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Abstract: Griseofulvin is a poorly water-soluble drug administered orally to treat topical fungal
infections of the skin and hair. However, oral administration leads to poor and unpredictable drug
pharmacokinetics. Additionally, griseofulvin is unstable in the presence of light. A layer-by-layer
(LbL) nanocoating approach was employed to curb these shortcomings by stabilizing emulsions,
lyophilized emulsions, and reconstituted emulsions with a layer each of whey protein, and either
hyaluronic acid, amylopectin, or alginic acid, which captured the drug. The coating materials are
biological, environmentally benign, and plentiful. Photostability studies indicated that the LbL
particles afforded 6 h of protection of the topical application. In vitro absorption studies showed
that griseofulvin concentrated preferentially in the stratum corneum, with virtually no transdermal
delivery. Therefore, LbL-nanocoated emulsions, lyophilized particles, and reconstituted lyophilized
emulsions can produce a viable topical delivery system to treat superficial fungal infections.

Keywords: layer-by-layer; skin; emulsions; whey protein; polysaccharide

1. Introduction

Most research has focused on the formulation and evaluation of traditional emulsions
containing an oil and aqueous phase. The fine oil droplets can be dispersed in the aqueous
phase, known as oil-in-water emulsions (o/w). However, these emulsions are prone to
instabilities such as irreversible coalescences of the dispersed droplets [1]. The possibility
of hydrolysis of the active ingredients and oxidation of the oil phase in these emulsions
may also be of concern.

Previous studies [2,3] reported that the charge of the droplet had shown a significant
role in the delivery of the active ingredients into or through the skin. Skin permeation was
also influenced by the emulsifier ratio and, for ethoxylate polymers, by the hydrophilic–
lipophilic balance value (HLB) [4,5]. Additionally, the hydrophilic chain length of non-ionic
surfactants can contribute to the dermal and transdermal delivery of active ingredients
from emulsions [6–8]. Emulsions can also be stabilized with solid particles, resulting in
Pickering emulsions, showing increased dermal and transdermal delivery compared to
surfactant-stabilized emulsions [2,9].

Recently, renewably sourced biopolymers have garnered significant investigation into
their ability to stabilize emulsions. These polymers have the advantage of being hypoal-
lergenic, biocompatible, and biodegradable [10–13]. By evaporating the aqueous phase
from mainly o/w emulsions using spray-drying or freeze-drying, dry emulsions could be
produced from biopolymer dispersions [14]. Dried emulsions increased the photostability
of drugs and increased the bioavailability of poorly soluble active ingredients [15–18].
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Using the LbL technique, transdermal emulsions can be produced by including whey
protein on its own or in combination with κ-carrageenan or chitosan as an emulsifier [19,20].
LbL is the process by which successive coating of a substrate takes place with polyelec-
trolytes of opposite charge [21–23]. Whey proteins are derived from milk during the
cheese-making process [11] and comprise two main ingredients, namely α-lactalbumin
and β-lactoglobulin [24,25]. Whey proteins are marketed as food supplements, although
their claim of health improvement is disputed [26]. Heating the whey proteins above 80 ◦C
denatures the proteins, leading to a very viscous aqueous dispersion once dissolved. The
high viscosity of the dispersion improves the stability of the resultant emulsions and may
find higher-value utilization, such as in drug delivery systems [13,24].

It has been reported [27] that hyaluronic acid, a naturally occurring polymer composed
of unbranched repeating units of glucuronic acid and N-acetyl-glucosamine, increased the
diffusion and epidermal skin localization and retention [28]. Hyaluronic acid also consists
of penetration-enhancing properties that lead to relatively high concentrations of active
ingredients being carried through the epidermis into the dermis rapidly [29].

Griseofulvin, an antifungal drug, was chosen as the model active ingredient. Griseo-
fulvin shows poor and erratic oral bioavailability [30]. Griseofulvin is mainly administered
orally and eventually reaches the skin and hair to treat topical fungal infections [31]. How-
ever, topical administration of griseofulvin ethosomes [32] enhanced the skin delivery
of griseofulvin to the lipophilic stratum corneum layer. This finding implies that oral
administration of the drug is not optimal.

In this study, we report the (i) successful employment of LbL to produce biopolymer-
nanocoated emulsions and dry emulsions as delivery vehicles of griseofulvin; (ii) the
release of griseofulvin from the formulations and (iii) the in vitro (trans-)dermal absorption
of griseofulvin from these formulations in excised human skin. The findings show that a
topical LbL-nanocoated delivery system could be a feasible drug administration route.

2. Materials and Methods
2.1. Materials

Davisco Foods International (Le Sueur, MN, USA) and Cremer (Hamburg, Germany)
kindly donated whey protein isolates BiPro® and Miglyol 812 N®, respectively. The
whey protein comprised at least 97% of dry basis protein, mainly β-lactoglobulin and α-
lactalbumin protein. Miglyol 812 N® was kindly donated by Cremer (Hamburg, Germany).
Hyaluronic acid sodium (from Streptococcus equi), maize amylopectin, alginic acid sodium,
and griseofulvin (from Penicillium griseofulvin—97.0–102.0%) were purchased from Sigma-
Aldrich. KCl and citric acid anhydrous were also purchased from Sigma-Aldrich. NaH2PO4
and Na2HPO4 anhydrous, 1 N HCl, 1 N NaOH, and MeOH were purchased from Sigma-
Aldrich (Kempton Park, South Africa). Acetonitrile, LiChrosolv®, was acquired from Merck
(Kempton Park, South Africa).

2.2. Aqueous and Oil Phase Preparation

A suspension containing 2% (w/w) griseofulvin was freshly prepared by dispersal
in medium-chain triglycerides, Miglyol 812 N® by sonication (UP200St ultrasonic bath,
Hielscher Ultrasonics, Teltow, Germany), preceding emulsification in water. Whey protein,
4% (w/w), was hydrated in citrate-phosphate buffer pH 5.0 for ~60 min. Hyaluronic acid,
0.4% (w/w), alginic acid, 0.4% (w/w), and amylopectin, 2% (w/w), were transferred to
citrate-phosphate buffer pH 5.0 until completely dissolved. These concentrations were
determined as the maximum levels in a pilot dissolution study.

2.3. Emulsion and Dry Emulsion Preparation

The emulsion compositions are shown in Table 1 and the composition of the dry
emulsions in Table 2.
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Table 1. Composition of secondary emulsions. Whey protein formed the first layer in all cases
followed by the polysaccharide. Compositions are provided as % (w/w).

