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Abstract

Background: Nuclear factor-kB (NF-kB) is a transcription factor that regulates the transcription of genes involved in a variety
of biological processes, including innate and adaptive immunity, stress responses and cell proliferation. Constitutive or
excessive NF-kB activity has been associated with inflammatory disorders and higher risk of cancer. In contrast to the
mechanisms controlling inducible activation, the regulation of basal NF-kB activation is not well understood. Here we test
whether clathrin heavy chain (CHC) contributes to the regulation of basal NF-kB activity in epithelial cells.

Methodology: Using RNA interference to reduce endogenous CHC expression, we found that CHC is required to prevent
constitutive activation of NF-kB and gene expression. Immunofluorescence staining showed constitutive nuclear
localization of the NF-kB subunit p65 in absence of stimulation after CHC knockdown. Elevated basal p65 nuclear
localization is caused by constitutive phosphorylation and degradation of inhibitor of NF-kB alpha (IkBa) through an IkB
kinase a (IKKa)-dependent mechanism. The role of CHC in NF-kB signaling is functionally relevant as constitutive expression
of the proinflammatory chemokine interleukin-8 (IL-8), whose expression is regulated by NF-kB, was found after CHC
knockdown. Disruption of clathrin-mediated endocytosis by chemical inhibition or depletion of the m2-subunit of the
endocytosis adaptor protein AP-2, and knockdown of clathrin light chain a (CHLa), failed to induce constitutive NF-kB
activation and IL-8 expression, showing that CHC acts on NF-kB independently of endocytosis and CLCa.

Conclusions: We conclude that CHC functions as a built-in molecular brake that ensures a tight control of basal NF-kB
activation and gene expression in unstimulated cells. Furthermore, our data suggest a potential link between a defect in
CHC expression and chronic inflammation disorder and cancer.
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Introduction

Nuclear factor-kappa B (NF-kB) transcription factors control

the expression of genes involved in a large spectrum of biological

processes, including inflammation, adaptive immunity, stress

responses, angiogenesis, cell proliferation and invasion [1,2].

Aberrant regulation of NF-kB activity has been associated with

immune disorders and numerous cancers [3]. Although NF-kB has

been the subject of intensive investigation, the molecular

mechanisms underlying its regulation are not fully understood.

There are five NF-kB isoforms in mammalian cells: p65/RelA,

RelB, c-Rel, p50 (NF-kB1) and p52 (NF-kB2). All these proteins

share a Rel homology domain responsible for homo- and

heterodimerization as well as for sequence-specific DNA binding.

Among the various hetero-and homodimers formed by NF-kB

proteins, the p50/p65 heterodimer is predominant in many cell

types [4]. Dimers of NF-kB proteins bind kB sites in promoters or

enhancers of target genes and regulate transcription via the

recruitment of transcriptional co-activators and co-repressors. A

number of posttranslational modifications of the NF-kB proteins,

including phosphorylations and acetylations, further modulate

DNA binding and, therefore, transcriptional activity [5]. In

absence of stimulation, most of the NF-kB dimers are retained

in the cytoplasm by the inhibitor of NF-kB (IkB) family members

whose prototype is the protein IkBa [4,6,7]. IkBa contains several

ankyrin repeats that mediate the binding to NF-kB dimers and

mask the nuclear localization signal (NLS) of p65. Following cell

stimulation by proinflammatory cytokines, such as tumor necrosis

factor a (TNFa) and interleukin-1, IkBa is rapidly phosphorylated

on serine 32 and serine 36 residues by the IkB kinase (IKK)

complex composed of three subunits: two catalytic subunits, IKKa
and IKKb, and the regulatory scaffold component NF-kB

essential modulator (NEMO). IkBa phosphorylation is then

followed by rapid polyubiquitination and degradation via the

26S proteasome. Released NF-kB dimers translocate into the

nucleus where they drive gene expression [8,9]. As the gene

encoding IkBa is rapidly upregulated following NF-kB activation,

IkBa is promptly resynthesized [10]. Newly synthesized IkBa
proteins bind to nuclear NF-kB dimers and dissociate them from

DNA. This mechanism terminates the transcriptional activity of

NF-kB and resets gene expression to basal level.

