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Abstract: The whole world is currently focused on COVID-19, which causes considerable economic
and social damage. The disease is spreading rapidly through the population, and the effort to stop
the spread is entirely still failing. In our article, we want to contribute to the improvement of the
situation. We propose a tracking system that would identify affected people with greater accuracy
than medical staff can. The main goal was to design hardware and construct a device that would
track anonymous risky contacts in areas with a highly concentrated population, such as schools,
hospitals, large social events, and companies. We have chosen a 2.4 GHz proprietary protocol for
contact monitoring and mutual communication of individual devices. The 2.4 GHz proprietary
protocol has many advantages such as a low price and higher resistance to interference and thus
offers benefits. We conducted a pilot experiment to catch bugs in the system. The device is in the
form of a bracelet and captures signals from other bracelets worn at a particular location. In case
of contact with an infected person, the alarm is activated. This article describes the concept of the
tracking system, the design of the devices, initial tests, and plans for future use.

Keywords: COVID-19; human interactions tracker; 2.4 GHz proprietary protocol; body temperature;
wearable device; telemedicine

1. Introduction

Global interconnections bring today not only great benefits but also significant risks.
One of them is the rapid spread of infectious diseases in the population, as we have
seen recently. In December 2019, a novel coronavirus, now named severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), caused a series of acute atypical respiratory
diseases. The disease was termed coronavirus disease 2019 (COVID-19) [1] and has be-
come a pandemic. The number of deaths from COVID-19 is continuously rising. To
date, 249,522,981 positive cases and 5,048,656 deaths have been confirmed worldwide.
In Slovakia, which has 5,460,000 habitants, 506,795 positive cases were identified and
13,166 people died as a direct result of the disease [2].

The World Health Organization (WHO) has issued a series of recommendations to
slow down the spread of COVID-19. In particular, they discussed the necessity to reduce
social activity and maintain physical distance. Many countries began to implement social
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distancing and different forms of lockdowns [3]. However, in certain situations, it is
impossible to maintain limited contact between people. The world continues to move, and
everyone has to meet their living needs. The risk of infection is high in these interpersonal
relationships. In particular, infected people who have not been positively identified and are
asymptomatic carriers pose a risk [4]. In Slovakia and many other countries, the persons
who have recently come into direct contact with a positively tested person are contacted
by healthcare staff. If they are not vaccinated, they are subsequently sent to quarantine
and undergo a polymerase chain reaction (PCR) test. The disadvantage of this early
warning system is the incomplete capture of carriers. It is practically impossible to detect
asymptomatic individuals who do not know they are transmitting the virus and warn
anonymous foreign people who have met the infected person. Additionally, the current
overloaded situation precludes this manual tracking and makes it almost impossible and
prone to human error.

It is precisely due to these shortcomings that a suitable solution is sought with the
help of appropriate telemedicine facilities. To support the fight against COVID-19, the
Slovak Republic came up with a supporting specific research project. The Faculty of
Electrical Engineering and Information Technology at the Slovak University of Technology
in Bratislava and the Jessenius Faculty of Medicine in Martin, Comenius University, began
to develop technical and methodological procedures to slow the spread of the disease
and monitor positive patients or people exposed to the virus. Our aim was to develop
an automated contact tracking system using portable devices, which allows more reliable
tracking of anonymous social interactions and is attractive for people. People exposed to a
positive person at a time when the person did not yet know about the virus infection will be
additionally informed of the situation and level of threat and advised to take the necessary
steps to prevent the transmission of COVID-19 and reduce the reproductive number.

The alarm (threat level) is displayed optically via RGB light emitting diodes (LEDs) in a
bracelet. The user can also check their status using the web interface, and if the wearer pairs
the bracelet with their phone, he or she may also receive an SMS notification. However, it
must be clearly stated to the wearer that the bracelet does not check their current state of
infection in any way. It only tracks contacts and helps to find at-risk contacts. It may be
advantageous if these portable tracker devices also include sensors for monitoring human
physiology. In particular, measuring body temperature can provide information about the
disease and give an early indication of elevated body temperature. The person will be
informed and can seek professional help for a test. In the initial stages, of course, we do not
calculate the mass deployment of the tracking system. As in several other countries, the
facility is planned to be deployed primarily in places with a high concentration of people
where it is impossible to trace contacts, such as large factories and mass social events.
Compared to other tracking devices, our design offers a few original solutions and benefits.
The user can remain significantly more anonymous, and using the 2.4 GHz proprietary
protocol is especially cheaper and more resistant to interference. The extended range of
this signal can be used for contact tracing and mutual communication. This configuration
required the development of its detection gateway, but the energy expended brought great
benefits. The Nordic 2.4 GHz proprietary protocol was chosen because of its simplicity
and low power consumption. It uses the same frequency and modulation as the Bluetooth
Low Energy (BLE) protocol. The company Nordic has allowed direct access to the physical
layer of the Bluetooth stack, which allows for simple, fast, and low-power communication
protocols to be created. Through direct control of the packet size and transmission times
of the radio transceiver hardware, we can achieve better control of packet handling and
power management. The precise assessment of the timing of packets and their size by the
microcontroller unit is used to determine the length and approximate distance of contact
with another tracker. Firmware does not need to include the entire BLE software stack
in order to use the proprietary protocol, which makes the firmware smaller and makes
debugging and modification of the firmware easier. Restricting transmission times also
allows for more devices to be transmitting simultaneously without interference occurring.
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Thanks to these systems, we can ideally protect the most vulnerable population groups,
such as the elderly or chronically ill patients. Regarding personal data, we follow the basic
principle of General Data Protection Regulation (GDPR).