Ingredient Hyaluronic Acid Amylopectin Alginic Acid

Griseofulvin 0.3 0.3 0.3
Miglyol 812 N® 14.7 14.7 14.7
Whey protein 2.0 2.0 2.0

Hyaluronic acid 0.2 - -
Amylopectin - 1.0 -
Alginic acid - - 0.2

Water 82.8 82.0 82.8

Table 2. Composition of dry emulsions as % (w/w). Whey protein formed the first layer in all cases
followed by the polysaccharide.

Ingredient Hyaluronic Acid Amylopectin Alginic Acid

Griseofulvin 1.58 1.58 1.58
Miglyol 812 N® 86.20 81.75 86.20
Whey protein 11.11 11.11 11.11

Hyaluronic acid 1.11 - -
Amylopectin - 5.56 -
Alginic acid - - 1.11

The emulsions were prepared in two steps at 25 ◦C. Griseofulvin was solubilized in
Miglyol 812 N® and then added to the pH 5 buffered water phase comprising 2% (w/w)
weigh protein and sonicated with a UP200Ht handheld ultrasonic homogenizer (Hieschler
Ultrasonics GmbH, Teltow, Germany) for 1 min to produce the primary emulsion at a 30%
(w/w) o/w emulsion [19,20].

The secondary emulsion was prepared such that the concentrations of the formulation
ingredients indicated in Tables 1 and 2 were reached. Briefly, the primary emulsion was
sonicated in a pH 5 buffered solution containing only 1 of the indicated polysaccharides.
The sonication procedure was the same as for the primary emulsions [19,20].

The dried emulsions were prepared by lyophilization. The emulsions were refrigerated
for 3 h to reach 4 ◦C. Subsequently, the emulsions were stored for 12 h at −80 ◦C before
lyophilization. Lyophilization was conducted in a VirTis freeze drier (SP Scientific, Gardiner,
NY, USA) for 24 h, as described in a published method [33]. The drying chamber was set at
25 ◦C and the cooling chamber at −50 ◦C. A vacuum of 10−2 mbar was employed [20,33].

Redispersion of the dried emulsions was conducted in 2 mL deionized water by
shaking the appropriate quantity of the lyophilized powder and leaving it for 30 min to
equilibrate [20].

2.4. Quartz Crystal Microbalance Studies

A QCM200 quartz crystal microbalance equipped with a 5 MHz crystal resonator
(Stanford Research Systems, Sunnyvale, CA, USA) was employed for all QCM studies.
Cr/Au quartz crystals (Standford Research Systems) were employed, which produced
a resonating frequency of ~5 MHz when inserted into the crystal resonator. All studies
were conducted at an ambient temperature of 25 ± 1 ◦C. The coating solutions were also
maintained at 25 ◦C. The cumulative mass adsorption was calculated with the Sauerbrey
equation, Equation (1) [34], and expressed as µg/cm2.

∆ f = −
2 f 2

0
A√ρqµq

∆m (1)

where ∆f is the change in frequency due to layer sorption; f 0 is the reference frequency
of the precisely cut quartz crystal wafers, 5 MHz, in the crystal resonator; ∆m is the
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change in sorbed mass of the thin film; A is the effective exposed area of the crystal face,
~0.4 cm2; the density of quartz, ρq, is ~2.65 g/cm3; and the shear modulus of the quartz
crystal, µq, is ~2.95 g/cm/s2. For our QCM system, Equation (1) reduces to the expression
∆f = 56.6 Hz/µg/cm2.

The thickness of the sorbed layer is estimated from the mass adsorption by knowing the
density of the polysaccharides and whey protein, which ranged between 1 and 1.3 g/cm3.
It should be noted that the thickness could be a function of a ”fuzzy” layer, not a perfectly
flat one. Equation (2) is used to estimate the layer thickness:

Tf =
∆m
ρ f

(2)

Tf is the film thickness in cm, ∆m is the sorbed mass in µg/cm2, and ρf is the density
of the film material in g/cm3.

The QCM impedance analysis method was applied to monitor the sorption interaction
between griseofulvin and the polymers and the polymer–polymer interactions. QCM
showed the efficiency of the LbL self-assembly technique by measuring the frequency–time
profile. The griseofulvin was dissolved in methanol and transferred to a quartz crystal
wafer and then dried to constant weight by evaporation. Parasitic capacitance [35], a
phantom frequency resonance attributed to dipping in and removal from different coating
solutions, was canceled for each coating step to ensure accurate frequency–time profiles.

Whey protein was adsorbed to the surface of a griseofulvin-coated quartz crystal
electrode first and the frequency–time profile was measured. Then, whey protein was
coated onto the griseofulvin layer, again followed by measuring the frequency–time profile.
Lastly, a layer of the selected polysaccharide was coated onto the whey protein layer. Thus,
a single bilayer [36] of whey protein/polysaccharide was coated for all LbL-nanocoated
formulations [21]. These coated emulsions were lyophilized to yield dried emulsions.
Redispersion of the lyophilized emulsions was investigated to establish the efficiency of
biopolymer stabilization.

2.5. pH Measurement

Change in pH (Metrohm 914 pH/conductometer, Sandton, South Africa) of the fresh
and redispersed emulsions was recorded on days 0, 1, and 7.

2.6. Zeta Potential Measurements

The zeta potential was determined using a Malvern Zetasizer Nano ZS◦2000 (Malvern
Instruments, Malvern, UK). Redispersed emulsions were diluted 1:3000 (v/v) with citrate-
phosphate buffer at pH 5.0. At least 13 readings were taken per sample and were performed
in triplicate for each of the formulations on days 0, 1, and 7 to determine the zeta potential.

2.7. Sample Visualization

Secondary emulsions, lyophilized emulsions, and redispersed emulsions were visual-
ized by light microscopy (Motic, Hong Kong) on the day of preparation. The microscope
was equipped with a Moticam 3 camera and Motic Images Plus 2.0 software (Motic, Hong
Kong). The samples were colored with a water-based dye to ensure proper contrast between
the aqueous and oil phase.

2.8. Particle Size Analysis

Light scattering was used to determine particle size and distribution at days 0 and
7 via a Malvern Mastersizer 2000, equipped with a wet cell Hydro 2000 SM dispersion
unit (Malvern Instruments, Malvern, UK). The lyophilized emulsions were diluted with
deionized water to produce light scattering obscuration values of 10–20%. An average
value was determined by diluting 2 fresh samples per formulation and taking two readings
per sample.
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2.9. Encapsulation Efficiency

Samples of each of the emulsions and redispersed lyophilized emulsions in pH 5.0
buffer were centrifuged for 15 min at 10,000 rpm to separate the supernatant from the
emulsion particles. The supernatant was filtered using a syringe filter with a pore size
of 0.2 µm. An equal aliquot of the filtered supernatant of each formulation was then
analyzed by HPLC-UV at 236 nm (Agilent® 1100 model series, Agilent Technologies, Palo
Alto, CA, USA) to determine the extractable amount of griseofulvin in each formulation.
The following equation, Equation (3), was used to calculate the percentage encapsulation
efficiency:

%EE = 100·T − E
T

(3)

where %EE is the percentage encapsulation efficiency as % (w/w), T is the total amount of
griseofulvin, and E is the amount of the extracted active ingredient from the supernatant of
centrifuged samples. The HPLC method is described in Section 2.16.

