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Abstract

Invasive wildlife often causes serious damage to the economy and agriculture as well as

environmental, human and animal health. Habitat models can fill knowledge gaps about

species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility

may be compromised by small study areas and limited integration of species ecology or

temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a wide-

spread and harmful invader, in northern Australia. We developed a resource-based, spa-

tially-explicit and regional-scale approach using Bayesian networks and spatial pattern

suitability analysis. We integrated important ecological factors such as variability in environ-

mental conditions, breeding requirements and home range movements. The habitat model

was parameterized during a structured, iterative expert elicitation process and applied to a

wet season and a dry season scenario. Model performance and uncertainty was evaluated

against independent distributional data sets. Validation results showed that an expert-aver-

aged model accurately predicted empirical wild pig presences in northern Australia for both

seasonal scenarios. Model uncertainty was largely associated with different expert assump-

tions about wild pigs’ resource-seeking home range movements. Habitat suitability varied

considerably between seasons, retracting to resource-abundant rainforest, wetland and

agricultural refuge areas during the dry season and expanding widely into surrounding

grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Over-

all, our model suggested that suitable wild pig habitat is less widely available in northern

Australia than previously thought. Mapped results may be used to quantify impacts, assess

risks, justify management investments and target control activities. Our methods are appli-

cable to other wide-ranging species, especially in data-poor situations.
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Introduction

Where mammalian wildlife becomes invasive, it is often detrimental to the economy and agri-

culture as well as environmental, human and animal health [1,2]. To effectively mitigate

impacts, spatially-explicit knowledge on invaders’ distribution and habitat use is needed [3,4].

This can be particularly challenging for wide-ranging species, as continuous empirical infor-

mation is rarely available over broad geographic regions [5]. With rapid developments in spa-

tial environmental data availability and new analytical methods, habitat models that infer

species distributions from environmental predictor variables have proliferated to fill knowl-

edge gaps [6,7]. Research is methodologically and terminologically diverse–depending on the

research perspective, “habitat models” are also known as “species distribution models”, “eco-

logical niche models”, “habitat suitability models”, “resource selection functions” and varia-

tions thereof [4,6–10]. However, important ecological considerations such as temporal

variability or behavioural factors are often missed, especially in statistical, correlative models.

This can affect model accuracy and utility for decision-making [11]. Here, we developed a

resource-based, spatially-explicit approach to modelling seasonal habitat suitability for a wide-

spread and harmful mobile invader, the wild pig (Sus scrofa), in northern Australia.

Wild pigs, originally native to Eurasia, are one of the most widespread terrestrial mammals

[12]. Both wild and domesticated forms were introduced by early settlers to all continents and

many oceanic islands [12]. In its introduced range, S. scrofa is also known as feral pig, feral

swine, wild hog or razorback and has often been associated with severe negative impacts [12–

14]. In Australia, invasive wild pigs are a major threat to unique ecosystems and agricultural

industries [13,15]. They are most widespread in the tropical north, yet spatial knowledge is

either empirical, detailed, and local scale [16–22], or expert-based, coarse, broad scale, and

poorly validated [23–25]. Improved regional-scale knowledge of wild pig distribution could be

used to delineate management units and limit re-invasion of conservation sites following local

eradication [13,26]. It could also help assess the magnitude of environmental and economic

impacts or the risk of establishment of infectious animal diseases, especially when abundance

estimates are derived [27–30].

Statistical habitat models for wild pigs have been developed for northern Australia [31,32]

as well as parts of Europe and North America with similar knowledge gaps [33–36]. However,

some general limitations of statistical models are also apparent in these studies. First, correla-

tive models calibrated from species presence or presence/absence records can only reliably

predict species distribution within, and not outside, the environmental gradients used for

model calibration [37]. Second, except for Morelle and Lejeune’s [36] study in Belgium, all

models were calibrated from aggregate species records and did not consider temporal variabil-

ity or ecological factors. In northern Australia such models may yield misleading results when

reflecting previous research: Caley [16] and Hone [19] showed that wild pig distribution and

abundance varies considerably between the wet and dry season; Caley [17] and Mitchell et al.
[21] found that habitat use and home range movements differ distinctly between breeding

herds (consisting of related sows and their young) and solitary boars; and Choquenot and Rus-

coe’s [38] work suggested that wild pig persistence depends on complementary access to key

resources within the boundaries of such home ranges.

Here we adapted a resource-based modelling framework using Bayesian networks that

allowed us to address these issues. This general approach has previously been applied to habitat

models [39–42] and offers several advantages over correlative methods: a robust statistical

framework for modelling interactions between habitat variables based on species ecology

rather than distributional data; flexible data requirements with the ability to integrate unpub-

lished expert knowledge; and explicit treatment of the uncertainty in parameter estimates
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[43–45]. Our objectives were: (1) to model seasonal habitat suitability for wild pig breeding

and persistence in northern Australia at the regional scale whilst integrating behavioural fac-

tors as well as temporal variability; and (2) to rigorously evaluate accuracy and uncertainty in

our expert-elicited models by validating spatial predictions of habitat suitability against truly

independent distributional data sets.