2. Symptoms, Transmission, and Monitoring of COVID-19 Physiological Manifestations

COVID-19 is a respiratory disease affecting the human respiratory system directly.
The SARS-CoV-2 virus produces clones in the human body, leading to the continuous
transmission of the disease. Therefore, the isolation of infected individuals is essential
for people’s lives in society [5,6]. The average time from exposure to onset of symptoms
is 5 days; 97.5% of people develop the symptoms within 11.5 days [7]. Approximately
5% of COVID-19 patients and 20% of hospitalized patients experience severe symptoms
requiring intensive care, including difficulty breathing, increase in heart and respiration
rate, depletion of blood oxygenation (SpO2 level under 93%), severe cough, deviation in
the electrocardiographic signal, and an increase in body temperature [8–11], as well as
other symptoms. Overall, the symptoms of COVID-19 are extremely heterogeneous and
dependent on the individual. Some patients have minimal symptoms while others develop
worse symptoms, with some leading to acute respiratory distress syndrome (ARDS) with
hypoxemia [1,12,13]. If presenting severe symptoms, the patient may become critical [14].
More than 75% of patients hospitalized with COVID-19 need oxygen supplementation.
In Slovakia (updated data 19 October 2021), 23% of hospitalized patients have a difficult
course, of which 52% are on oxygen supplementation [15]. The most common symptom of
COVID-19 is increased temperature (70–90%), which we also focused on in the development
of our device, followed by dry cough (60–86%), shortness of breath (53–80%), fatigue (38%),
myalgia (15–44%), nausea/vomiting or diarrhea (15–39%), headache, weakness (25%), and
rhinitis (7%) [16]. About 3% of patients experience loss of taste functions (ageusia) and loss
of the ability to detect smells (anosmia) [7].

2.1. Ways of Spreading Diseases

The most beneficial protective step in COVID-19 disease is to not become infected. It
is estimated that 48 to 62% of transmissions can occur via pre-symptomatic carriers. The
virus spreads relatively quickly from an infectious person to another person. However, it is
not clear how exactly the virus particles are transmitted and how infectious they are [17,18].
Epidemiological data suggest that the most common transmission is through the air during
personal contact, especially small droplets of aerosols from talking, breathing, sneezing,
coughing, or interacting with surfaces on which the drops have fallen [19]. The drops can
be inhaled or spread through the mouth, eyes, or nose. Detection of viral nucleic acid in
the air does not mean that the particles in the air are infectious [20]. Researchers have
found viral ribonucleic acid (RNA) in air samples in hospital rooms used to treat people
with both severe and mild COVID-19 disease [21]. However, none of the samples were
infectious in cell culture experiments. When breathing without a cough, viral particles
produced by patients may not always be viable. In another study, the researchers showed
that the virus can stay in an aerosol for at least 3 h and still be infectious [22]. There are
various controversies about the size of the droplets, the infectivity of the virus, and whether
sick people produce enough infectious droplets or what the infectious dose is. The time
and proximity of the infected person play an important role in the transmission of the
virus. Brief contact (in 45 min) certainly produces enough particles to cause infection [18].
Long-term exposure (within 1.8 m for at least 15 min) and shorter exposure to individuals
with symptoms are associated with a higher risk of transmission. Short exposures to an
asymptomatic contact carry a lower risk [23,24]. Another study indicated a safe social
distance of 1.6–3.0 m for large droplets from a discussion and up to 8.2 m considering
all droplets. Some scientists also claim that room ventilation and various disinfection
systems reduce the infection risk [25]. The second transmission route can be through
touching surfaces where the virus droplets have fallen [14,21]. SARS-CoV-2 can remain
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on dry materials for several days under suitable conditions. Contact spreading through
contaminated surfaces occurs to a lesser extent [19].

As the virus can spread rapidly, preventive instructions have been introduced world-
wide, such as social distancing and the use of protective masks. However, their effectiveness
is not 100%, and the virus is spreading despite epidemiological recommendations. The
problem may be insufficient airway coverage with a material that provides an efficiency
above 50% (e.g., cotton, natural silk, and chiffon) [26] or transmission through surfaces.
There is an inverse relationship between humidity and ambient temperature and the length
of virus survival on surfaces. It lasts well in an air-conditioned environment inside [27,28].
However, this may not be the case for all systems [29]. The virus is also stable on human
skin, so hygiene and disinfection are crucial. SARS-CoV-2 can be quickly deactivated by
UV radiation. The sun has a similar effect, and the pandemic is weaker in the summer as
well [30]. These findings suggest that transmission occurs mainly indoors. It also happens
because people inside are in closer contact, and therefore, the transmission of the disease is
more prominent. Our device could, thus, find the best use inside.

2.2. Temperature as an Indicator of Human Health Condition

The most common symptom of COVID-19 is fever. Although it does not occur in all
patients, it can help capture at least some patients. Elevated temperature is a non-specific
marker of the whole spectrum of predominantly infectious diseases. From an evolutionary
point of view, this is the most conserved response to an infectious stimulus. Interestingly, it
is a very common symptom in COVID-19 (about 60% of patients in Slovakia and 70–90%
worldwide [16]). The mean time for elevated body temperature is 10 days and correlates
with clinical, laboratory, and radiological improvement.