2.10. Release Profiles of Griseofulvin from the Formulations

The drug release profiles of all 9 formulations were tested in total, i.e., redispersed,
emulsions, lyophilized emulsion powders, and emulsions for each of the polysaccharides
i.e., hyaluronic acid, amylopectin, and alginic acid. The release profile of the formulations
was tested, utilizing cellulose nitrate membranes (0.2 µm pore size, Whatman, Dassel,
Germany). The nitrocellulose membranes were chosen since they provided a suitable
method to evaluate the release profile of griseofulvin from each formulation [37,38]. Franz-
type diffusion cells [39] were fitted with the membrane to expose a diffusion area of 1.13 cm2.
The diffusion cells were transferred to a heated water bath maintained at 37 ± 1 ◦C for
24 h. The acceptor phase consisted of a degassed phosphate buffer with 10% MeOH at
pH 7.4 to increase the solubility of griseofulvin in the acceptor phase. Preceding the study,
the nitrocellulose membranes were soaked overnight in the acceptor phase to equilibrate
the membranes. The donor compartment was filled with 1 mL of emulsion. Lyophilized
emulsions were weighed to contain equivalent amounts of 180 mg griseofulvin, chosen due
to the solubility of griseofulvin at pH 5.0, such that the saturation concentration was far
below the saturation concentration so as to maintain sink conditions [40]. These powders
were placed directly on the membranes and lightly compressed to ensure contact with
the membranes. The weighed amounts of the dry emulsions were redispersed in 1 mL
of pure citrate-phosphate buffer pH 5.0. Samples were withdrawn at 0.5, 1, 1.5, 2, 3, 4, 6,
and 8 h from the acceptor compartment and then refilled with 2 mL of preheated acceptor
phase. The acceptor phase was stirred with a magnetic stirrer at 750 rpm. At each time
point, the membrane integrity was tested via electric resistance measurements as described
in Section 2.14. The drug release profile was thus determined over 8 h. Analysis was
performed with HPLC and is described in Section 2.16.

2.11. Photostability

A short-term photostability study was conducted. Samples of the formulated emul-
sions, lyophilized emulsions, solution of griseofulvin in methanol, and lyophilized grise-
ofulvin powder were placed in open containers at approximately 30 cm from the light
source, employing a Q-Sun XE-1 test chamber (Avatar Solutions, Centurion, South Africa)
equipped with a daylight B filter to irradiate samples between 290 and 320 nm, 25 ± 1 ◦C.
The photostability testing was conducted according to the ICH Q1B guideline option 1,
which provides for significant irradiation below 320 nm. Option 1 is a harsher UV exposure
method than option 2 of the guideline [41]. Each sample was analyzed by HPLC at the
beginning of the experiment, t0, to determine the amount of griseofulvin present in each
sample. Samples were subsequently taken at 1, 3, and 6 h and analyzed by HPLC to
determine the amount of intact griseofulvin, which was expressed as a percentage of the
original quantity. Photostability determination studies were conducted in triplicate. The
HPLC method is described in Section 2.16.
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2.12. Oil Leakage

The oil leakage from the lyophilized emulsions was determined by transferring a
weighed amount of each of the formulations onto filter paper, covering an area of 1.13 cm2.
A microscope plate was placed carefully on top of the lyophilized formulations. The
distance from the edge of the emulsion particle to the edge of the location of the outer edge
of oil outside the particle was measured in triplicate [20].

2.13. Human Skin Preparation for In Vitro Studies

The Ethics Committee of the North-West University, Potchefstroom, South Africa
(Ethics number: NWU-00114-11-A5, 2018; an example of the informed consent form was
submitted) approved the use of white female abdominal skin for in vitro dermal and
transdermal absorption studies. The skin was obtained from consenting donors that
underwent abdominoplasty surgery. The skin was received frozen and thawed at room
temperature before preparation. An electric dermatome (Zimmer Inc., Warsaw, IN, USA)
was utilized to remove split-thickness skin of 400 µm, which included the stratum corneum,
viable epidermis, and the upper dermis. The dermatomed skin was refrozen at −20 ◦C
until use after transferring it to filter paper with the stratum corneum facing upwards and
then covered in aluminum foil.

All skin sections were used within six months after preparation, as is the commonly
experimentally proven practice for permeation studies. The skin may be stored for up
to 1 year at −20 ◦C to conduct permeation studies [42–44]. The dermatomed skin was
thawed at room temperature immediately before use and cut into adequate-sized circular
pieces to cover the 1.13 cm2 area of the diffusion cells that separated the donor and acceptor
compartment.

2.14. In Vitro Human Skin Absorption Study

The human skin tissue of 3 different donors was utilized to complete the in vitro
dermal and transdermal studies of all nine formulations, with 6 diffusion cells per skin
donor. Thus, the average of 18 experiments is presented as the absorption of a particu-
lar formulation [19,20,45]. The circularly dermatomed skin was placed on the acceptor
compartment of the Franz-type diffusion cells. The electric resistance of the skin was
determined by using a Tinsley LCR Databridge Model 6401 (Tinsley Precision Instruments,
Croydon, UK) to ascertain the skin integrity [45]. Both the donor and the acceptor phase
were filled with 0.9% KCl solution. The cells were then placed in a heated water bath at
37 ± 1 ◦C and allowed to equilibrate for 30 min. The reading was determined at 1 kHz with
a maximum voltage of 300 mV root-mean-square average in the parallel equivalent circuit
mode, using an alternating current [46]. Only skin samples with an electric resistance
higher than 10 kΩ were considered suitable for the studies [47–49]. The compartments of
the Franz-type diffusion cells were emptied, and the acceptor compartments were filled
with 2 mL of pH 7.4 phosphate buffer containing 10% methanol for increased solubility
of griseofulvin, while the donor compartments were filled with either 1 mL of emulsion,
equivalent amounts of dry emulsion, 180 mg, or equivalent amounts of the dry emulsion
were redispersed in 1 mL of pure citrate-phosphate buffer pH 5.0. The amount of drug
ensured that saturation could never be achieved in the medium [40]. The acceptor phase
was stirred magnetically at 750 rpm. Next, 0.2 mL acceptor phase was withdrawn after
24 h and analyzed by HPLC. The temperature of the heated water bath was maintained at
37 ± 1 ◦C for the duration of the study.

