphate or bioactive glass particles with
PCL prior to electrospinning [39,40] and coating of electrospun PCL meshes with proteins such as
laminin or collagen post electrospinning [41]. For future experiments with osteoblasts in bone TE,
particularly coating or blending methods with bone morphogenic protein or hydroxyapatite would
be interesting to ameliorate cell adhesion, proliferation and differentiation of osteoblasts on melt
electrospun mPCL scaffolds. In our study, scaffolds were produced by melt electrospinning a pure
polymer and cultured with typical bone forming cells, osteoblasts. Recently published articles follow
a more complex approach to produce scaffolds for bone TE [42,43]. Paşcu et al. melt electrospun
silk fibroin and nanohydroxyapatite to produce biodegradable and biocompatible scaffolds for bone
TE [42]. Pasuri et al. used electrospun hydroxyapatite fibres embedded in Matrigel and cultured
osteoclasts and macrophages, giving credit to the complex cell–cell interactions between osteoblasts,
osteoclasts and macrophages necessary to promote bone formation [43].

Biocompatibility, cell proliferation, mineralised ECM deposition and cell viability as investigated
with confocal laser microscopy, DNA measurements, calcium measurements and SEM showed high
viability of >90% for osteoblasts on PCL scaffolds, proliferation and deposition of ECM over the entire
cell culture period and an infiltrative growth pattern.

Based on results from confocal microscopy and SEM, osteoblasts were able to interact with the
3 mm thick scaffold as a true 3D structure demonstrated by cell infiltration into as well as growth on
the outer layer of the scaffold. The influence of fibre diameter on cell adhesion and proliferation of
osteoblasts has not yet been investigated in literature. However, Chen et al. described for fibroblasts,
in combination with nanofibres, that as fibre diameter increased, cellular adhesion and proliferation
decreased but remained constant when fibre diameter was altered within the micron range, as in melt
electrospinning [44].

Fibre diameter and deposition in melt electrospinning depend on several parameters that can
potentially be varied throughout the production process for future scaffold development [26].

Instrument-based parameters play a crucial role in melt electrospinning, since, due to the field’s
infancy, most apparatus are custom-made [4]. Instrument-based parameters influence the fibre
diameter [45] and include temperature, applied voltage, flow-rate of the syringe pump, distance
between orifice and collector as well as speed and direction of the collector stage [22,45]. Dasdemir et al.
demonstrated that increase in applied voltage and reduction of orifice-collector distance resulted in
decrease of fibre diameter [46]. Another study by Kim et al. showed that a decrease in temperature
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(due to increased polymer viscosity) as well as an increase of the flow rate resulted in fibre diameter
increase [47].

Material-based parameters are dependent on the utilized polymer and include electric
conductivity [48], molecular weight [49], melting temperature [26] and tacticity [50]. Among the
material-based parameters, molecular weight has the greatest influence and weights of 40,000 to
80,000 g/mol are most suitable [4]. Lower molecular weight results in decreased viscosity of the
molten product and subsequently a decreased fibre diameter [26].

The porosity and pore sizes in electrospun scaffolds are mainly dependent on the fibre
diameter [51]. Porosity of melt electrospun fibres is generally high due to the microscale fibre diameters
and varies between 80% and 90% [27]. A recent study of Farrugia et al. [17] used melt electrospinning
to produce PCL-scaffolds for fibroblast culture in skin TE applications. With an average 7.5 µm fibre
diameter and an average 46 µm pore size, porosity was measured to be 87% in this study [17]. Pore
size and geometry are an important area of investigation within scaffold-based bone TE applications.
Scaffolds utilised in this study possessed a transition in such pore parameters from the lower to
the upper sides. The pore geometry on the lower, concave, side reflected the square shape of the
metallic collector substrate and the average pore size was 250–300 µm. On the upper, convex side, pore
geometry was much smaller due to the more random fibre deposition, being between 20 and 80 µm
due to fibre stacking resulting of charge collection. The smaller pore size on the convex scaffold side
prevented cells from “falling” completely through the scaffold onto the bottom of the well to increase
cell adhesion.