Materials and methods

Study region

Our study region covered 1.76 million km2 north of the Tropic of Capricorn spanning three

Australian states (Fig 1). The climate is tropical with seasonal rainfall, alternating between a

wet and a dry season. Rainfall and primary productivity broadly decline on a north-south, and

to a lesser extent, on an east-west, gradient [46,47]. Monsoonal savanna woodlands and semi-

arid grasslands are interspersed with riverine channels, seasonally inundated floodplains,

coastal wetlands and rainforest fragments [48]. Intensive human uses are concentrated in fer-

tile coastal lowlands. The semi-arid inland is sparsely populated.

At a coarse scale, all of the study region appears climatically suitable for wild pigs and has

mostly been invaded [24]. Arid regions with insufficient rainfall were not included in our

study. Wild pigs are reported to be widespread in the east and localised in the north and west

[24]. Highest local densities have been recorded in resource-abundant wetlands and flood-

plains, yet these populations fluctuate considerably with climatic conditions [14,16,19]. A wide

range of management activities are conducted throughout northern Australia to mitigate wild

pig impacts, including lethal and non-lethal methods. Yet, effective management is hampered

by the region’s remoteness and there is little evidence of sustained population reduction [13].

Habitat suitability model

Our modelling approach consisted of three main steps (Fig 2). First, we modelled ‘resource

quality indices’ for a suite of habitat variables, referenced specifically to the resource require-

ments of wild pig breeding herds, in separate Bayesian networks. Second, we used ‘spatial pat-

tern suitability analysis’ to capture wild pigs’ ability to access complementary resources at

different locations within their home range. Finally, we modelled a ‘habitat suitability index’

by combining all ‘resource suitability indices’ in another Bayesian network. The model was cal-

ibrated using a structured, iterative elicitation process [49] with a panel of experts. Experts

were practitioners with field knowledge of wild pigs from various localities and professional

backgrounds [50]. We combined techniques for eliciting system understanding through group

consensus and for eliciting quantitative estimates from individuals with opportunities for Del-

phi-style revision [42,51–53]. Expert elicitation was approved by the CSIROHuman Ethics
Committee (Project 075/13) and written consent obtained from all participants.

Bayesian network models. We adapted the Bayesian network modelling framework pro-

posed by Marcot et al. [39], refined by Smith et al. [40] and explained in detail by van Klinken

et al. [42]. Here, habitat suitability was conditional on a set of habitat variables representing

resource requirements. Each habitat variable was itself influenced by several measurable key

explanatory variables, and each explanatory variable was linked to one or more remotely

sensed or mapped spatial data proxies. Our model was implemented in the Norsys Netica
v.5.12 software.

Expert elicitation. During an initial expert workshop, a preliminary model was developed

[49]. A panel of experts (n = 18) constructed a conceptual model, defined each model variable

(habitat suitability, habitat variables and explanatory variables including spatial data proxies)

and assigned it mutually exclusive states. We quantified causal relationships in the network by
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eliciting conditional probability tables (CPTs) behind each response variable (child node). We

used the CPT calculator software [54], which reduces the number of elicited response probabil-

ities to key scenarios, i.e. combination of states in explanatory variables (parent nodes), and

interpolates all other combinations. Each step was performed in break-out groups or individu-

ally, followed by panel discussion and consensus formation (except for the CPT calculator)
[42,53].

Following preliminary application, sensitivity analysis and validation of the preliminary

model, we conducted semi-structured interviews with a self-selected subsample from our

panel of experts (n = 6). Model structure, spatial data proxies and evaluation results were

reviewed against each expert’s knowledge and simplified CPTs were parameterized. We asked

experts to revise prior CPTs from the preliminary model rather than parameterising new ones

[51,52]. As interviews were less time-constrained than the workshop, experts could utilize

either or both of two elicitation methods that were more flexible and robust to error than the

CPT calculator [54]. Method A was implemented in the AgenaRisk v.6.1 software and made the

simplifying assumption that any response follows a truncated normal distribution (TNormal)
centred on the weighted mean of its explanatory variables [55]. In order to use this method, we

converted all model variables into “ranked nodes”, whose states were assigned with equal

intervals on a numerical scale from 0 to 100 [55]. Experts only defined: (a) the weight of each

explanatory variable, (b) overall uncertainty in making this judgement (determining the vari-

ance of TNormal), and (c) whether the weighted mean function should be replaced by either a

weighted minimum (to describe limiting factor relationships), or maximum (to describe sub-

stitution relationships) function [55]. Method B restricted elicitation to key scenarios as in

[54]. However, instead of directly assigning probabilities to each state of the response variable,

we used interval judgements [56,57], asking experts for their best estimate and the outer

Fig 1. Study region in northern Australia. The study region is shown in grey. Locations of the independent distributional data sets used for model

validation are shown in colour.

https://doi.org/10.1371/journal.pone.0177018.g001
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Fig 2. Wild pig habitat suitability model. Resource quality indices for each habitat variable were modelled in

Bayesian networks. Spatial pattern suitability analysis was used to compute resource suitability indices as a

weighted function of distance to resource patches (fDr). Habitat suitability was modelled in another Bayesian

network. An average habitat suitability index was computed and mapped from six individual expert models. Bar

graphs show expert-elicited conditional probabilities and values below graphs show modelled index

values ± standard deviation. Probabilities and indices change once evidence about the states of each explanatory

variable at a given study area pixel is inserted (i.e. prior probabilities are no longer uniformly distributed).

https://doi.org/10.1371/journal.pone.0177018.g002
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bounds of a 95% confidence interval. To maintain consistency with method A, we allowed

only TNormal distributions centred on the best estimate. Post-elicitation, we discretised inter-

val judgements into probabilities for each response state using a binning algorithm.