2.15. In Vitro Skin Absorption Sample Preparation for Analysis by HPLC

The skin samples were removed from the Franz cells after completion of the 24 h study
and pinned onto filter paper with the stratum corneum facing upwards. The formulation
was gently removed from the surface of the skin sample by dabbing the skin surface with a
paper towel. Then, 3 M Scotch® Magic™ tape was used to remove the stratum corneum
from the skin samples. The first strip was discarded and was followed by the collection
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of fifteen strips, placed in 5 mL of methanol per skin sample. The remainder of the skin
sample was cut into small pieces and placed in methanol. The samples in the methanol
were stored at room temperature for at least 12 h to extract the griseofulvin in the samples.
These samples were then mixed and filtered through hydrophilic PVDF syringe filters with
a pore size of 0.45 µm (Agela Technologies Inc., Wilmington, DE, USA) and analyzed by
HPLC.

2.16. HPLC-UV Method

An in-house method was devised. An Agilent® 1100 Series HPLC system (Agilent
Technologies, Palo Alto, CA, USA) was used, equipped with a 1311A quaternary pump,
G1313A autosampler, and a diode array detector, set at 236 nm. A reversed-phase C18-2 col-
umn (150 × 4.6 mm) with 5 µm particle size (Venusil XBP Agela Technologies, Wilmington,
DE, USA) was employed. The mobile phase consisted of degassed 50% acetonitrile and 50%
Milli-Q® water. The injection volume was set at 25 µL with a flow rate of 1 mL/min at a
run time of ~10 min. All the analyses were performed at 25 ± 1 ◦C ambient and instrument
temperature. The method was developed according to the ICH Q2B guideline for the
validation of analytical procedures [50].

2.17. Statistical Calculations

Statistica 14 (TIBCO Software Inc, Palo Alto, CA, USA) was used for all statistical
calculations. A multiple distributions fit analysis of data was executed. The data were
evaluated for normal and non-normal distribution according to Kolmogorov–Smirnov
(K-S) [51] and Anderson–Darling (A-D) tests [52]. In the text, only K-S p-values are shown.
The supporting information also shows the A-D p-values. Studentized 2-tail t-tests were
used if only 2 data points were evaluated for differences.

3. Results
3.1. Quartz Crystal Microbalance

As an example of the successive sorption of whey protein and polysaccharide, only a
whey protein–amylopectin example is shown in Figure 1. Three bilayers were coated onto
the griseofulvin layer.
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Figure 1. The black curve shows the decrease in frequency as the different polymers are sorbed. The
red curve indicates the increase in thickness of the total amount of sorbed polymers. The number
1 represents the excess sorption when the crystal is dipped into a polymer solution. After dipping,
the crystal is washed to remove the excess, and at 2, the remaining layer thickness can be found.
Conversely, the frequency shows a proportional but negative trend.

The sorption of the polymer onto and from the previously absorbed layer reached a
maximum and minimum within a short period. The excess polymer was washed off easily
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and the remaining layer stabilized, as seen at 2. Not shown in the curve are the abrupt
fluctuations in the frequency–time profiles of the two curves as the crystal was lifted out of
the solution and placed back in. An example of these fluctuations is shown in Figure S1 of
the Supplementary Materials.

The example above shows that significant amounts of the polymers could be adsorbed
successively. Three bilayers of whey protein and amylopectin could produce a coating of
~225 nm. The trendlines are logarithmic and illustrate that the bonding surface of the crystal
and preceding layers is gradually decreasing. However, in free-standing objects, the surface
increases concentrically and the coating thickness will, therefore, increase exponentially
rather than diminish as for the QCM crystal. The coating thickness for all the single bilayers
comprising whey of protein/polysaccharide that were utilized in emulsion formulations
produced a film thickness of ~20–30 nm as calculated by Equation (2).

3.2. Particle Size Analysis

Table 3 summarizes the particle size measurements of the emulsions and lyophilized
emulsions, stabilized with the polysaccharides. The particle size measurements are pre-
sented as volume-weighted means (D[4,3]) and surface-weighted means (D[3,2]). It can be
seen in Table 3 that the lyophilized emulsions yielded larger particle sizes in comparison to
the emulsions, which indicated successful coating. It can be seen that all of the emulsions
had D[4,3] sizes ≤ 7 µm on day 0. Furthermore, only the alginic acid-stabilized emulsion
showed a significant increase in droplet size (from 7 µm on day 0 to 11 µm on day 7). The
lyophilized emulsions indicated D[4,3] of 35–63 µm, as shown in Table 3. It is seen that
the hyaluronic acid lyophilized emulsions almost double in size over the 7 days (35 µm on
day 0 compared to 66 µm on day 7). On days 0, 1, and 7, microscopy images were taken
of the emulsions, redispersed emulsions, and lyophilized emulsion powder. The images
represented in Figure 1 are the images taken on day 7. The emulsions and the redispersed
emulsions were diluted with buffer to improve the visibility of the droplets. Small droplets
were also present in the redispersed lyophilized emulsions.

Table 3. Particle sizing of the griseofulvin formulations.

Day 0 Day 7
Formulation Polysaccharide D[4,3] (µm) D[3,2] (µm) Span D[4,3] (µm) D[3,2] (µm) Span

Emulsions
Hyaluronic acid 5.18 ± 1.1 2.86 ± 0.1 1.418 ± 0.01 6.801 ± 0.3 3.282 ± 0.04 1.703 ± 0.05

Amylopectin 6.48 ± 0.6 2.63 ± 0.01 1.962 ± 0.04 8.924 ± 0.4 3.232 ± 0.01 2.400 ± 0.07
Alginic acid 6.98 ± 0.7 3.59 ± 0.02 1.515 ± 0.02 11.13 ± 1.0 3.830 ± 0.01 1.962 ± 0.02

Redispersed
lyophilized
emulsions

Hyaluronic acid 34.9 ± 14.2 3.12 ± 0.3 11.59 ± 0.7 66.36 ± 1.3 4.818 ± 0.07 3.324 ± 0.07
Amylopectin 63.0 ± 15.8 4.89 ± 0.7 6.616 ± 1.1 71.99 ± 2.5 6.166 ± 0.1 3.294 ± 0.2
Alginic acid 50.8 ± 3.8 3.30 ± 0.1 15.12 ± 3.4 54.86 ± 2.7 3.412 ± 0.1 7.974 ± 0.5

3.3. Sample Visualization

Figure 2 shows the light microscopy images that were produced from the griseofulvin
formulations.