In a previous study, we investigated the influence of pore geometry on bone formation in a
calvarial scull defect model in vivo [52]. In this study, scaffolds were produced from PCL and tricalcium
phosphate with different pore geometries of 0˝/90˝ and 0˝/60˝/120˝ using additive manufacturing.
After insertion of scaffolds into scull defects in rats, computer tomography and histology indicated
higher bone formation in scaffolds with square pore geometry without statistical significance. Another
study by Bidan et al. cultured murine preosteoblastic cells on hydroxyapatite plates with different
geometries in vitro showing increased tissue formation at cross-shaped pore geometries compared to
square- and star-shaped geometries [53]. The differences in pore geometry of our scaffolds with square
pore geometries on the concave and random pore geometry on the convex side did not affect the cell
growth pattern of osteoblasts as indicated by confocal microscopy and SEM. This finding is backed by
a recent study comparing proliferation of murine osteoblasts on melt electrospun PCL scaffolds with
orderly structure and pore geometry to scaffolds with disorderly structure and pore geometry, where
they did not observe any difference in proliferative potential [54].

A further advantage of a scaffold with different pore sizes is the possibility to co-culture
different cell types such as osteoblasts combined with chondrocytes or endothelial cells for TE
applications. Co-culture of osteoblasts and chondrocytes [55] as well as osteoblasts and endothelial
cells [56] has recently been described in literature and offers interesting new approaches in TE. The
growth distribution pattern and ECM deposition of osteoblasts on our scaffolds as investigated was
homogenous and cell-invasive proving no negative aspect of the different pore sizes on each scaffold
side. Multiple studies describe ideal pore size for osteoblast cell culture in vitro to vary between
100 and 400 µm [37,54]. Hence, our melt electrospun PCL scaffolds fulfil the desired requirements for
osteoblast culture as demonstrated above.

4. Materials and Methods

4.1. Scaffold Fabrication and Preparation

Melt electrospun scaffolds were fabricated with PCL (MW) 80,000 g/mol (Sigma Aldrich,
Castle Hill, Australia), onto structured electroconductive collectors as described previously [4,17,57].
Briefly, PCL pellets were placed into a 3 mL Luer lock syringe (B-Braun, Bella Vista, Australia) and
heated to 80 ˝C with the syringe held upright (Figure 5A). A blunt 23G needle attached to the syringe
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was used as a spinneret and placed into a water-circulating system heated to 80 ˝C. The PCL melt
was electrospun using a spinneret-collector distance of 50 mm, a flow rate of 10 µL/h and a voltage
of 20 kV applied to the spinneret. The melt electrospun PCL-fibres were collected onto an array of
20 dome-shaped wire mesh collectors upon a grounded moving plate. Each collector possessed a
similar 250 µm ˆ 250 µm square void template architecture with rubber rings around the base of
each filter to provide a separating air gap to minimise disturbing influences on the jet’s path from the
adjacent collector (Figure 5B,C). The steel mesh of each collector was the highest point on the collector
and was positioned directly under the spinneret for the 20 min duration of fibre collection to produce
a 3D scaffold (Figure 5C,D). Figure 5E,F reveals the heterogeneous structure on the concave of the
scaffold, where the open square shaped 250 µm pores match the architecture of the collector mesh.
After 20 min of fibre collection, an automated x-y-stage was used to move the molten PCL jet to the
next collector.
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Figure 5. (A) Melt Electrospinning apparatus spinning molten PCL onto an array of 20 structured
metallic substrates with raised architecture. X-y-stage moves substrates into path of melt
electrospinning jet. Production parameters: Heating temperature 80 ˝C, flow rate 10 µL/h, applied
voltage between needle and ground plate 20 kV, spinning duration per scaffold 20 min, needle-collector
distance 50 mm; (B) Homogenous and replicable batches of porous PCL scaffolds; (C) Fibre deposition
occurs preferentially onto raised surface of the patterned metallic collector substrate insulated with
a rubber ring; (D) Fibre deposition creates a dome-shaped scaffold with a concave side towards the
collector and a convex shape on the opposite side; (E) SEM image of concave scaffold side retaining
the square-shaped porous pattern of the collector; (F) Average pore size of 250 µm on both concave
and convex scaffold side. Scale bars: 5 mm (C); 1 mm (E); and 200 µm (F). Graphic reproduced from
Brown TD et al. [4]. Materials Science and Engineering C 45 (2014) 698–708 with permission.