Habitat suitability and resource quality indices. The final Bayesian network model [49]

is shown in Fig 2. Expert-elicited CPTs, definitions for all model variables and their states and

spatial data proxies that determined the state of each explanatory variable at each pixel in the

study region are provided as supporting information (S1 and S2 Tables). Experts identified

four key resource requirements for sustained wild pig breeding: food, water, protection from

heat and protection from disturbance (Fig 2). Each of these habitat variables had five states

with corresponding equal numerical intervals (0–20 for the poorest state, . . ., 80–100 for the

best state). For each habitat variable, we computed expert-averaged ‘resource quality indices’

(xr) as model expected values from an equal-weighted average CPT [52,58] (Fig 2) by summing

the mid-point value of each state interval weighted by its probability. Accordingly, xr could

range between 10 (mid-point of the poorest state) and 90 (mid-point of the best state) and var-

ied spatially according to the combination of states of explanatory variables at a given pixel.

Following spatial pattern suitability analysis of pixel-scale xWater , xFood, xHeat and xDisturbance

(see below), we computed a ‘habitat suitability index’ (HSI) from the derived landscape-scale

habitat variables [59,60]. The method was analogous to the resource quality indices. However,

we used each individual expert’s CPT to compute model expected HSI. This allowed us to eval-

uate average results as well as model uncertainty from diverging expert knowledge.

Spatial pattern suitability analysis. In order to capture wild pigs’ ability to access their

four resource requirements at different locations within heterogeneous home ranges, we con-

verted pixel-scale resource quality indices (xr) into landscape-scale ‘resource suitability indices’

(SIr). Apart from various empirical estimates of female home range sizes (1–20 km2 in [14,61])

and a previous finding that pasture and riverine woodlands must co-occur within 5 km [38],

we had limited a priori knowledge about wild pigs’ resource-seeking home range movements

in northern Australia.

We therefore elicited distance-dependent response-to-pattern curves (fDr) for each habitat

variable from individual experts (n = 6) during interviews (Fig 3 and S1 Appendix). This

involved first specifying a wild pig ‘mobility threshold’ (or home range boundary) beyond

which resources are inaccessible to breeding herds. Experts defined these at 1 km (n = 1), 2 km

(n = 2) or 3 km (n = 3), corresponding to circular home ranges of approximately 3, 12 and 28

km2. Second, experts described the functional value of a given resource for wild pig breeding

in response to distance (Fig 3). Third, we applied spatial moving window analysis to compute

SIr at a focal pixel as the highest distance-weighted xr of all resources contained within an anal-

ysis window. This window was shifted and centred on each pixel within the study region. We

used circular moving windows [59] with radii defined by elicited mobility thresholds and dis-

tance weights defined by response curves fDr. We termed this combined methodology ‘spatial

pattern suitability analysis’ (S1 Appendix).

Seasonal scenarios. We applied each individual expert’s final model [49] to two seasonal

scenarios by linking model explanatory variables to seasonally-specific spatial data proxies

(Table 1). We were most interested in the late wet season (March to April), when resources

required by wild pigs are abundant and widely distributed, and the late dry season (October to

November), when resources are scarce and scattered across the region. Suitable remotely

sensed or mapped spatial proxies were: (a) discussed with experts and sourced from various

agencies (S2.2 Table); (b) rasterized and resampled to a common extent and a fine resolution

(1 ha) for capturing spatial heterogeneity relevant to wild pigs [42]; and (c) averaged for the

two months corresponding to each seasonal scenario over five years (2010–2014) to reflect

average conditions. Finally, spatial data attributes were reclassified to match the states of
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explanatory variables (Table 1 and S2.2–S2.6 Tables). Some model variables were linked to

static spatial proxies without seasonal variability (e.g. terrain ruggedness). For three variables

determining Disturbance stress (Fig 2), no spatial proxies were available for the study region.

We applied a global (spatially uniform) scenario [42], with “high” Intensity of control and

Fig 3. Expert-elicited resource suitability in response to distance. Resource suitability indices (SIr) were computed from elicited response-to-

pattern curves (fDr) for each of the four habitat variables in the model: water (A), food (B), heat protection (C) and disturbance protection (D). Curves

cross the x-axis at different points because experts defined different home range boundaries.

https://doi.org/10.1371/journal.pone.0177018.g003
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Frequency of control and no selected state for Predator presence (Fig 2). While this assumption

likely overestimated disturbance in our models, it approximated conditions under which most

of the local validation data were collected.