To date, there are insufficient data to determine the type of temperature curve typ-
ical for COVID-19. Elevated body temperature at the beginning of disease during the
virus replication phase is a physiological response to the onset of immunity. In cases of
extreme inflammatory reaction, the fever reappears or continues, which is already coun-
terproductive for the patient [31]. Overall, different authors have dissimilar attitudes to
the temperature measures. The work of Schneider et al. [32] points out that fever is an
insufficient indicator of the disease, mostly in younger age groups with mild to moderate
disease (approximately 48% of cases, more often younger and women). Therefore, selecting
individuals who develop fever may be important for faster diagnosis and subsequent
isolation. Several papers [33–37] present the possibility of predicting mortality through
temperature detection, so it is necessary to monitor and evaluate this parameter regularly,
especially in intensive care units. However, it is not entirely clear whether achieving nor-
mothermia has a positive or negative effect in patients with a severe course of the disease.
The onset of febrile illness caused by SARS-CoV-2 is unpredictable, and during the disease,
the body temperature change develops individually for each patient.

Measuring the temperature of people outside the hospital in ordinary life is more
difficult. Non-contact thermometers are used at the entrances to buildings where larger
groups of people concentrate [38,39]. The study of Stave et al. [40] involved performing a
number of screenings in the workplace and found that only one case out of 40 was detected.
There may be variations due to different temperature screens when using instruments
that measure the surface temperature of the skin and not the core temperature. Thermal
camera measurement is challenging and inaccurate [41–43]. It has a larger measurement
deviation than conventional thermometers and is sensitive to the environment. Moreover,
activity of the human body can increase the temperature, but unlike the disease, it does
not increase for a long time and can be easily recognized [42]. There are studies [44] that
compare the accuracy of peripheral thermometers to central ones (catheters inside the
body). As a result, peripheral thermometers do not have the required accuracy for the clinic
but are commonly used in households and may find application in monitoring changes in
a person’s temperature. The use of fever as a measured parameter is of little benefit [45],
but it still identifies at least a certain number of carriers.
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In general, temperature measurement and human monitoring could give better results
than temperature measurement alone. Furthermore, the implementation of temperature
measurement in the device is straightforward and low-cost.

3. State of the Art of Monitoring Devices

Several comprehensive solutions are available that differ in their approach to mon-
itoring patients with COVID-19. Some of them are systems to collect data using control
questions about the patient’s health and contacts from specialized applications sending
data to the back-end database. From there, information is distributed to the healthcare
provider [46]. The main benefit of this solution is eliminating the first doctor–patient
contact, which directly prevents potential transmission to medical staff. The disadvan-
tage is the patient’s potential misunderstanding or neglect of the control questions. This
directly leads to misdiagnosis and prolongation of convalescence. It also does not allow
real-time monitoring.

The next logical evolution is remote monitoring systems, where the vital signs are
measured automatically and sent for analysis [47]. Systems on this basis consist of one-way
communication, where measured data are sent to medical staff. Biometric devices worn
on the body or implanted in a patient form a wireless network, as described in several
scientific publications and works [48–50]. A more exciting project [51] shows a system
that monitors the quarantined person’s body temperature, exercise activity, and indoor
condition. However, despite the possibility of immediate detection of a change in the
anamnesis, the declared system does not address the potential transmission of infectious
disease. Furthermore, privacy and security issues related to COVID-19 prognosis and
diagnosis are discussed through country case studies [52]. Yousaf et al. [53] explained the
existing conflict between access to data and better services. They proposed permits for the
collection and publication of COVID-19 patient data.

In addition, systems make it possible to identify an individual exposed to a disease
transmitted by another person by safely monitoring interactions via smartphones between
individuals that can be used during a public health emergency [54]. We also found two
more interesting patents. The first [55] is a general model of various interactions adapted
to the spread of diseases without a detailed description of the technical solution. The
second one [56] is a proximity network map that defines who and what objects have
come in contact with each other, including location and time. This map selects the list
of people who have come into contact with known infected people based on contagious
disease epidemiology criteria. Each person is carrying a proximity-sensing unit with a
unique ID that records all other units encountered over time. Interactions are measured
using a 900 MHz network, the exact location is recorded, and the movement of people is
predicted. This system is considered mainly in terms of quarantine compliance. EIT Digital
complements the smartphone-based approach with solutions based on physical tokens.
Following a public call, EIT Digital received more than 60 expressions of interest. Thus
far, they are active in four regions: Nordics, Benelux, Italy, and the UK. Token systems
are easy to use, secure, and preserving and operate independently of mobile phones. All
pilots have one thing in common: anonymity. Device wearers are anonymously notified
if they have been in contact with a fellow wearer that has been infected with COVID-19.
C-Detect is the name of the device in the United Kingdom [57]. It is attached to a bracelet
and checks the respiratory rate, oxygen saturation, heart rate, and body temperature every
10 min. The first deployment is planned in hospitals. Crowdband has been developed in
Benelux [58] and is also in the form of a wristwatch. The devices detect proximity and
exchange anonymous IDs via broadcast radio. The bracelet system will be tested at football
matches and major events such as concerts. In both cases, visitors will be offered to pick up
and carry the equipment upon entry. Notification of other users in case of infection will
remain voluntary. In Italy, the IprotectEU pilot project uses a bracelet-like token system.
The initial phase will take place in a high school, followed by a factory, then an opera
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house, and finally a large concert venue. The Nordic pilot project is designed to operate in
a hospital environment and on construction sites [51].

The alternative is using a decentralized network of devices (MESH network), working
on the principle of proximity detection [59]. Interaction data are encrypted and can poten-
tially be disseminated as a blockchain. The advantage is the security and anonymity of the
system, but the potentially long time to spread data over this type of network is a major
disadvantage. Moreover, due to the limited range of communication, such a system will
become effective only with a higher percentage of devices in the population.