Figure 2A–C show the secondary coarse emulsions that were formed by sonication.
The alginic acid formulations seemingly produced fewer droplets, which points again to
the poor oil encapsulation of alginic acid. Hyaluronic acid and amylopectin produced
many more droplets, and these seemed to form clusters of individual droplets, although
they did not appear to have coalesced.

Figure 2D–F show that the lyophilized emulsions could be redispersed to form the
individual oil droplets of the formulations.

Figure 2G,H show that the dried particles made contact, but the dark LbL nanocoating
boundaries around each particle were still present and intact. This explains why individual
droplets formed during the redispersion of these particles.
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Figure 2. Light microscopy images of emulsions stabilized by (A) hyaluronic acid, (B) amylopectin,
and (C) alginic acid on day 7. Redispersed emulsions stabilized by (D) hyaluronic acid, (E) amy-
lopectin, and (F) alginic acid. Lyophilized emulsion powders stabilized by (G) hyaluronic acid,
(H) amylopectin, and (I) alginic acid. The scale bar in each image represents 100 µm.

3.4. Stability of Griseofulvin in the Formulations

Table 4 summarizes the stability (recovery of intact drug) of griseofulvin in the formu-
lations and the pH measurements of the emulsions over the 7-day test period. In Table 4,
the stability of griseofulvin of the preparation is indicated as a percentage recovery after
day 7 compared to the availability of griseofulvin in the formulations on day 0—the day of
formulation preparation. All the formulations indicated that the stability was higher than
91%. The lyophilized hyaluronic acid emulsions had the lowest stability, with 92% recovery,
and the conventional hyaluronic acid emulsions had the highest stability, with virtually no
deterioration over 7 days. Furthermore, it was seen that the griseofulvin powder suspended
in the oil phase and dissolved in methanol had significantly lower stability values. The pH
of the emulsions had no significant change over the 7 days.

Table 4. Stability (%recovery) of griseofulvin and pH measurements of emulsions and lyophilized
emulsions ± standard deviation.

%Recovery pH
Formulation Polysaccharide Day 7 Day 0 Day 7

Emulsions
Hyaluronic acid 100.6 ± 3.2 5.1 4.9

Amylopectin 98.5 ± 1.8 5.1 4.9
Alginic acid 98.7 ± 1.7 5.1 4.9

Lyophilized
powder

Hyaluronic acid 91.8 ± 0.8
Amylopectin 94.0 ± 0.8
Alginic acid 98.0 ± 0.8

Oil suspension 66.4 ± 2.2

Methanol
solution 67.9 ± 0.5
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3.5. Zeta Potential

Table 5 indicates the changes in zeta potential over the 7 days. An increase in zeta
potential could be observed from day 0 to 7 for all the formulations except the alginic
acid lyophilized emulsion, which showed a slight decrease. No significant changes were
observed for the formulations, except for amylopectin emulsions, with an absolute increase
of ~10 mV when tested on day 7.

Table 5. Zeta potential measurements of emulsions and redispersed lyophilized emulsions and the
oil leakage from lyophilized emulsion powders ± S.D.

Zeta Potential (mV)
Formulation Polysaccharide Day 0 Day 7

Emulsions
Hyaluronic acid −59.9 ± 1.5 −49.3 ± 0.1

Amylopectin −61.0 ± 0.8 −49.0 ± 2.1
Alginic acid −54.7 ± 2.4 −50.6 ± 0.4

Redispersed
lyophilized emulsion

Hyaluronic acid −54.1 ± 1.7 −52.7 ± 2.8
Amylopectin −55.1 ± 1.5 −52.3 ± 0.8
Alginic acid −51.8 ± 0.5 −53.9 ± 0.7

The redispersed emulsions underwent a smaller change in zeta potential over 7 days.
It can be speculated that the removal of water from the emulsions to form the powders
could result in accelerated relaxation and interdiffusion of the surface bilayer.

3.6. Oil Leakage and Encapsulation Efficiency

Table 6 indicates the encapsulation efficiency of emulsions and lyophilized emulsion
powders and the oil leakage from the lyophilized emulsion powders on days 1 and 7.

Table 6. Encapsulation efficiency (%) of emulsions and lyophilized emulsion powders and oil leakage
from lyophilized emulsions powders on day 1 and day 7 ± standard deviation.

Encapsulation Efficiency
(%EE) Oil Leakage (mm)

Formulation Polysaccharide % Day 1 Day 7

Emulsion
Hyaluronic acid 97.8 ± 0.5

Amylopectin 94.7 ± 0.2
Alginic acid 81.0 ± 1.6

Lyophilized
emulsion
powder

Hyaluronic acid 96.3 ± 0.3 37.3 ± 1.9 42.3 ± 2.1
Amylopectin 96.0 ± 0.5 12.0 ± 0.8 36.7 ± 1.7
Alginic acid 94.3 ± 0.5 21.7 ± 1.7 68.7 ± 1.2

The encapsulation efficiency data indicate high encapsulation efficiency for all the
formulations, exceeding 90%, except for the alginic acid stabilized emulsion, with an
encapsulation efficiency of ~81%. The oil leakage from the lyophilized emulsion powders
is presented as the distance from the lyophilized formulation powder to the oil stain on the
paper. It was observed that the stabilized hyaluronic acid had the highest initial oil leakage
of 37.3 ± 1.9 mm on day 1. However, after 7 days, the lyophilized emulsion powders
stabilized with the use of alginic acid had the highest oil leakage of 68.7 ± 1.2 mm. The
lyophilized emulsion powders stabilized with the use of amylopectin had the lowest oil
leakage after 7 days, namely 36.7 ± 1.7 mm.

3.7. Photostability

In Figure 3, the photostability of griseofulvin is indicated as a percentage recovered
at 1, 3, and 6 h compared to t0. The hyaluronic acid-stabilized lyophilized emulsion is
shown to have the highest photostability of 99.7 ± 2.3 % and the pure griseofulvin powder
had the lowest photostability of 57 ± 1.5%. After comparison of the 6 h data points of
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the lyophilized hyaluronic acid and pure griseofulvin with a two-tailed Student t-test,
the difference is significant at p = 1.13 × 10−5. It can further be noted that the alginic
acid-lyophilized emulsion had the lowest photostability of the prepared emulsions at
71.7 ± 3.2%.
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3.8. Release of Griseofulvin from the Formulations

The release pattern of all formulations followed a non-normal data distribution. The
analyses are provided in Figure S2 (Supplementary Materials). The release profiles were
evaluated by Kolmogorov–Smirnov tests (K-S tests) and confirmed with Anderson–Darling
tests to first determine the type of data distribution and secondly to overlay these distribu-
tions and determine if any significant differences were present between curves.