Although constitutive NF-kB activation has been associated

with inflammatory disorders and numerous cancers [3,11], the

mechanisms leading to elevated basal NF-kB activation remain
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unclear. Proposed mechanisms include activation of kinases,

overexpression of cytokines, dysregulation of cell surface receptors

and activation of oncoproteins. We recently performed an RNA

interference (RNAi) screen targeting host signaling proteins that

could potentially be involved in the inflammatory response

following infection by Shigella flexneri [12]. From that screen, we

identified clathrin heavy chain (CHC) as one of the proteins that,

when knocked down, strongly enhanced activation of NF-kB. In

this study, we examine the role of CHC in the control of basal NF-

kB activation.

CHC is mainly known as a structural component of clathrin and

for its role in clathrin-mediated endocytosis (CME) [13,14]. The

association of three CHCs and up to three clathrin light chains

(CLCs) forms a clathrin triskelion structure that self-polymerizes to

form a curved lattice around invaginated pits. Through this

mechanism, CHC is involved in the uptake of nutrients, the

internalization of pathogens, the downregulation of certain ligand-

induced receptors and in protein sorting at the trans-Golgi

network (TGN) during protein secretion [13,15,16]. However,

similar to other endocytic proteins [17], CHC appears to perform

multiple functions in cells. It has been reported that CHC is

involved in chromosome segregation during mitosis [18]. In

addition, a fraction of CHC proteins that localize to the nucleus

bind to the p53-responsive promoter and favor p53-mediated

transcription [19].

Here we have used RNAi to effectively knock down CHC in

epithelial cells. Surprisingly, we found that the depletion of CHC

induces constitutive nuclear localization of the NF-kB subunit p65

in absence of stimulation. Elevated basal p65 nuclear localization

was associated with constitutive phosphorylation and degradation

of IkBa via an IKKa dependent mechanism and constitutive

expression of the proinflammatory chemokine interleukin-8 (IL-8),

whose expression is regulated by NF-kB. Interestingly, CHC acted

on NF-kB independently from its roles in CME and from CLCs.

Taken together, our data reveal a new function of CHC in the

control of basal NF-kB activity and gene expression in epithelial

cells.

Materials and Methods

Antibodies and reagents
Antibodies against NF-kB p65, IkBa, CLCa and IKKa were

obtained from Santa Cruz Biotechnology (Santa Cruz, USA) while

the CHC antibody was from BD Transduction Laboratories (San

Jose, USA). The actin antibody was from Chemicon (Billerica,

USA) and the phospho-IkBa antibody was from Cell signaling

technology (Beverly, USA). The anti-mouse IgG-Cy5 was

obtained from Zymed (San Francisco, USA) and the anti-rabbit

IgG-HRP and anti-mouse IgG-HRP from GE Healthcare

(Pittsburgh, USA). Hoechst 33342 and FITC-phalloidin were

from Invitrogen (Carlsbad, USA).

Cell culture and siRNA transfection
HeLa Kyoto [20] and MCF-7 cells (ATCC, Manassas, USA)

were maintained in Dulbecco’s modified Eagle’s medium (high

glucose) supplemented with 10% fetal bovine serum, 100 units/ml

penicillin, and 100 mg/ml streptomycin at 37uC in 10% CO2.

HeLa and MCF-7 cells were transfected with different siRNAs at

10 nM using Lipofectamine 2000 (Invitrogen, Carlsbad, USA).

ON-TARGETplus SMARTpool siRNAs for clathrin heavy chain

(CHC/CLTC, #L-004001-00-005), clathrin light chain a (CLCa/

CLTA, #L-004002-00-005), AP2M1 (#L-008170-00-005), IKKa
(#L-003473-00-005) and ON-TARGETplus siCONTROL were

obtained from Dharmacon (Dallas, USA).

Immunofluorescence and microscopy
Cells were fixed with 4% PFA for 6 min and permeabilized in

0.5% Triton X-100 for 10 min. They were, then, incubated with a

mouse monoclonal p65 antibody (1 mg/ml) overnight at 4uC and

stained with a Cy5-conjugated secondary antibody and Hoechst

(10 mg/ml) for 40 min at room temperature. Images were

acquired at 12 random sites of each well using the automated

ImageXpress microscope (Molecular devices, Sunnyvale, USA).

The nuclear localization of p65 was automatically quantified by

using the Enhanced-Translocation module of MetaXpress (Mo-

lecular devices, Sunnyvale, USA). Briefly, the Hoechst staining was

used as a mask to automatically identify nuclei in the p65 staining

image. The cytoplasmic area of each cell was defined by a ring

around the nucleus. For each cell, the ratio of p65 intensity in the

nucleus and in the cytoplasmic ring defined as the Nuc/Cyt p65

NF-kB ratio was calculated and averaged over several thousands

of cells per well.