Model evaluation and validation

Sensitivity analysis. Behaviour of each individual expert model as well as an expert-aver-

aged consensus model was evaluated using the “Sensitivity to findings” algorithm in the Norsys
Netica 5.12 software. We focussed on the variance reduction metric recommended for numeri-

cal variables [62]. It assessed the relative influence of our four habitat variables on predicted

habitat suitability by calculating how much the variance of HSI was reduced by entering a par-

ticular finding (i.e. SIr value) for one of the habitat variables. Greater variance reduction means

that HSI was more sensitive to a change in the state of the habitat variable [62,63].

Predictive performance. Predictive model performance was validated against four data

sets of wild pig presence per seasonal scenario (Table 2). Most data were independently col-

lected by external agencies in conjunction with aerial management activities. As aerial survey

data was only available for the eastern state of Queensland (Fig 1), we also obtained presence

records (search term “Sus scrofa”) from the national Atlas of Living Australia. This database

contained only one dated record in the Western Australian portion of our study area. Hence,

we confined the downloaded ‘ALA’ dataset to records from the Northern Territory, which

appeared adequately sampled (748 unfiltered records). Where possible, we matched data to

model assumptions, using only presence records that corresponded to breeding herds (identi-

fied as female or with a group count greater than two) and were dated in the late wet and late

dry season respectively. To reduce unwanted noise from spatial error in validation data or spa-

tial proxies used for modelling [64,65], we upscaled both predicted HSI and wild pig presence

records to a 1 km resolution. We subsequently thinned data to ensure independence among

data points, allowing only one data point collected on the same day within a given 1 km pixel.

Table 1. Model explanatory variables and spatial data proxies.

Explanatory

variable

Seasonal Spatial data proxies Classification or thresholding methods

Freshwater

presence

Yes • Queensland wetland data

• Geofabric Surface Cartography

• Present Major Vegetation Subgroups

• Presence and seasonality from data attributes

• Rainforests classed as perennial freshwater (because water bodies

inadequately mapped)

Terrain ruggedness No • 3 sec SRTM derived Digital Elevation Model • Thresholds (from terrain ruggedness index) estimated from map

Food quality Yes • Present Major Vegetation Subgroups

• Catchment scale Land Use of Australia

• Monthly relative soil moisture upper layer

(WRel1)

• Protein accessibility thresholds (from average WRel1) estimated

from map

• Food quality class under good/poor protein accessibility elicited

from experts

Food quantity Yes • Monthly fractional cover of Photosynthetic

Vegetation (fPV)

• Vegetative productivity thresholds (from average fPV) assigned from

literature

Heat stress Yes • Monthly mean maximum temperature • Thresholds (average Tmax) elicited from experts

Shady vegetation

cover

No • Persistent Green Vegetation Fraction 2000–

2010

• Foliage cover thresholds assigned from literature

Dense vegetation

cover

No • Present Major Vegetation Groups

• Catchment scale Land Use of Australia

• Density class elicited from experts

Further detail about spatial data proxies including references and methods for reclassifying data attributes into state-specific categories is provided in S2.2–

S2.6 Tables.

https://doi.org/10.1371/journal.pone.0177018.t001
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For each data set, we also defined a validation background, which served to contrast pres-

ences with areas from which feral pips could be considered ‘absent’ (Fig 1). In doing so, we

aimed to strike a compromise between (a) evaluating performance across sufficiently large

areas to justify inferences about the models’ discriminatory power and (b) restricting evalua-

tion to similar environmental gradients as contained in the presence data so that validation

metrics are not artificially inflated [66]. Where possible, we defined backgrounds from existing

management units in which surveys were conducted (National Park boundaries for ‘Lakefield’

and ‘Oyala Thumotang’). Otherwise, we arbitrarily applied a 15 km buffer to data points (for

‘Balkanu’, ‘NAQS’ and ‘ALA’), which corresponded to five times the highest expert-elicited

mobility threshold (home range boundary) in this study.

We used the Continuous Boyce Index (CBI) to evaluate model performance (S2 Appendix).

This method was developed specifically for evaluation against presence-only observations

[64,67]. A predicted-to-expected (P/E) ratio was computed as the (predicted) proportion of

presence records coinciding with a specified range of HSI values (bin) divided by the

(expected) proportion of the validation background covered by that bin. The CBI measures the

Spearman rank correlation coefficient of P/E against HSI and varies from 1 (correct model, P/
E steadily increases as HSI increases) to –1 (false model, P/E steadily decreases with increasing

HSI). Values close to zero indicate a random prediction [67]. We computed the P/E ratio and

CBI for each expert model / validation data combination. We also computed the proportion of

each validation background expected to be highly or very highly suitable (HSI� 60). This

resulted in 28 sets of validation metrics (P/E ratio + CBI + HSI� 60) per seasonal scenario (6

expert models x 4 validation data + 1 expert-averaged model x 4 validation data, S2 Appendix).

This allowed us to evaluate uncertainty from diverging expert knowledge and test the expecta-

tion that an expert-averaged model performs best [58].

Results

Sensitivity analysis

Sensitivity analysis revealed that habitat suitability in the Bayesian network model was most

strongly influenced by water and food resources (24.4% and 25.7% variance reduction

Table 2. Validation data sets with ancillary information.