In Figure 4A, the release profiles from hyaluronic acid-stabilized formulations are
shown. The redispersed emulsion fitted a Johnson distribution (K-S p > 0.999), lyophilized
powders a Gaussian mixture distribution (K-S p > 0.999), and emulsions a Gaussian mixture
distribution (K-S p >0.999). As shown in Figure S3 (Supplementary Materials), the overlap
of these distributions was significant formulations; therefore, the release profiles differed
insignificantly.

Figure 4B shows the release profiles of amylopectin formulations. Non-normal dis-
tributions of the data were observed as seen in Figure S4 (Supplementary Materials).
Redispersed emulsions and lyophilized powder both fitted a Johnson distribution (K-S
p > 0.999). Emulsion profiles fitted a Gaussian mixture distribution (K-S p > 0.999). The
significant overlap of the distribution-fitted formulation release profiles was found, and
the release profiles from amylopectin formulations differed insignificantly.

Figure 4C depicts the release profiles of alginic acid formulations. Redispersed emul-
sions and lyophilized powders showed Johnson data distribution (K-S p > 0.999) as shown
in Figure S5 (Supplementary Materials). The emulsion release data showed Gaussian mix-
ture distribution (K-S p > 0.999). There was an insignificant difference in the release profiles
of the alginic acid formulations. In Tables S1–S6 (Supplementary Materials), the results of
the distribution analyses can be seen. Figure S6 (Supplementary Materials) displays all the
release curves for all formulations together.
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Figure 4. In vitro release of griseofulvin through nitrocellulose membranes for (A) hyaluronic
acid, (B) amylopectin, and (C) alginic acid for different formulations: ♦ dry emulsion powders,
# redispersed dry emulsions, and 4 emulsions. The release data and standard deviations are
presented as a linear fit against the square root of time according to the simplified Higuchi equation
(n = 4).

3.9. In Vitro Skin Absorption Study

Although a long-term stability study was not performed, it can be envisioned that the
various lyophilized polysaccharide formulations will provide better long-term stability,
and reconstitution of the lyophilized powders could be performed before topical skin
application.

Figure 5 indicates the in vitro skin absorption through human abdominal skin of
griseofulvin formulations, indicating the effect that different formulations have on the total
24 h absorption of griseofulvin formulations stabilized by different polysaccharides.
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Figure 5. Average in vitro skin absorption data of griseofulvin from (A) hyaluronic acid, (B) amy-
lopectin, and (C) alginic acid-stabilized formulations through human abdominal skin expressed as
total amount delivered over 24 h. Three skin donors were used, with 6 repetitions per skin donor per
formulation.

It can be seen in Figure 5A that the emulsions stabilized with hyaluronic acid pro-
duced the highest absorption (p = 0.007), in the stratum corneum, reaching ~13 µg/cm2 and
~12 µg/cm2 in the rest skin in the 24 h absorbance study compared to the absorption from
redispersed and lyophilized powders. Figure 5A–C show that hyaluronic acid-stabilized
emulsion will be the most effective formulation regarding drug accumulation from the epi-
dermal to the stratum corneum layers. The lyophilized powder and redispersed emulsion
showed minimal, insignificant absorption lower than ~1 µg/cm2 in all layers, regardless of
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the chosen polysaccharide. Insignificant transdermal accumulation, ~1 µg/cm2, was also
observed for all formulations.

The redispersed emulsions were stabilized with amylopectin, as shown in Figure 5B,
and were best targeted by redispersed emulsions compared to the rest skin. The amy-
lopectin powders and emulsions produced ineffective absorption compared to the redis-
persed emulsions (p ≥ 0.26).

Alginic acid formulation absorption, as seen in Figure 5C, showed the lowest grise-
ofulvin absorption by all the skin layers. Although the alginic acid-coated redispersed
emulsions were the most effective delivery systems, their stratum corneum accumulation
was ~12-fold lower than for redispersed amylopectin emulsions and ~4-fold lower than
that of hyaluronic emulsions. The alginic acid formulations were excluded from further
statistical analysis.

After comparison of the three polysaccharide formulations regarding the ideal stratum
corneum layer absorption, the amylopectin redispersed formulation proved far superior
to any other formulation. The hyaluronic dry powders and redispersed emulsion showed
insignificant differences in absorption for all skin layers (p = 0.25).

4. Discussion
4.1. Particle Size Analysis, Sample Visualization, Zeta Potential Measurements, Drug Stability,
and pH Measurement

The preparation of the emulsions was based on the LbL technique by layering emul-
sion droplets with a primary layer of whey protein, followed by a second layer of either
hyaluronic acid, amylopectin, or alginic acid [53]. After 7 days, the recovery of griseofulvin
indicated that all the formulations still contained at least 91% griseofulvin. Approximately
66% and 68% of the griseofulvin was recovered from the griseofulvin oil suspension and
methanol solution, respectively. The stabilization of emulsions with polysaccharides in-
creased the stability of griseofulvin. The lyophilized emulsions also showed high retention
of the intact drug compared to the solution and suspension. It has been reported that
substances encapsulated by biopolymers could be protected from oxidation, chemical,
or enzymatic degradation [25,54]. It was found that encapsulating olive oil droplets in
emulsions reduced the oxidation of the oil [33]. It was also reported that spray-dried tuna
oil that was stabilized with chitosan and lecithin had improved stability against oxidation
compared to unprotected oil [15]. This confirms the protective function of the biopolymer
layers toward encapsulated griseofulvin. It also advocates for the removal of the aqueous
phase to prevent hydrolysis and oxidation of the drug and the oil phase of emulsions. No
clear changes were observed in the pH measurements of the emulsions.

The particle size stability was determined over only 7 days. Except for alginic acid-
stabilized emulsions and hyaluronic acid-stabilized lyophilized emulsions, which showed
an almost doubling in particle size, the formulations showed good stability towards particle
size stability. When compared, the lyophilized emulsion formulations indicated larger
particle sizes in comparison with the correlating emulsions. The possibility exists to
decrease the lyophilized emulsion particle size by spray-drying the emulsions instead of
the lyophilization method [55,56]. When comparing the droplet size measurements to the
microscopy photographs of the lyophilized emulsions, smaller droplets were observed on
the images.