The produced scaffolds were weighed, punched and microscopically analysed to ensure a
consistent scaffold structure and mass. To ameliorate surface properties, PCL scaffolds were incubated
with 5 M NaOH for 4 h at 37 ˝C, washed thoroughly with ddH2O and stored in 70% ethanol. Prior
to experiments, scaffolds were incubated with fresh 70% ethanol for 2 h, transferred to 24-well tissue
culture plates (Corning, New York, NY, USA) under a sterile work bench and UV sterilised for 30 min.

4.2. Cell Isolation

Ovine osteoblast explants were obtained from merino sheep (n = 6) (Ethic approval number
0900000099, animal ethics committee, Queensland University of Technology, Brisbane, Australia). Solid
mandibular bone samples were acquired under sterile conditions, minced, washed with phosphate
buffered saline (PBS, Invitrogen, Scoresby, Australia) and vortexed. After incubation with 10 mL
0.25% trypsin/ethyldiaminetetraacetic acid (EDTA, Invitrogen, Scoresby, Australia) for 3 min at
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37 ˝C, 5% CO2 and trypsin inactivation with 10 mL low-glucose Dulbecco’s modified Eagle’s medium
(DMEM, Invitrogen, Scoresby, Australia) containing 10% foetal bovine serum (FBS, Invitrogen, Scoresby,
Australia), samples were washed with PBS once and transferred to 175 cm2 tissue culture flasks
(Corning). Bone samples were topped-up with 15 mL of DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin (PS, Invitrogen, Scoresby, Australia). After 5–7 days, osteoblast outgrowth
could be observed. Cells were expanded to second passage for subsequent experiments.

4.3. Cell Culture

A total of 50,000 osteoblasts were resuspended in 20 µL of DMEM/10%FBS/1%PS, seeded onto
each PCL scaffold on the convex-shaped top side and incubated for 2 h at 37 ˝C, 5%CO2. After 2 h, 1 mL
of basal media was added to each well of the 24-well plate. The following day, to prevent attachment
of the scaffold–cell constructs to the bottom of the tissue culture plate, each scaffold was transferred
to a 15 mL Falcon tube (Corning) using sterile tweezers and underwent osteogenic induction with
2 mL of DMEM/10%FBS/1%PS supplemented with 50 µg/mL L-ascorbic acid-2-phosphate, 10 mM
β-glycerophosphate and 0.1 µM dexamethasone (all Sigma Aldrich). Scaffolds were further cultured
at 37 ˝C, 5%CO2 in osteogenic media for up to 40 days.

4.4. Cell Proliferation

Triplicates of scaffolds seeded with osteoblasts were cultured with osteogenic media in 15 mL
Falcon tubes for 1, 10, 20, 30 or 40 days at 37 ˝C, 5%CO2. At each termination point, scaffolds
were washed twice with PBS, transferred to 1.7 mL Eppendorf® tubes (Eppendorf, Macquarie Park,
Australia), centrifuged at 500 rpm for 2 min at room temperature to remove excess liquid and
stored at ´80 ˝C until analysis. For analysis, scaffolds were digested with 50 µg/mL proteinase K
(Sigma Aldrich) in 1ˆ TE at 50 ˝C for 48 h. DNA content for 100 µL of each sample in triplicate were
measured and quantified using a Quant-iT™ PicoGreen® dsDNA assay kit (Thermo Fisher Scientific,
Scoresby, Australia) according to the protocol supplied by the manufacturer (Invitrogen). An equal
volume of the aqueous Quant-iT™ PicoGreen® working solution was added to each triplicate. After
three minute incubation on a rocking plate, fluorescence was measured at λexcitation = 485 nm and
λemission = 520 nm using a POLARStar OPTIMA plate reader (BMG Labtech, Ortenberg, Germany).