Name Source No. of

records

Date of

collection

Method/ purpose of

collection

Background

size (km2)

Typical habitat types

Balkanu Balkanu Cape York

Development

Corporation

• dry: 181

• wet: 67

• Sep-Nov

2013–14

• May 2015

Systematic aerial survey/

management (shooting)

• dry: 3,954

• wet: 3,089

Eucalyptus woodlands &

coastal wetlands

Lakefield Queensland Parks &

Wildlife Service

• dry: 350

• wet: 124

• Oct-Dec

2009–13

• Feb-May

2010–13

Systematic aerial

management (shooting)

• 5,788 Eucalyptus/ Melaleuca

woodlands, coastal wetlands &

grasslands

Oyala

Thumotang

Queensland Parks &

Wildlife Service

• wet: 263 • Apr-May

2010–13

Systematic aerial

management (shooting)

• 3,819 Eucalyptus woodlands, riparian

Melaleuca forests & rainforests

ALA Atlas of Living Australia • dry: 111

• wet: 144

• Sep-Dec

98–2012

• Feb-May

91–2012

Surveys/ sightings (purpose

unknown)

• dry: 36,024

• wet: 41,511

Eucalyptus woodlands,

floodplains, Melaleuca forests &

mangroves

NAQS Northern Australia

Quarantine Strategy

• dry: 103 • Sep-Nov

2007–10

Opportunistic aerial survey /

disease sampling (shooting)

• 11,630 Eucalyptus woodlands,

floodplain grasslands &

chenopod scrublands

https://doi.org/10.1371/journal.pone.0177018.t002
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respectively) and to a lesser degree by protection from heat (6.01%) and protection from dis-

turbance (2.78%) (Fig 4). Habitat suitability was least sensitive to expert opinion (0.023% vari-

ance reduction). Hence, experts were mostly in agreement about the relative importance of the

four habitat variables and quantified model relationships similarly. However, one expert

weighted the heat protection requirement as highly as water and food resources (Expert 1: 15%

variance reduction, Fig 4).

Predictive performance

In general, expert-elicited habitat suitability models performed well against the validation data

(Table 3 and Fig 5). For some seasonal scenario / validation data combinations, all expert mod-

els performed well (e.g. wet or dry season model / Lakefield data). For others, there were con-

siderable differences (e.g. wet or dry season model / ALA data) (Table 3). As the HSI Bayesian

network model was not sensitive to expert opinion, model uncertainty stemmed largely from

disagreement about wild pigs’ resource-seeking home range movements, i.e. expert-elicited

response-to-pattern curves (Fig 3). Expert models that assumed high mobility thresholds (3

km for experts 2, 4 and 6, Fig 3) predicted the highest proportions of suitable habitat in all vali-

dation backgrounds. Average HSI� 60 for these three expert models ranged between 71–78%

in the wet season and 36–42% in the dry season. Model accuracy was also generally highest for

these experts, with average CBI ranging between 0.58–0.85 in the wet season and 0.69–0.86 in

the dry season. Both metrics were lowest for the expert model that assumed the least mobility

(1 km for expert 1, Fig 3). Here, average HSI� 60 was 47% (wet) and 15% (dry) and average

CBI was 0.33 (wet) and 0.44 (dry).

The expert-averaged model performed similar to, or better than, the best individual expert

models for most validation data, except for the dry season model / NAQS data and dry season

model / ALA data combinations. Its average CBI across all validation data sets was 0.85 in the

wet season and 0.67 in the dry season. The predicted proportion of suitable habitat was modest

compared to individual expert models (except for expert 1), with an average HSI� 60 of 60%

(wet) and 26% (dry). While averaging did not increase model accuracy as expected, it pro-

duced consistently accurate results for all validation data (Table 3, Fig 5 and S1 Fig).

Seasonal habitat suitability

We present and discuss seasonal results only for the expert-averaged consensus model, which

produced consistently accurate results across the study region. Predicted habitat suitability

varied considerably between seasonal scenarios (Table 4 and Fig 6). Overall the model pre-

dicted suitable habitat (HSI� 40) in 36.2% of the study region (~640,000 km2) during the wet

season and 9.5% (~170,000 km2) during the dry season. Of this, about one quarter was highly

or very highly suitable habitat (HSI� 60, 8.4% during the wet season and 2.8% during the dry

season, Table 4).

Habitat suitability also varied spatially between administrative units, vegetation types and

land use classes (Figs 6 and 7 and S2 Fig).

When analysed by states (shown in Fig 1), highly and very highly suitable wild pig habitat

was located mostly in Queensland, especially during the dry season. It was largely absent from

Western Australia in either scenario. The Northern Territory’s share increased more than

three-fold during the wet season. Moderately suitable habitat (40�HSI< 60) was somewhat

more evenly distributed across the study region, especially during the wetter months (covering

about 40% of the study region in Queensland, 20% in the Northern Territory and 10% in

Western Australia, S2.1 Fig). Within each state, suitable habitat was concentrated in coastal
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environments during the dry season (except for some large inland riverine and wetland sys-

tems), and expanded widely during the wet season (Fig 6).