Transferrin uptake assay and inhibition of endocytosis
Transferrin uptake was measured as described by Galvez et al

[21]. Briefly, HeLa cells were treated with Alexa 594-conjugated

transferrin (Invitrogen) for 10 min followed by a quick acid wash

to cleave off the receptor-bound transferrin from the plasma

membrane. Cells were then fixed with 4% PFA and stained with

Hoechst. Transferrin uptake was automatically quantified by using

the Multi-wave Length Cell Scoring module of MetaXpress

(Molecular devices, Sunnyvale, USA). To inhibit endocytosis, cells

were pretreated with 80 mM dynasore (Sigma) or 5 mM pheny-

larsine oxide (PAO) (Sigma) in complete growth medium for the

indicated time periods. The inhibitor concentration was kept

constant during the assays. Inhibition of endocytosis was verified

by measuring the uptake of transferrin as described above. For

48 hour of drug treatment, the solution of complete growth

medium containing dynasore was replaced after 24 hours with a

fresh solution. To verify the activity of dynasore after 24 hour of

incubation, the uptake of transferrin was measured in HeLa cells

treated with a solution of dynasore incubated in growth medium

for 24 hours.

Enzyme-linked Immunosorbent Assay (ELISA)
IL-8 secretion was measured by ELISA in the supernatant of

siRNA-transfected HeLa and MCF-7 cells, 72 hours post

transfection. Cell-free supernatants from triplicate wells were

analyzed for their IL-8 content using a commercial ELISA kit (BD

Pharmingen, San Jose, USA). In parallel, cells from the plate were

stained with Hoechst to quantify cell numbers. IL-8 measurements

were normalized to the number of cells for each condition.

Western Blot Analysis
HeLa or MCF-7 cells were transfected with siRNAs in a 6-well

plate. 72 hours post transfection, cells were lysed in Phosphosafe

Extraction Buffer (Novagen, Darmstadt, Germany) supplemented

with 16 protease inhibitor cocktail (Calbiochem, Darmstadt,

Germany). Protein concentration was measured using the

bicinchoninic acid (BCA) kit (Pierce, Rockford, USA). Equal

amounts of proteins were resolved by SDS-PAGE and transferred

to Hybond C-Extra membrane (Amersham Bioscience, Pittsburgh,

USA) for immunoblotting with indicated antibodies. Primary

antibodies were detected using horseradish peroxidase-conjugated

anti-rabbit or anti-mouse IgG antibodies, and visualized with the

ECL system (Pierce). Quantification of the blots was performed

using the densitometry feature of Photoshop.

CHC in NF-kB Signaling
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Quantitative real-time PCR
Total RNA was isolated from control or CHC siRNA transfected

cells in a 6-well plate using the total RNA purification system

(Invitrogen, Carlsbad, USA). cDNAs were generated by using the

Superscript III 1st Strand Synthesis Kit (Invitrogen, Carlsbad,

USA). Real-time PCR was performed on an ABI Prism 7700 system

(Applied Biosystems, Foster city, USA) using the SYBR green PCR

Master Mix (Applied Biosystems, Foster city, USA) to measure

relative IkBa mRNA level in CHC-depleted and control cells.

GAPDH was used as an internal control to normalize mRNA

expression. Each sample was analyzed in triplicate. The primer

sequences used are as follows. IkBa-forward: 59-GACCTGGTGT-

CACTCCTGTTG; IkBa-reverse: 59-CTCTCCTCATCCTCAC-

TCTCTGG; GAPDH-forward: 59-GAAGGTGAAGGTCG GA-

GTC; GAPDH-reverse: 59-GAAGATGGTGATGGGATTTC.

Statistical analysis
Results are expressed as the mean 6 SD as specified in figure

legends. p values were calculated with a two-tailed two-sample

equal variance t-test. p values of less than 0.05 were considered

statistically significant.