4.5. Calcium Measurement

To analyse the calcium content of the ECM produced by osteoblasts on the PCL scaffolds, a WAKO
HRII Calcium assay (WAKO, Osaka, Japan) was performed according to the manufacturer’s protocol
as described previously [58]. On Days 20 and 40, triplicate scaffolds were washed twice with ddH2O,
centrifuged at 500 rpm for 2 min at room temperature (RT) and stored at ´80 ˝C after removal of
the supernatant. Samples were incubated with 500 µL of 10% v/v acetic acid for 3 h at RT and
subsequently vortexed for 1 min at RT. To prevent evaporation, samples were covered with 200 µL of
mineral oil (Sigma Aldrich), heated to 85 ˝C for 10 min and transferred to ice for 10 min. Following
that step, the samples were centrifuged at 20,000 ˆ G for 15 min. 300 µL of the supernatant were
neutralized with 120 µL of 10% v/v ammonium hydroxide (Sigma Aldrich). 10 µL of the neutralized
mixture were transferred in triplicate to transparent 96-well plates and incubated with 100 µL of
monoethanylamine buffer, pH = 11 (WAKO, Osaka, Japan) for 3 min at 37 ˝C. Consequently, 100 µL of
o-cresolphtalein-complex solution (WAKO, Osaka, Japan) was added to each well and incubated for
5 min at 37 ˝C. Plates were read at λ = 570 nm using a POLARStar OPTIMA plate reader (BMG Labtech,
Ortenberg, Germany). To generate a standard curve, a serial dilution of Mulitchem Calibrator A
(WAKO, Osaka, Japan) in 10% v/v acetic acid was used.
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4.6. Confocal Laser Microscopy

Cell viability and morphology on PCL scaffolds was determined by staining with fluorescein
diacetate (FDA) and propidium iodide (PI) or rhodamine-conjugated phalloidin (Phal) and PicoGreen®

(all Invitrogen) on Days 20 and 40. For FDA/PI staining, scaffolds were washed three times with
phenol red-free media (Invitrogen) and incubated in dark for 15 min at 37 ˝C with an FDA/PI staining
solution containing 2 µg/mL FDA, 10 µg/mL PI in phenol red-free media. As a cell-permeable
esterase substrate, FDA is hydrolysed by viable cells giving green fluorescence. PI acts as a nucleic
acid intercalator and penetrates the cell membrane of dead cells, but not living ones. Red colour was
used to mark dead cells.

For Phal/PicoGreen® staining, samples were washed three times with PBS, fixed with 4%
paraformaldehyde (PFA, Sigma Aldrich) for 20 min at RT and washed two more times with PBS.
Scaffolds were permeabilized with 0.2% Triton® X-100 (Sigma Aldrich) in PBS for 5 min sharp at RT,
washed twice with PBS and incubated with a staining solution consisting of 0.8 U/mL phalloidin, 1 µL
PicoGreen®-Lösung/mL in 2% w/v BSA in PBS in dark for 50 min at RT. The cyclopeptide phalloidin
binds to F-actin filaments of the cytoskeleton and therefore indicates cell morphology (red) while
PicoGreen® binds to dsDNA and therefore visualizes the nucleus (blue).

The stained scaffolds were washed three times with PBS to remove excess staining solution and
visualized with a Leica SP5 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany).

4.7. Scanning Electron Microscopy

On Days 20 and 40, cell scaffold constructs were fixed with 3% v/v glutaraldehyde in 0.1 M
sodium cocodylate buffer solution, pH = 7.3 for 2 h at 4 ˝C. The fixed specimens were dehydrated
through a series of alcohols including two changes with 10 min in each 50%, 70%, 90% and 100% ethanol.
Due to the PCL, samples could not be critical-point dried. Thus, remaining liquid was removed from
the samples by incubating twice for 30 min using hexamethyldisalazane (Sigma Aldrich). Specimens
were gold-coated in a SC 500 Bio-Rad sputter coater (Bio-Rad, Gladesville, Australia) and analyzed
using a FEI Quanta 200 scanning electron microscope (FEI, Hillsboro, OR, USA).

4.8. Statistics

Statistical analysis was carried out using Student’s t-test and p < 0.05 was considered
significant (SPSS).

5. Conclusions

The current study uses melt electrospinning of PCL onto structured metallic collector substrates to
produce batch-to-batch similar scaffolds with an average fibre diameter of 15 µm and an average pore
size of 250–300 µm on the concave side and 20–80 µm on the convex scaffold side. Biocompatibility,
cell infiltration and growth of osteoblasts on PCL scaffolds was investigated using confocal laser
microscopy with live/dead cell and actin/nuclei staining and SEM. Osteoblasts proliferated over
the entire culture period, showed high survival rates and deposited mineralised ECM. Osteoblasts
furthermore interacted with the mPCL scaffold as a true 3D environment as monitored by confocal
microscopy and SEM. In the future, other bone forming cells such as osteoblasts derived from long bone
or mesenchymal progenitor cells should be evaluated on the PCL scaffolds. In addition, understanding
and correlating the in vivo performance of the scaffolds for bone TE applications should be undertaken.
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3D three-dimensional
AM additive manufacturing
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PI propidium iodide
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