By broad vegetation types [68] (Fig 7), highly suitable habitat (HSI� 60) was dispropor-

tionately found in rainforests, wetlands, mangroves and modified (agricultural) vegetation,

especially during the dry season (23%, 7%, 4% and 17% share of total suitable habitat respec-

tively). Yet, these vegetation types covered only 6.2% of the study region combined. A large

share of suitable habitat– 42% (dry) and 64% (wet)–was also contained in the region’s domi-

nant vegetation type, savanna woodlands, which was broadly proportional to its overall cover

(68% of the study region). Very highly suitable habitat was even more concentrated in rainfor-

ests (68% (dry) and 54% (wet) share of HSI� 80) and less frequently found in savanna

Fig 4. Sensitivity of habitat suitability to four habitat variables and expert opinion. Sensitivity to findings was calculated as % variance

reduction for each individual expert model and an averaged model (red bar and percentages).

https://doi.org/10.1371/journal.pone.0177018.g004
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woodlands (22% (dry) and 29% (wet) share of HSI� 80, Fig 7). During the dry season, the vast

majority of grasslands (98%), shrublands (93%) and woodlands (91%) were modelled as

unsuitable for wild pig breeding (HSI� 40, S2.2 Fig). During the wet season, habitat concen-

tration was weaker and suitable habitat was somewhat more evenly distributed among vegeta-

tion types (Fig 7).

Habitat suitability was also unevenly distributed between land use classes [69] (Fig 7). Dur-

ing the dry season, high value land used for water resources, irrigated or dryland production

together contained 17% of suitable habitat on less than 2% of the study region. Interestingly,

the 26% of the study region set apart for nature conservation also contained a disproportionate

amount of suitable habitat (52% (dry) and 43% (wet) share of HSI� 60). The dominant land

use type “grazing natural vegetation” contained a greater share of suitable habitat during the

wet season (42%) than the dry season (24%) on 71% of the study region. As with vegetation

types, habitat concentration was further increased for very highly suitable habitat (HSI� 80)

and weaker in the wet than in the dry season (Fig 7).

Discussion

Effective management of invasive wildlife requires spatially-explicit knowledge of their dis-

tribution and habitat use, especially for wide-ranging species [4]. Yet, continuous empirical

information is rarely available over large areas [5]. Habitat models can fill this knowledge

gap, but their utility may be compromised by small study areas and limited integration of

species ecology or temporal variability [11]. Here, we modelled, for the first time, seasonally-

specific habitat suitability for wild pigs, a widespread and harmful invader, in northern Aus-

tralia. Rigorous evaluation and validation showed that our resource-based, expert-elicited

model, which integrated important ecological factors such as home range movements and

breeding requirements, accurately predicted wild pig presence across the study region.

Results suggest that suitable wild pig habitat is more constrained in northern Australia than

previously thought, especially during the dry season. Mapped results may be used by land

managers to quantify impacts, assess risks, justify investments and target control activities.

Our transparent methodology could be applied to other wide-ranging species, especially in

data-poor situations.

Table 3. Validation metrics for individual expert and averaged seasonal habitat suitability models.

Habitat suitability model Validation metrics per model scenario / validation data combination

Wet season scenario Dry season scenario

Balkanu Lakefield Oyala Thum ALA Balkanu Lakefield NAQS ALA

CBI HSI60 CBI HSI60 CBI HSI60 CBI HSI60 CBI HSI60 CBI HSI60 CBI HSI60 CBI HSI60

Expert 1 -0.22 59% 0.69 60% 0.66 41% 0.17 26% 0.59 28% 0.66 15% 0.27 12% 0.25 3%

Expert 2 0.94 83% 0.94 91% 0.61 77% 0.9 58% 0.94 64% 0.9 38% 0.94 44% 0.66 20%

Expert 3 0.73 80% 0.97 85% 0.64 68% 0.7 54% 0.94 58% 0.88 30% 0.75 44% 0.75 15%

Expert 4 0.83 82% 0.94 83% 0.7 68% 0.86 49% 0.98 56% 0.97 33% 0.72 42% 0.76 12%

Expert 5 0.38 74% 0.63 56% -0.24 69% 0 42% 0.89 50% 0.96 34% 0.74 30% 0.56 9%

Expert 6 0.44 83% 0.94 91% 0.43 77% 0.52 60% 0.94 63% 0.96 38% 0.35 44% 0.5 22%

Averaged 0.87 71% 0.92 70% 0.88 59% 0.71 39% 0.85 44% 0.97 26% 0.59 25% 0.27 7%

Validation was performed against four data sets per seasonal scenario (Table 2). We show the Continuous Boyce Index (CBI) and proportion of validation

background expected to be highly or very highly suitable habitat (HSI� 60, here shortened to HSI60). A CBI = 1 would indicate a perfectly accurate, a CBI ~

0 a random, and a CBI < 0 a false model.

https://doi.org/10.1371/journal.pone.0177018.t003
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Fig 5. Validation plots for individual expert and averaged seasonal habitat suitability models. Validation was performed against four

validation data sets per seasonal scenario (Table 2). The predicted-to-expected (P/E) ratio (y axis) measures the proportion of wild pig

presences relative to the proportion of background pixels on a continuous scale of predicted HSI (x axis).

https://doi.org/10.1371/journal.pone.0177018.g005
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Seasonal habitat suitability

Our habitat model confirmed previous site-scale findings that the distribution and habitat use

of wild pigs in northern Australia is highly seasonal [14,16,19,70] for the entire region. Mod-

elled habitat suitability for wild pig breeding and persistence was mainly driven by seasonal

availability of food and water resources, both of which ultimately vary with northern Austra-

lia’s annual rainfall cycle. Our model indicated a four-fold increase in suitable habitat during

the wet season. Inter-annual climatic variability, which has been shown to greatly affect wild

pig populations in drier parts of Australia [70–72], was not investigated in this study. Our sce-

nario approach could be usefully extended to model cyclical, as well as seasonal, variability in

wild pig distribution.