Results

CHC prevents constitutive NF-kB p65 nuclear localization
in unstimulated epithelial cells

To investigate the implication of CHC in the regulation of basal

NF-kB activation, we tested whether CHC interfered with the

localization of the NF-kB subunit p65 in absence of stimulation. For

this purpose, HeLa cells were depleted of CHC by transfection with

a pool of four siRNAs targeting CHC. A pool of four none-targeting

siRNAs was used as control in parallel. The efficiency of knockdown

after 72 hours was controlled by measuring the expression of CHC

by western immunoblotting (Figure 1A). The localization of p65 was

visualized by immunofluorescence microscopy with an anti-p65

antibody. As expected, p65 was mostly present in the cytoplasm of

control cells (Figure 1B, left panel). Surprisingly, both cytoplasmic

and nuclear localization of p65 was observed after CHC knockdown

(Figure 1B, right panel). This observation was confirmed by

quantification with automated image processing of the nuclear/

cytoplasmic p65 intensity ratio (Figure 1C). These results showed

that CHC expression is required to prevent constitutive nuclear

localization of p65 in unstimulated HeLa cells.

CHC prevents constitutive IKK-mediated phosphorylation
and degradation of IkBa in unstimulated epithelial cells

The localization of p65 results from a complex equilibrium

between cytoplasm to nucleus translocation and nuclear export

[10]. We analyzed, most specifically, the implication of CHC in

the mechanisms that control the nuclear translocation of p65. In

the canonical NF-kB activation pathway triggered by most stimuli,

this process is tightly controlled by IKK complex-dependent

phosphorylation and proteolytic degradation of IkB proteins. As

we observed more p65 in the nuclei of CHC-depleted cells, we

hypothesized that basal IkB degradation was elevated in these

cells. To directly test this assumption, the level of IkBa in CHC

and control siRNA transfected cells was analyzed by western

immunoblotting. As shown in Figure 2A, a strong reduction in the

level of IkBa was found after CHC knockdown. To exclude the

hypothesis that this diminution resulted from reduced IkBa gene

transcription, the level of IkBa mRNA was analyzed by

quantitative real-time PCR. A two-fold increase in IkBa mRNA

Figure 1. CHC prevents constitutive NF-kB p65 nuclear localization in unstimulated epithelial cells. (A) Effective knockdown of CHC
after siRNA transfection. Lysates from HeLa cells transfected with control (Ctrl) or CHC siRNAs for 72 hours were analyzed by western immunoblotting
using indicated antibodies. Actin is shown as a loading control. (B) Constitutive nuclear localization of p65 after CHC knockdown. HeLa cells were
transfected with either control or CHC siRNA and p65 localization was visualized by immunofluorescence microscopy. White arrows indicate cells
showing a clear nuclear localization of p65. Scale bars, 10 mm. (C) Quantification of the nuclear/cytosolic p65 intensity ratio in control and CHC siRNA
transfected HeLa cells (results are expressed as the mean 6 SD of 12 images; *p = 3.14E-07, graph representative of 3 independent experiments).
doi:10.1371/journal.pone.0017158.g001

CHC in NF-kB Signaling
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was measured after knockdown compared to control (Figure 2B),

indicating that the reduction of IkBa level was not caused by an

inhibition of transcription but, most likely, by constitutive

degradation of IkBa proteins. Because the catalytic subunit IKKa
largely contributes to IkBa phosphorylation and degradation in

HeLa cells [22], we examined the effect of IKKa knockdown on

constitutive IkBa degradation. For this purpose, HeLa cells were

transfected with combinations of CHC and IKKa siRNAs for

single or co-depletion experiments as described in Figure 2C.

When IKKa was depleted, the knockdown of CHC had no effect

on the level of IkBa (Figure 2C), showing that CHC controls basal

IkBa degradation by a mechanism dependent on IKKa IkBa
proteins are subject to phosphorylation by the IKK complex prior

to degradation. Therefore we tested if constitutive IkBa
degradation resulted from an increase of IkBa phosphorylation

(p-IkBa). The phosphorylation at position serine 32 was analyzed

by western immunoblotting using a phospho-specific antibody.

Interestingly, a two-fold increase in the level of p-IkBa was

observed in CHC-depleted cells (Figures 2D and 2E) after

normalization to the level of IkBa, suggesting that constitutive

degradation of IkBa was caused by constitutive IkBa phosphor-

ylation. Taken together, these results showed that CHC prevents

constitutive NF-kB activation in unstimulated HeLa cells by

blocking the spontaneous phosphorylation and degradation of

IkBa by the IKK complex.