Many countries have also launched contactless smartphone solutions. For example, in
German or French restaurants, it is possible to register at a table using the QR code for the
place, and in the event of an infection in the relevant future, information on this risk will be
provided. This ensures that the COVID-19 database for a particular restaurant contains
only the actual guests who have arrived and the time stamp. Thus, all vulnerable persons
will be informed without fail [60]. After scanning the QR code, the guest fills in all the
necessary data in the form. The data are automatically transferred to the database and kept
there for a maximum of 4 weeks [61].

Likewise, the Slovak Republic does not want to be left behind, and our project for an
anonymous interaction tracking device (without a mobile phone) has started.

4. Design of the Tracking System
4.1. Principle

A tracking system has been developed to slow the spread of highly infectious diseases
such as COVID-19 (Figure 1). For primary deployment, interior areas such as schools,
hospitals, shops, post offices, large companies, and museums are considered. The main
task of our facility is to monitor human interaction and, in the event of an infection, to track
down the people who have been in direct contact with the infected person. In addition,
measuring other physiological parameters will be a bonus and can make the device more
attractive for future users.
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the elemental principle of detection, communications with the server, and users’ notifications;
Back-End—software part which consists of server-hosted network of contacts and server processing
of warnings; Front-End—software logical block of the functions of user interface (UI).
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The system is based on a wristband tracking device (Figure 2) that records contact
duration and distance from other people wearing compatible trackers by measuring the
received signal strength indicator (RSSI) and packet loss of a 2.4 GHz proprietary packet
signal. The proprietary 2.4 GHz protocol was chosen for its low cost, lowest power
consumption, ideal network topography, more effective data transfer, small memory usage,
and long signal range [62,63]. However, in the 2.4 GHz frequency range, Wi-Fi networks
are the primary source of interference. We chose to use the 2.4 GHz proprietary protocol
and not Wi-Fi or Bluetooth because it uses different encoding and we can also change the
wave modulation to minimize interference.
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Figure 2. Designed hardware in the tracking system: (left/right) tracking device with alarm on/off
tracking the length and duration of the mutual contact; (middle) detection gateway collecting data
from trackers and communicating with the back-end.

If one person becomes COVID-19-positive, the system warns people who have been
exposed to increased contact with that person in the relevant past. The warning occurs
either on the principle of light signalization through RGB LEDs directly on the tracker or
via a secure web interface. The degrees of risk of infection are graded on the principle of
traffic lights. All limit parameters such as contact duration and distance, length of tracking
history, etc., are fully adjustable and can be configured according to the current instructions
or hygiene standards. In the future, this will allow us to easily modify the system to
consider an infectious situation, incoming mutations, and other infectious diseases. The
limit parameters are set according to the recommendations of the Slovak public health
authority for a contact distance of 2 m, a duration of 15 min, and a history of 14 days.

The tracking device also has a built-in thermal sensor that can continuously measure
the temperature of the human body. After setting the body temperature limit and exceeding
it, a notification is sent to the wearer. Body temperature, especially its changes, is a useful
tool for monitoring the status of the infection. It is planned to estimate the correlation
between changes in body temperature and the current state of COVID-19 infection.
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The essence of the technical solution lies in the wireless proprietary 2.4 GHz protocol
communication between individual tracking devices with a specific and unique identifier
(ID). First, the personal tracking device scans all other system tracking devices it encoun-
ters and records contact distances, durations, and IDs to the internal memory nonstop.
Subsequently, the scanned data are sent to the back-end database system and processed
into the personal contact network of the individual system tracking devices. Finally, the
data transmission between the tracking device and the back-end database system is re-
alized anonymously using the same 2.4 GHz protocol at the sampling points in exposed
places (gatehouses, entrances, elevators, etc.) via the detection gateway (Figure 2, middle).
After mass expansion, it will be possible to use mobile phones as a collection gateway.
Therefore, all hardware parts are ready for Bluetooth already. The tracking devices and
the detection gateway are not equipped with a GPS module or any other form of position
recorder. The tracking devices are also anonymized, and the data from the device are not
distributed online.

The monitoring device is supported by the user interface and the database system
(back-end), which provides a central computing point and uses extensive algorithms
according to the data of experts such as epidemiologists, etc. Within the user interface,
there is no link between the tracking device and the names of specific people. The database
system (back-end) ensures the storage of personal data associated with the device using a
unique identification code. An essential part of such a system is the security and encryption
of personal data to prevent misuse by third parties and to ensure compliance with GDPR
rules. Within this system, incoming data from tracking devices are also constantly collected
and processed. This processing aims to create a network of personal contacts of individual
tracking devices. The database system can use statistical tools to improve evaluation and
reporting procedures. For better threat assessment, the contacts in this network can be
divided according to the exposure level into any optional categories: moderate and high
exposure categories. The first category includes indirect contacts with infected persons
lasting less than x min and/or at a distance of more than n meters. The second category
includes contacts with an infected person lasting more than x min and/or at a distance of
less than n meters. The parameters x and n are adjustable values. These outputs, in the
form of a network of contacts, can be used by the early warning method. In the event of a
change in the status of a specific identifier, the system automatically evaluates the output in
the form of a database of tracking device carriers exposed to close contact with the disease.
To these people’s tracking device, a notification and distance data will be sent, and the
contact time will be anonymously accessible from the user environment.

The network of contacts is also accessible in its anonymous form (Figure 3), after
entering the unique hardware ID, within a web application that serves as an interface
for the user and can fully provide extensive data, including identifying infection risks.
This part is very important, especially for people who wear trackers, such as workers in a
large company where the tracking device cannot be directly connected to a specific person.
Pairing a mobile phone with a specific tracking device can be performed using a QR code
or near field communication (NFC).