The zeta potential of the emulsions and lyophilized emulsions was shown to be stable
over the 7 days by showing < 7% changes in the zeta potential. Exceptions were the
hyaluronic acid- and amylopectin-stabilized emulsions, which decreased from −60 mV to
−50 mV or by ~18% and from −61 mV to −49 mV or by ~20%, respectively. It is known
that structural relaxation and polyelectrolyte interdiffusion could affect the net surface
excess of a particular species [57]. The hyaluronic and amylopectin emulsions showed a
decrease in the zeta potential magnitude. This could be attributed to the interdiffusion of
the polyelectrolytes over the 7 days. A future study should investigate this further.
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The stability of the griseofulvin in the formulations over 7 days was compared to the
amount of active ingredient present on day 0 of preparation and after the 7 days in each
formulation. It was observed that all the formulations had significantly higher stability
when compared to a suspension made of griseofulvin in Miglyol 812 N® and a solution of
griseofulvin in methanol, indicating the ability of layers of polysaccharides and the drying
of emulsions increasing the stability of the active ingredient. No significant differences
were observed between the emulsions and lyophilized emulsion powders when comparing
the stability of the active ingredient.

4.2. Encapsulation Efficiency and Oil Leakage

The encapsulation data for all the formulations indicate the high encapsulation capa-
bilities of the polysaccharides. Emulsions stabilized by alginic acid displayed significantly
lower encapsulation efficiency, indicating that a higher concentration of alginate may be
needed, or encapsulating the oil phase with more than one bilayer of protein/alginate with
the use of the LbL technique.

The leakage of oil from the lyophilized powder formulations could result in instabili-
ties and is also an indication of the adequate encapsulation of the oil phase. By oil leaking
from formulations, griseofulvin in the oil phase is then exposed to the environment, result-
ing in reduced stability and bioavailability. Oxidation of the oil phase could also result due
to the leakage from the formulations. The greater the distance from the formulations to the
oil stain barrier, the greater the oil leakage from the formulation. The lyophilized emulsion
powders stabilized with amylopectin had the lowest oil leakage on days 1 and 7, indicating
efficient encapsulation of the oil phase containing the griseofulvin. The lyophilized emul-
sion powders, stabilized with hyaluronic acid, had the highest initial oil leakage on day 1.
However, after 7 days, no significant change was observed when compared to day 1. This
suggested that the encapsulated oil effectively prevented leakage of the drug. The stability
data from the lyophilized emulsion powders, shown in Table 4, could also indicate that the
hyaluronic acid-stabilized lyophilized emulsion powders had the lowest stability on day 7,
with a high initial loss of the active ingredient in the non-encapsulated oil droplets. The
formulations coated with amylopectin showed high encapsulation efficiency, resulting in
low oil leakage and sufficient stability of the griseofulvin.

The lyophilized emulsion powders stabilized with alginic acid showed the highest oil
leakage. These results correlate with the data obtained for the encapsulation efficiency. All
the alginic acid-coated formulations showed the lowest encapsulation efficiency compared
to any of the other formulations. Conversely, high active ingredient stability was found
for alginic acid coatings. This could be due to a large initial loss of non-encapsulated
griseofulvin during the preparation of the emulsion, followed by the effective protection of
the low amount of encapsulated drug during the 7 days.

4.3. Photostability

The photostability studies indicated the improved stability of griseofulvin towards
photodegradation in emulsions nanocoated with hyaluronic acid and amylopectin. These
results correlate with results obtained for entrapped amlodipine, which also showed
improved photostability compared to untreated amlodipine [8]. The lyophilized emulsions
stabilized with amylopectin had the highest photostability, followed by the hyaluronic-
stabilized emulsions. Amylopectin- and hyaluronic acid-stabilized emulsions differed
by less than 5% regarding their initial photostability measurement. All the emulsions
and lyophilized powders stabilized with hyaluronic acid and amylopectin indicated a
photostability of higher than 80%.

Both the griseofulvin powder and solution indicated a rapid decrease in photostability
after 1 h, with the highest photodegradation of up to 43% compared to the initial measure-
ment. The preparations stabilized with alginic acid indicated no significant improvements
in photostability when compared to the griseofulvin powder and solution. When compared
to encapsulation efficiency results and oil leakage, alginic acid formulations showed the
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lowest encapsulation efficiency and highest oil leakage, significantly reducing the pho-
tostability of the drug due to higher quantities of the drug exposed to the UV-B light
source.

4.4. Drug Release Profiles

When comparing the data obtained from the release profile of griseofulvin through
cellulose nitrate membranes, shown in Figure 4, it can be observed that neither the type of
formulation nor whey protein/polysaccharide had significant effects on the release pattern
of griseofulvin. This indicates that the delivery system does not hamper drug release.
However, the %EE of alginic acid emulsions suggested excluding this formulation. The
magnitude of electrostatic interaction between the oil phase, griseofulvin, and polysaccha-
rides could also have influenced the data. The zeta potential values of all stability samples
at day 7 were all around −50 mV. The electrostatic interactions could be investigated in the
future—in this study, zeta potential did not seem to influence release. The polysaccharide
layer thickness could also play an important role in the release of griseofulvin; however,
poor %EE with alginic acid seemingly produced lower rates and extents of release.

4.5. In Vitro Skin Absorption

It was shown that the different polysaccharides and types of formulations influenced
the area in which the drug localized and accumulated in the in vitro human skin absorption
studies. The electric charge of the skin and formulation could have affected the skin, but
all the formulations had a zeta potential at day 7 of around −50 mV. This suggested that
the zeta potential magnitude of the formulations did not significantly influence the in vitro
absorption of the griseofulvin into or through human skin from the formulations.

The in vitro human skin absorption study indicated that griseofulvin accumulated
in the stratum corneum on the surface of the human skin model. The accumulation of
griseofulvin has also been observed following oral administration within a period of 8 h.
The oral bioavailability varied between 31 and 63% after administration of a 500 mg dose
with a blood plasma level reaching only ~3 µg/mL. Following this, a maximum level of
approximately 450 ng/mL was attained in the stratum corneum, which is still considered
therapeutic [58,59]. Our best amylopectin LbL delivery system significantly exceeded this
accumulation by achieving ~35 mg/mL in the same period of 24 h. This observation holds
the significant promise that topical LbL-coated formulations could provide a significantly
more successful treatment of epidermal fungal infection compared to systemic treatment.
In this regard, redispersed amylopectin powders resulted in the highest deposition of
the drug in the stratum corneum, reaching ~35 µg/cm2 griseofulvin. The second most
effective formulation to deliver griseofulvin to the stratum corneum was the hyaluronic
acid-containing emulsions, which attained ~13 µg/cm2, which was ~2.7-fold less than the
amylopectin lyophilized powder. The alginic acid powders were the best formulations for
stratum corneum delivery; however, they showed only ~3 µg/cm2, which was ~12-fold
lower than the redispersed amylopectin emulsions. Under the experimental conditions
of this study, we advise against using alginic acid to produce an effective topical delivery
system.

5. Conclusions

This study illustrated that (i) LbL nanocoating successfully produced stable emulsions
and lyophilized emulsions by (ii) employing whey protein as the initial layer followed
by a layer of a polysaccharide of either hyaluronic acid, alginic acid, or amylopectin to
(iii) produce efficient topical delivery systems for topical fungal infections. The successful
application of whey protein and polysaccharides proved that LbL nanocoatings with
environmentally benign materials are possible.