Seasonal fluctuations in habitat suitability were expressed at different spatial scales. At the

regional scale, habitat suitability varied along an east-west gradient. Suitable wild pig habitat

was concentrated in the eastern study region throughout the year. During the dry season, suit-

able habitat contracted more in the west than in the east (eleven-fold in Western Australia,

five-fold in the Northern Territory and three-fold in Queensland). These patterns correspond

well with prevailing rainfall gradients and harsher dry season conditions in the west [46,47].

At the landscape scale, contiguous patches of suitable habitat were located predominantly

along the coastline during the dry season and expanded widely across the study region during

the wet season. If all suitable wet season habitat was to be used by wild pigs, this points to long

distance seasonal migration. However, such migratory behaviour in Australian wild pigs has

been rejected by previous research [17,21,61]. Rather, empirical findings suggest that wild pigs

may expand and contract their home range in response to changing conditions [21,73], or

shift it entirely if adverse conditions persist [14,17]. Hence, not all suitable wet season habitat

may be within reach of wild pig breeding herds dispersing from dry season refuges [17]. At the

local scale, dry season habitat was concentrated in productive rainforest, wetland and man-

grove ecosystems as well as high value agricultural lands, where resources remain abundant.

While these dry season refuges continued to provide suitable habitat during the wet season,

habitat was more evenly distributed among vegetation types and land use classes. This suggests

that wild pigs forage widely into grassland floodplains, savanna woodlands and coastal shrub-

lands when conditions permit. Our regional model showed that rainforests are a key year-

round habitat for feral pig breeding (Fig 7). This was partly due to model assumptions. For

example, as actual freshwater presence was inadequately mapped in densely vegetated rainfor-

ests, we assumed that water was uniformly available (Table 1). Site-scale studies have already

provided a more detailed understanding of the fine-grained variations in actual habitat use

within this broadly suitable habitat type [18,20–22].

While all parts of northern Australia contained at least some suitable wild pig habitat,

our model suggests that wild pigs are less widely distributed in the region than previously

thought. For example, moderately suitable habitat in Western Australia totalled between 3000

km2 (dry) and 32,000 km2 (wet) while Cowled et al.’s [32] model predicted 89,000 km2 of suit-

able habitat in the same area. Similarly, West [24] reported that wild pigs are widespread

Table 4. Amount of wild pig habitat in each habitat suitability index class per seasonal scenario.

Seasonal scenario Total area covered by each habitat suitability index class (km2 and %)

Very high High Moderate Low Very low

Wet season 16,726 (1%) 130,112 (7.4%) 489,371 (27.9%) 239,948 (13.7%) 880,902 (50.1%)

Dry season 11,147 (0.6%) 39,512 (2.2%) 116,273 (6.6%) 71,532 (4.1%) 1,518,597 (86.4%)

https://doi.org/10.1371/journal.pone.0177018.t004
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Fig 6. Seasonal habitat suitability for wild pig breeding in northern Australia. Habitat suitability indices were averaged across all expert models

and mapped for a wet (March/April–A) and dry (October/November–B) season scenario.

https://doi.org/10.1371/journal.pone.0177018.g006
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throughout Queensland while our model found that only 16% (dry) to 54% (wet) of this area

contained all required resources for persistent wild pig breeding. We note that (a) such area

estimates are highly dependent on habitat thresholds and therefore are unreliable and difficult

to compare between studies, and (b) our figures are possibly overestimates–they refer to a

threshold of HSI� 40, yet validation plots (Fig 5) suggested that a higher, more restrictive

threshold (e.g. HSI� 60) may better discriminate between suitable and unsuitable habitat in

most environments. We suggest our lower estimates are defensible when considering a num-

ber of methodological improvements in our study. First, we specifically modelled resource

requirements of wild pig breeding herds, which are more limiting than those of solitary boars

[14,17,21]. Previous statistical models [32] and mapping studies [24,70] did not make this dis-

tinction, although long-term occupancy critically relies on breeding. Second, previous work

did not distinguish between seasonal scenarios but included any location where wild pigs have

occurred or may occur. This may have approximated wet season habitat and likely led to over-

estimations by failing to consider the dry season as a limiting factor for wild pigs in Australia’s

north [16,19]. Finally, we used a finer spatial resolution (1 ha) than previous studies (25 km2 in

[32] or ~250 km2 in [24]), resulting in more detailed predictions and less upscaling error (e.g.

one “suitable” pixel equalled 25 km2 in [32], even if only a fraction of this area actually con-

tained suitable habitat).