4.2. Hardware Design and Technical Specification

The heart of the tracking device (Figure 4, Table 1) as well as the detection gateway
(Figure 5, Table 2) is the nRF52840 microcontroller unit (Nordic, Oslo, Norway). The
nRF52840 unit is built around a 32-bit ARM® Cortex™-M4 processor with a floating point
unit running at 64 MHz. It has 1 MB Flash, 256 kB RAM, and protocol support for Bluetooth
LE, Bluetooth mesh, Thread, ZigBee, 802.15.4, ANT, and 2.4 GHz proprietary stacks. In
our application, we use the latter 2.4 GHz proprietary protocol for mutual communication
and tracking. For the tracking device, this is performed specifically with the BL654 (Laird
Connectivity, Akron, OH, USA) chip, and for the detection gateway, the BL654-PA chip,
where the communication range is extended via a low-noise amplifier (LNA) and dipole
RF antennas. The maximum communication distance in an ideal open space is 1.6 km, but
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from a real test inside a building, we can guarantee a fully sufficient 50 m. The stored data
are immediately transferred if the tracker approaches the detection gateway zone.
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Figure 3. User interaction: linking a mobile phone to a tracking device. Graphical interpretation
of the use case of the tracking device in a specific area, such as automotive facilities, shopping
centers, etc. The use case includes fundamental features of the proposed system. All processes can
be described as follows: (I) log in to the web application; (II) reach the monitored space; (III) link
the web application to the tracking device; (IV) the tracking device establishes contact with other
trackers in the area; (V) termination of activities and return of the tracking device and simultaneous
(VI) creation of a network of contacts, which can be used if (VII) users change own status; and finally,
(VIII) a notification is sent.

Table 1. Tracker device parameters.

Tracking sensor
Communication protocol

RSSI
Receiver sensitivity

Laird BL654
Proprietary 2.4 GHz

1 dB resolution
−95 dBm (1 Mbps)

Microcontroller

Nordic nRF52840
64 MHz Cortex-M4 with FPU

1 MB Flash, 256 KB RAM
2.4 GHz Transceiver

Real-time clock
Accuracy

Micro Crystal RV-8263-C7 RTC
±20 ppm @ 25 ◦C



Sensors 2022, 22, 526 10 of 21

Table 1. Cont.

Tracking sensor
Communication protocol

RSSI
Receiver sensitivity

Laird BL654
Proprietary 2.4 GHz

1 dB resolution
−95 dBm (1 Mbps)

Temperature sensor
Range/Accuracy

Resolution
Body contact

Silicon Labs SI7051-A20-IM
35.8–41 ◦C/±0.1 ◦C
20–70 ◦C/±0.13 ◦C

14-bit
Surgical steel

Barometer
Range

Precision/Absolute accuracy

Infineon Technologies DPS310
300–1200 hPa

±0.002 hPa/±1 hPa

Internal memory
Format

Size
Clock

Macronix MX25R1635FZUILO
Flash
16 Mb

33 MHz

Dimensions (case) Ø 46 × 13 mm

Weight 30 g (strap included)

Power supply
Battery life
Charging

3.7 V Li-Pol 300 mAh
Approx. 80 days

60 min via a micro-USB connector

Next features

RGB LED signalization
Switch on/off by unplugging/plugging to the

charger
Service button
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Figure 4. Tracking device block diagram and realized printed circuit board (PCB): Power
management—integrated circuit (IC) responsible for charging the battery and maintaining a stable
supply of voltage for the microcontroller unit (MCU) and other circuit logic; Alarm—RGB LED
signalization; RTC—time recorder; Watchdog—component for resetting the system in case of MCU
error; Barometer—atmospheric pressure monitoring; Temperature sensor—wrist temperature moni-
toring; Flash—long-term non-volatile storage for the MCU; User Interface—buzzer and button to
communicate status, battery level, and syncing operation to the user; LAIRD BL654—main MCU
used to control the connected components and direct operations of the device.
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management—integrated circuit (IC) responsible for charging the battery and maintaining a sta-
ble supply of voltage for the MCU and other circuit logic; LTE/Wi-Fi—back-end communication;
Rx 2.4 GHz—communication with tracking devices; Flash—long-term non-volatile storage for the
MCU; User Interface—communication of status and syncing operation to the user; LAIRD BL654-
PA—main MCU used to control the connected components and direct operations of the device.

Table 2. Detection gateway parameters.

Microcontroller

Nordic nRF52840
64 MHz Cortex-M4 with FPU
1 MB Flash, 256 KB RAM
2.4 GHz transceiver

Tracker communication
Communication protocol
Receive sensitivity
Signal zone

Laird BL654-PA extended with LNA
Proprietary 2.4 GHz
−98.5 to −107 dBm
Ideal: 1.6 km (outside)/Real: 50 m (inside)

LTE
Data transmission
Data rates

Quectel EG912Y
LTE, GSM/GPRS/EDGE
10/5 Mbps (downlink/uplink @ LTE FDD)

Wi-Fi
Wi-Fi protocol
CPU

Espressif ESP32 WROOM
802.11 b/g/n (802.11n up to 150 Mbps), 2.4 GHz
ESP32-D0WD-V3 Dual Core 240 MHz