Employing amylopectin, which is poorly soluble in the aqueous phase, a Picker-
ing emulsion was formulated. These emulsions were also successfully formulated into
lyophilized emulsions. The emulsions and the lyophilized emulsions showed good griseo-
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fulvin stability when compared to an oil suspension and a methanol solution of griseofulvin.
Particle sizing also proved to be stable, except for alginic acid emulsions and hyaluronic
acid lyophilized emulsions. Photostability evaluation indicated the enhanced stability of
the emulsions and the lyophilized emulsions containing hyaluronic acid and amylopectin
when compared to the griseofulvin solution and powder. The release profiles and in vitro
human skin absorption profiles of the griseofulvin formulations suggest that reconstitution
before topical application will ensure successful treatment.

We conclude that a single LbL bilayer formulation of amylopectin or hyaluronic acid in
conjunction with whey protein produced a feasible topical delivery system for griseofulvin
to treat skin fungal infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
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presented as a fit for the simplified Higuchi equation (n = 4); Figure S3: Overlay of release data
points of hyaluronic acid formulations according to a quantile–quantile plot; Figure S4: Overlay of
release data points of amylopectin acid formulations according to a quantile–quantile plot; Figure S5:
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parametric data distribution fits—release profiles of emulsions; Table S4: Non-parametric data
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52. Salgado, C.; Guénée, L.; Černý, R.; Allémann, E.; Jordan, O. Nano wet milled celecoxib extended release microparticles for local
management of chronic inflammation. Int. J. Pharm. 2020, 589, 119783. [CrossRef]

53. Shchukina, E.M.; Shchukin, D.G. Layer-by-layer coated emulsion microparticles as storage and delivery tool. Curr. Opin. Colloid
Interface Sci. 2012, 17, 281–289. [CrossRef]

54. Barbiroli, A.; Beringhelli, T.; Bonomi, F.; Donghi, D.; Ferranti, P.; Galliano, M.; Iametti, S.; Maggioni, D.; Rasmussen, P.; Scanu, S.;
et al. Bovine beta-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions. Biol. Chem. 2010,
391, 21–32. [CrossRef] [PubMed]

55. Anwar, S.H.; Kunz, B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray
granulation, spray drying, and freeze drying. J. Food Eng. 2011, 105, 367–378. [CrossRef]

56. Holgado, F.; Márquez-Ruiz, G.; Dobarganes, C.; Velasco, J. Influence of homogenisation conditions and drying method on
physicochemical properties of dehydrated emulsions containing different solid components. Int. J. Food Sci. Technol. 2013, 48,
1498–1508. [CrossRef]

57. Jo, B.W.; Ahn, K.H.; Lee, S.J. Interdiffusion and chain orientation in the drying of multi-layer polyimide film. Polymer 2015, 68,
74–82. [CrossRef]

58. Shah, V.P.; Epstein, W.L.; Riegelman, S. Role of sweat in accumulation of orally administered griseofulvin in skin. J. Clin. Investig.
1974, 53, 1673–1678. [CrossRef] [PubMed]

59. Bates, T.R.; Sequeira, J.A. Bioavailability of micronized griseofulvin from corn oil-in-water emulsion, aqueous suspension, and
commercial tablet dosage forms in humans. J. Pharm. Sci. 1975, 64, 793–797. [CrossRef]

http://doi.org/10.1007/BF01337937
http://doi.org/10.3390/s17122799
http://www.ncbi.nlm.nih.gov/pubmed/29206212
http://doi.org/10.1021/bk-2009-1007.ch001
http://doi.org/10.3390/pharmaceutics2020209
http://www.ncbi.nlm.nih.gov/pubmed/27721352
http://doi.org/10.1081/PDT-100101373
http://doi.org/10.1016/j.ejpb.2006.10.010
http://www.ncbi.nlm.nih.gov/pubmed/17123799
http://doi.org/10.1021/mp500787b
https://www.ich.org/page/quality-guidelines
http://doi.org/10.1159/000441038
http://doi.org/10.1002/jps.2600751115
http://www.ncbi.nlm.nih.gov/pubmed/3820104
http://doi.org/10.1016/S0887-2333(01)00062-5
http://doi.org/10.1016/S0887-2333(97)00015-5
http://doi.org/10.1016/S0887-2333(02)00084-X
http://doi.org/10.3390/pharmaceutics13050643
http://doi.org/10.1016/j.tiv.2014.09.012
http://doi.org/10.1016/S0887-2333(01)00069-8
https://www.ich.org/page/quality-guidelines
http://doi.org/10.3390/pharmaceutics12040297
http://doi.org/10.1016/j.ijpharm.2020.119783
http://doi.org/10.1016/j.cocis.2012.06.003
http://doi.org/10.1515/bc.2010.008
http://www.ncbi.nlm.nih.gov/pubmed/19919177
http://doi.org/10.1016/j.jfoodeng.2011.02.047
http://doi.org/10.1111/ijfs.12118
http://doi.org/10.1016/j.polymer.2015.05.005
http://doi.org/10.1172/JCI107718
http://www.ncbi.nlm.nih.gov/pubmed/4830229
http://doi.org/10.1002/jps.2600640513

	Introduction 
	Materials and Methods 
	Materials 
	Aqueous and Oil Phase Preparation 
	Emulsion and Dry Emulsion Preparation 
	Quartz Crystal Microbalance Studies 
	pH Measurement 
	Zeta Potential Measurements 
	Sample Visualization 
	Particle Size Analysis 
	Encapsulation Efficiency 
	Release Profiles of Griseofulvin from the Formulations 
	Photostability 
	Oil Leakage 
	Human Skin Preparation for In Vitro Studies 
	In Vitro Human Skin Absorption Study 
	In Vitro Skin Absorption Sample Preparation for Analysis by HPLC 
	HPLC-UV Method 
	Statistical Calculations 

	Results 
	Quartz Crystal Microbalance 
	Particle Size Analysis 
	Sample Visualization 
	Stability of Griseofulvin in the Formulations 
	Zeta Potential 
	Oil Leakage and Encapsulation Efficiency 
	Photostability 
	Release of Griseofulvin from the Formulations 
	In Vitro Skin Absorption Study 

	Discussion 
	Particle Size Analysis, Sample Visualization, Zeta Potential Measurements, Drug Stability, and pH Measurement 
	Encapsulation Efficiency and Oil Leakage 
	Photostability 
	Drug Release Profiles 
	In Vitro Skin Absorption 

	Conclusions 
	References