Fig 7. Share of modelled suitable habitat found in different vegetation types and land use classes for each seasonal scenario. For each

vegetation (panel A) or land use (panel B) category, we show its percent share of highly (HSI� 60) and very highly (HSI� 80) suitable habitat during

the dry (top bars) or wet (bottom bars) season, compared to its percent share of the total study region (central bars). Spatial analyses in panel (A) were

based on Present Major Vegetation Groups (MVG V.4.1) and analyses in panel (B) on Australian Land Use and Management classes (ALUM V.7).

https://doi.org/10.1371/journal.pone.0177018.g007
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Model evaluation and validation

Model results were robust to both expert opinion and a range of independently collected vali-

dation data sets of wild pig presence. All six experts contributing to the final consensus model

provided similar parameter estimates for the Bayesian network model of habitat suitability.

That is, they all agreed that water and food resources are more important to persistent wild pig

breeding in northern Australia than protection from heat and protection from disturbance.

However, validation revealed inconsistent performance between expert models in some

instances. We attributed this model uncertainty mainly to different expert assumptions about

wild pigs’ resource-seeking home range movements, described in elicited response-to-pattern

curves (Fig 3). Our simple approach to reducing uncertainty, equal-weighted expert averaging

[52,58], yielded similar, or more accurate, results than the best expert models for most valida-

tion data.

While the averaged habitat suitability model always performed well, there were differences

between seasonal scenarios and validation data. This points to some limitations of our study.

First, most validation data were collected in environments with an above-average proportion

of suitable wild pig habitat. Second, model parameters were elicited from experts with field

knowledge mostly from resource-abundant environments in the eastern study region and

applied to all of northern Australia. Model accuracy in resource-poor inland environments

and in those portions of the study region for which no validation data was available and that

were outside the expertise of our panel of experts (especially Western Australia) needs further

investigation [74]. For example, wild pigs may also sustain themselves in ‘unsuitable’ habitat

during the dry season from resources not included in our model (e.g. carrion and other animal

matter). Third, reporting bias in the data points used for validation [75] and our definition of

validation backgrounds may have affected validation results. For example, most data sets were

biased towards highly suitable sites as management-focussed survey efforts mostly concen-

trated on sites known to be impacted by wild pigs. Less suitable sites, which nevertheless sup-

port wild pig breeding, may therefore have few or no data points recorded, resulting in

somewhat inflated CBI values. Further, different buffering choices for defining the ALA,

NAQS or Balkanu validation backgrounds may have yielded poorer (likely for backgrounds

that are more narrowly defined around presence records than our 15 km buffer) or enhanced

(likely for larger backgrounds that encompass high proportions of unsuitable habitat especially

in the spatially disjunct ALA data set, S1 Fig) performance results. Fourth, the Continuous
Boyce Index validation method is well suited to presence-only validation data but cannot evalu-

ate model specificity, i.e. its ability to correctly predict absences and minimize false positives

[64,67]. Finally, we applied the same expert-elicited mobility thresholds and distance-depen-

dent response-to-pattern curves to the entire study region and both seasonal scenarios. Yet,

wild pigs may adjust their resource-seeking home range movements to environmental condi-

tions [17,21,73] and in fact respond to aspects of landscape structure other than distance such

as resource composition or heterogeneity [76].

A listing of study limitations is most useful for guiding future research. We refer to van Klin-

ken et al. [42] who suggest methods to evaluate possible errors in expert-elicited models. In par-

ticular, our study may be usefully improved by: (1) systematically collecting presence/ absence

data, also from resource-poor environments, to eliminate reporting bias in validation data and

enable evaluation of both model sensitivity and specificity; (2) field-validating the accuracy of

spatial data proxies and whether they match the states of model explanatory variables; and (3)

revising model parameters with experts from the Northern Territory and Western Australia;

and conducting a multi-scale study [59,77] to better understand wild pigs’ response to spatial

patterns of resources with varying quality in different types of environments.
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Management implications

Our regional-scale, seasonally-specific and rigorously validated results can serve to better man-

age the impacts of wild pigs in northern Australia. For example, we estimated habitat suitabil-

ity per broad vegetation and land use types. When combined with information on impacts or

costs in each category [12,29,78], this may help to more accurately quantify environmental or

economic impacts across any area of interest. Habitat suitability could also be analysed in

other management units to justify investments in population control or, if verified by stratified

field surveys, to serve as a monitoring baseline in adaptive management programs. Further,

because habitat suitability was explicitly referenced to wild pig breeding herds, it is a useful

indicator of establishment risk for infectious animal diseases, which often depend on a persis-

tent supply of young susceptible animals [27,28]. Habitat connectivity for wild pigs is also a

critical parameter in understanding disease spread, but has not been explicitly studied in

northern Australia. Future models may integrate validation results from this study to derive

habitat quality thresholds for patch delineation [67] and inverse habitat suitability to define

resistance to movement, i.e. the cost of traversing habitat of different quality [79]. Finally, our

resource-based model captures the relative importance of four habitat requirements as well as

spatial interactions such as landscape complementation or supplementation [80]. This knowl-

edge may be used to manipulate resource access at strategic locations (e.g. by exclusion fencing

or local eradication) and model the effect on habitat suitability and connectivity within the

broader landscape.
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