Antenna
Number × connector
Peak gain

Laird 2.4 GHz Dipole RF
2 × SMA
+2 dBi

Internal memory
Format
Size
Clock

Macronix MX25R6435FZNIL0
Flash
64 Mb
80 MHz

Dimensions (without antenna) 105 × 105 × 27 mm

Weight (without antenna) 100 g

Power supply 5 V/4 A via power jack

The Laird BL654 tracking device in an actual configuration is capable of detecting
other trackers in a mutual distance of 2.5 ± 1.5 m. In our case, the distance measurement is
specifically based on a combination of the received signal strength indicator (RSSI) and a
number of packet losses [64,65]. Packet loss describes packets of data not reaching their
destination after being transmitted across a network. In our system, we know the number
of packets sent per second. Packet loss in our case mostly depends on the distance and
location of the people. By combining two parameters, we increase the reliability of the
system. If one of the given values is out of range, the persons are at a safe distance, the
packets are discarded, and the contact is not recorded. These properties can be changed
during debugging. Contact time is an adjustable parameter at compile time. Thus far, this
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is conducted so that the tracker looks around every minute and saves the IDs of all trackers
whose RSSI and packet loss meet the conditions. Once every 4.5 min, it then filters out
those it has seen at least twice and marks them as a contact.

The built-in thermometer is SI7051-A20-IM (Silicon Labs, Austin, TX, USA). The
SI7051 thermometer is based on a band-gap temperature sensor element and offers an
accurate, low-power, factory-calibrated digital solution ideal for measuring temperature in
telemedical applications. In the range of human body temperatures (35.8–41 ◦C), it offers
an excellent accuracy of ±0.1 ◦C, or 0.13 ◦C at a range from 20 to 70 ◦C. The sensor is
connected to the human body via a plate of surgical steel placed on the bottom part of
the tracker.

During the initial phases, we found insufficient accuracy of the internal real-time clock
(RTC) and therefore expanded the tracker with an external RV-8263-C7 RTC (Micro Crystal,
Grenchen, Switzerland). The selected RTC has a drift of 10 s per month on average and
its own backup battery in case the main battery has run out so the device can keep track
of the records. The tracker can store acquired data in internal storage. Specifically, the
16 Mb model MX25R1635FZUILO (Macronix, Hsin-chu, Taiwan) works at 33 MHz clock
speed. Note that about 200,000 meeting records can be stored on a 16-megabyte memory.
The tracker’s functionality is complemented by RGB LED signalization. The power for the
device is provided by a 300 mAh Li-Pol battery, which gives us an estimated endurance
of 80 days. Switching on/off is provided by the device unplugging/plugging into the
micro-USB charger. Recharging to full condition takes 60 min. There is also a service button
on the device. It is currently used to verify the tracker’s status (via LED signalization) and
force the sending of the recorded data. The tracker has an ergonomic design with small
dimensions. Without a strap, the tracker body has a diameter of 46 mm and a height of
13 mm. The total weight (strap included) is 30 g.

In addition to the mentioned data collection from the tracker entering its signal
zone using the proprietary 2.4 GHz communication protocol of the BL654-PA sensor,
the detection gateway must, of course, ensure the transfer of these data to the back-end
and database system. The data collected to the back-end can be sent via Wi-Fi using
an ESP32 WROOM chip (Espressif Systems, Shanghai, China) or, in the absence of a
Wi-Fi signal, via an LTE network thanks to an EG912Y chip (Quectel, Shanghai, China).
Espressif’s ESP32 WROOM is a powerful low-energy Wi-Fi + Bluetooth/Bluetooth LE
module targeted for a wide variety of IoT applications. The Quectel EG912Y module
is optimized especially for machine-to-machine (M2M) and IoT applications with LTE,
GSM/GPRS/EDGE data transmission.

The role of the detection gateway is not to store the collected data but to send them
instantly via an Internet connection to the server for further processing. However, in
case of signal failure, we installed 64 Mb MX25R6435FZNIL0 internal memory (Macronix,
Hsin-chu, Taiwan), which is flash memory running at 80 MHz. The device dimensions
are 105 × 105 × 27 mm (without antenna). The total weight without antennas is 100 g.
The gateway power supply is 5 V/4 A via a power jack. The device can serve about
10 to 100 trackers at one time, depending on the type of operation. We achieved a total
transmission of approximately 100 meeting records per second. In detection gateway
overload, the customer should understand that he or she must equip the premises with an
additional number of gateways.

4.3. Back-End and Software

A key element in establishing a reliable telemedicine system to support the tracking
of the possible spread of infections is to build a strong background for the transmission,
storage, and evaluation of large amounts of data regarding their sensitivity. The basic
back-end configuration was prepared and tested, and the software protocols were set
(Figure 6). The future implementation is beyond the scope of this paper.
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Figure 6. Back-end system configuration: Devices and users with communication lines and back-end
system/applications organization.

The back-end manages information about the tracking devices belonging to it and
receives, records, and evaluates interactions between the users of the trackers while contin-
uously creating a network/graph of interactions. For example, suppose a user reports a
relevant infection. In that case, it searches for the contacts in the interaction network and
creates an alert for the affected users via LED signalization on specific trackers, SMS, or
e-mail.

In detail, the back-end server using the application programming interface REST API
(RedHat, Raleigh, NC, USA) collects individual messages from all detection gateways and
replicates the entire contact report from tracker devices. Communication runs via https
using a self-signed certificate. Individual recordings from trackers are base64-encoded.
This report is transmitted in binary form, then decrypted and inserted into the PostgreSQL
primary database. Authorization to the back-end for the detection gateway is realized by
the OAuth2 bearer token. There are four columns of information in the database for further
processing: the ID of the device that saw the contact, the ID of the device that was seen, the
body temperature, and the time it was seen in UNIX timestamp format. The main part of
the server is programmed in Python, and the computational part in C++. The open-source
Apache Kafka platform is used as the streaming platform and for data integration of the
current tracking data. Prometheus with the graphic superstructure Grafana is used as
the monitoring solution. The website is served via an Nginx web server. Client access
to the back-end and the creation of monitoring reports are provided by the API/Web
Socket protocol.

An example of web access to the back-end can be seen in Figure 7. The preliminary
graphic user interface (GUI), called IOT Health, provides the user a direct and efficient
interpretation of data. It is integrated into the individual modules and ensures the normal
operation of the system. IOT Health is our own product used to manage telemedicine
equipment. It allows access to our electrocardiogram (ECG) holters, thermal “coins”, and
just presented tracking device. Figure 7a shows active devices, and Figure 7b shows a 24-h
record of a person’s peripheral temperature as measured by the tracker.



Sensors 2022, 22, 526 14 of 21
Sensors 2022, 22, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 7. Web access to the back-end: (a) IOT Health system with displayed active devices; (b) daily 
graph of the measured peripheral temperature. 

4.4. Functional Testing 
To date, the first 18 prototypes of a tracking device and four detection gateways have 

been produced and tested. The first practical testing took place in the building of our 
school for 3 weeks. The users of the 15 trackers were our colleagues. The participants also 
kept paper records of the meetings (their duration and approximate distance) and their 
overall activities. These were compared with the hardware records. The relevant nine-
floor building area was about 7000 m2, and the detection gateway was located at the gate-
house (floor 1). The back-end server was placed in the laboratory on the sixth floor. Writ-
ten informed consent was obtained from each person in the primary testing. 

Figure 7. Web access to the back-end: (a) IOT Health system with displayed active devices; (b) daily
graph of the measured peripheral temperature.

4.4. Functional Testing

To date, the first 18 prototypes of a tracking device and four detection gateways have
been produced and tested. The first practical testing took place in the building of our
school for 3 weeks. The users of the 15 trackers were our colleagues. The participants also
kept paper records of the meetings (their duration and approximate distance) and their
overall activities. These were compared with the hardware records. The relevant nine-floor
building area was about 7000 m2, and the detection gateway was located at the gatehouse
(floor 1). The back-end server was placed in the laboratory on the sixth floor. Written
informed consent was obtained from each person in the primary testing.
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5. Results of Functional Testing

We managed to build a functional tracking system. The temporary user interface from
the real operation can be seen in Figure 8. In individual lines, the respective encounters (at
a distance of less than 2 m) were recorded. At this stage, the trackers were still assigned
to specific people. For example, in Figure 8, the tracker assigned to “Michal Micjan” can
be seen. The specific record is from 18 March 2021, and there is a mark showing at what
time he was in close interaction with which person. After clicking on the corresponding
interaction, its details will appear. For example, the interaction with “Miro Novota” is
highlighted here (green color). It starts at 11:36 and lasts 110 min. Whether the interactions
were recorded correctly could be verified by checking the “Miro Novota” tracker. Logically,
the interaction should be recorded equally on both trackers. From the overall results,
we can see 97% agreement. Minor inconsistencies in the introduction were caused by a
malfunction of the internal RTC as time shifts of interactions arose.
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Figure 8. Functional testing—temporary user interface: Relevant (under 2 m) contacts of tracker no.
145 (Michal Micjan) on 18 March 2021 are displayed. Highlighted 1.83-h meeting with Miro Novota
at 11:36 a.m.

Figure 9 shows an example of the overall interaction analysis of 10 people over 5 days.
As can be seen, there were two working groups. The first group, consisting of Miro, Vrato,
Miso, Juro, and Adam, was on the second floor. The second group, consisting of Tomas,
Krisztian, Jozo, Lubos, and Ricsi, was located on the fourth floor of our university. The
graph shows that “penetration” contact between these groups was minimal. Miso had the
most “penetration” contact between the groups because he works as a project manager
and has to meet them all. Significant contacts can also be seen between Miso and Miro,
Adam/Vrato, and Jozo/Lubos/Tomas/Ricsi because they share a common office and
between Krisztian/Ricsi, who are brothers and ride to work together. In reality, neural
networks will be deployed on similar models, and the main output is still interactions in
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terms of COVID-19 propagation. Contacts were recorded realistically, and they were not
disturbed by Wi-Fi interferences.
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Figure 10 shows an example of a 24-h temperature record obtained by one tracker
device on 30 November 2021. The graph shows the basic events of the person with the tem-
peratures of specific environments. These data were obtained from paper notes and serve to
justify the temperature changes of the examined person. As we expected, the graph shows
that the measurement of the wrist’s temperature depends on the surrounding conditions
and specific physical activities. Therefore, it is planned to add another thermometer to the
device to record the outdoor temperature, allowing us to evaluate the thermal gradient of
the person better and obtain a more realistic value of the core body temperature. This will
be evaluated internally in the device itself. Long-term temperature change trends will be
significant. In the final analysis, neural networks, which are the main task in the project’s
next phases, will again play an important role.
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During the test, various issues were identified, and intensive improvements were
made to the device. We found that the practical range of the detection gateway towards
the trackers is about 70 m, so we can guarantee a 50-m detection gateway zone. In the
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early stages, we also found problems with the reliability of the internal RTC, so the tracker
hardware was expanded with an RTC extruded circuit RV-8263-C7 with a backup battery, as
mentioned in Section 4.2. Communication from the detection gateway to the back-end took
place alternately via Wi-Fi and 4G LTE. The tracking of contacts and people’s temperature
was completely reliable.

6. Discussion

The hardware design and primary testing were successful. The tracking devices,
detection gateways, and the basic structure of the back-end worked reliably and met all
requirements. The actual device can detect other trackers at a mutual distance of 2.5 ± 1.5 m.
Although this specification may seem inaccurate, it is based on long-term testing in real-
life situations and gives an average distance limit of 2 m. It is necessary to realize that
in real life, people do not stand side-by-side passively, and their positions also change.
They can stand upright, and the trackers will be in direct open contact with the strongest
signal, but if they have their hands behind their backs, the signal will pass through two
bodies, making it significantly weaker. They can sit in a restaurant, and the signal will pass
through the tabletop. They may also have their arms outstretched, in which case the real
distance between the bodies will be greater than it appears from the tracker signal. Thus,
real calibration is not possible; it may thus be useful to define calibration protocols in the
future. Our calibration protocol was performed by empirical measurements. We deployed
the equipment to 15 people who were gradually placed at a distance of 2 m, where they
rotated 360◦, and packet loss and RSSI were evaluated and averaged. Unlike most of
the devices presented in Section 3, our tracking device does not use common networks
such as Bluetooth Low Energy (BLE) and near field communication (NFC) in smartphones
to track contacts [54]; instead, we have chosen the 2.4 GHz proprietary protocol. This
allows us to achieve lower costs, increase communication reliability in a highly disruptive
environment, and stay anonymous. The interference problem did not occur during the
entire testing period in an environment with strong 2.4 GHz RF network coverage. The
range of our network is theoretically up to 1.6 km, so we can use the same network to
monitor the distance of contacts and communicate out to the collection gates. In most of the
presented devices, specific technical data were lacking, and the vast majority completely
neglected collection points, which in our opinion are an integral part of such a system.
Many of the described systems are only in the form of patents [54–56] without any hardware
implementation. The systems closest to our system with a more detailed description of the
technical implementation are in the European region associated with EIT Digital [51,57,58].

Some systems also try to integrate biosignal sensors into tracking devices, which
we consider to be a great idea. Our current device incorporates a temperature sensor.
During the test, we achieved credible results, especially in relatively constant conditions.
Our system relieves staff and reduces the patient’s burden by measuring the temperature
without the need for another person and awakening the patient. A significant advantage
is the possibility of obtaining a statistically larger amount of data and monitoring the
development of temperature trends. It is estimated that strong fluctuations in higher
temperatures are associated with impaired regulation of the body during COVID-19 disease.
In addition to the thermometer, we would like to mention the built-in DPS310 barometer
(Infineon Technologies, Neubiberg, Germany) in the diagram. At present, we mention it
only briefly because it is still in test mode, and the deployment is being considered. In the
near future, the tracker will be further upgraded by a photoplethysmography (PPG) sensor
to detect heart rate and blood oxygenation, which provide interesting data with respect
to COVID-19. In this paper, we have not dealt in detail with wearable monitors of human
physiology. There are already thousands of given products and a nice breakdown can be
found, for example, in our publications [66,67]. However, our device has a few original
solutions and benefits. The user can remain significantly more anonymous than if using a
mobile phone paired with a specific person. We also do not determine the user’s location.
We primarily look for a bracelet that shows the degree of threat. Compared to mobile
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phones, our device also has a significantly longer battery life. Many people, especially the
elderly, do not know how to use or do not have mobile phones. Employers also cannot force
people to install the software on their private phones. Furthermore, in many operations,
the use of mobile phones or cameras is prohibited.

Many of the imaginary competing facilities lack a sufficient description of the technical
solution. Interestingly, we did not find any single device using the 2.4 GHz proprietary
protocol. By using it, our device can be cheaper and more resistant to interference and
we have a greater signal range, so we can solve the monitoring of mutual distance and
communication with only one signal. We made a detection gateway—something similar to
a Wi-Fi router but just communicating on our set proprietary protocol. In parallel with the
production of the tracker, we are also developing wearable health electronics, which has
huge benefits at this time of the COVID pandemic. We plan to combine these solutions into
one and thus gain further attractiveness for future users.

The second phase, which shall come soon, is the complete development of the back-
end and software applications and additional hardware optimization. These activities
will result in neural networks and machine learning focused on automated evaluation,
screening, filtering, and prediction of behavior for the collected data. We will create
predictive models of disease spread based on input data from actually tested samples. An
interesting result may be markers of changes in body temperature for specific groups of
the population in relation to the development of the disease, proving the dependence of
the transmission of the disease on the degree of social interaction. The tracking system is
not necessarily linked only to the current COVID-19 disease; it can be used in the future
for a wide range of infectious diseases such as Crimean–Congo hemorrhagic fever, Lassa
hemorrhagic fever, Rift Valley fever, Ebola virus, Marburg virus, Nipah virus, Middle East
respiratory syndrome, severe acute respiratory syndrome, etc.

7. Conclusions

Here, we introduced the primary development phase of a telemedicine system to
support the anonymous tracking of possible COVID-19 spread. We showed the hardware
design of the tracking devices and collection points (detection gateways) and introduced the
basic concept of the back-end system. After the implementation of appropriate evaluation
algorithms and neural networks, the system will be a powerful tool to suppress the spread
of infectious diseases. The methodology was granted a utility model. In the future, we plan
to expand the system with other sensors of human physiology such as heart rate and blood
oxygenation. After their implementation, a certain version of the holter will be actually
created. An added measurement device of human physiology can make the device even
more attractive for individuals. As a result, people will become interested in the device,
and the need to convince people of the benefits of the product will be reduced.

8. Patents

The tracking system was granted a utility model by the Industry Property Office of
the Slovak Republic under application number 50130-2020; Utility Model Number: 9322.
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