CHC prevents constitutive IL-8 secretion in unstimulated
epithelial cells

Previous results indicated that CHC was required to prevent

constitutive p65 nuclear translocation. Because this process

directly contributes to the regulation of gene expression, we tested

whether the presence of CHC was also necessary to prevent

constitutive expression of genes regulated by NF-kB. In particular,

we investigated the expression of the proinflammatory chemokine

IL-8. IL-8 secretion was measured by ELISA in the supernatant of

CHC and control siRNA transfected HeLa cells. In line with the

results obtained on NF-kB activation, knocking down CHC

strongly enhanced basal IL-8 secretion (Figure 3A), showing that,

indeed, the expression of CHC was critical to prevent constitutive

IL-8 expression in HeLa cells. The same result was obtained in the

breast cancer cell line MCF-7 (Figure 3B). Furthermore, consistent

with the results obtained on IkBa degradation, constitutive

expression of IL-8 was massively reduced when IKKa was

knocked down (Figure 3C). Taken together, these results showed

that CHC prevents constitutive expression of IL-8, and that this

new function of CHC in NF-kB signaling depends on IKKa and

corresponds to a general mechanism taking place in different cells

lines.

CHC controls basal NF-kB activation independently of
endocytosis and clathrin light chains

Through its activity in CME, CHC is involved in the

internalization of nutrients, pathogens, antigens, growth factors

and receptors [13,15,16]. To test whether CHC regulated

indirectly the NF-kB pathway via its function in CME, we

measured p65 nuclear translocation and IL-8 secretion in cells

where CME was disrupted by RNAi-mediated depletion of the m2-

subunit of the main CME adaptor protein AP-2 (AP2M1). The

recruitment of AP-2 at the plasma membrane is critical for the

initiation of CME [23]. AP-2 interacts with sorting signals present

Figure 2. CHC prevents constitutive degradation and phosphorylation of IkBa by an IKKa-dependent mechanism. (A) Reduced level of
IkBa after CHC knockdown in HeLa cells. Cell lysates from control or CHC siRNA transfected cells were analyzed by western immunoblotting using
indicated antibodies. Actin is shown as a loading control (representative of 3 independent experiments). (B) Quantification of the level of IkBa mRNA
by quantitative RT-PCR in control or CHC-depleted HeLa cells. GAPDH mRNA was used as an internal control for normalization (results are expressed
as the mean 6 SD of 3 independent experiments). (C) IKKa-depletion abolishes the constitutive degradation of IkBa induced by CHC knockdown.
Lysates from cells transfected with different combinations of IKKa and CHC siRNAs were analyzed by immunoblotting using indicated antibodies.
Total siRNA concentration was kept constant by adding appropriate amounts of control siRNAs. Actin is shown as a loading control (data
representative of 2 independent experiments). (D) CHC prevents enhanced basal phosphorylation of IkBa at position serine 32. Lysates from control
or CHC-depleted HeLa cells were analyzed by immunoblotting using the indicated antibodies. Actin is shown as a loading control. (E) Densitometric
quantification of the p-IkBa/IkBa ratio (results are expressed as the mean 6 SD of 3 independent experiments).
doi:10.1371/journal.pone.0017158.g002
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in the cytoplasmic domains of membrane proteins destined to

become cargo in the coated vesicles. In addition, AP-2 recruits

clathrin onto the membrane, where it functions as a scaffold for

vesicle budding. First, in order to demonstrate that CME was

impaired in AP2M1 and CHC-depleted cells, the CME-depen-

dent mechanism of transferrin uptake was monitored in HeLa

cells. As previously reported [23], depletion of both CHC and

AP2M1 impaired the uptake of fluorescently labeled transferrin

(Figures 4A and 4B). However, although the depletion of AP2M1

blocked transferrin uptake to the same extent as CHC knockdown,

it failed to increase basal IkBa degradation (Figures 4C and 4D)

and IL-8 secretion (Figure 4E), suggesting that CHC controls basal

NF-kB activation and gene expression independently of its activity

in CME. In order to further validate this result, we tested whether

chemical inhibition of endocytosis by the drugs phenylarsine oxide

(PAO) and dynasore had an effect on NF-kB signaling. PAO is a

chemical compound that, at low micromolar concentrations,

blocks CME [24]. Dynasore is a cell-permeable small molecule

that inhibits the GTPase activity of dynamin and blocks the

formation of clathrin-coated vesicles [25]. Whereas a short term

incubation with these drugs effectively blocked transferrin uptake

(Figure 4F), neither of them had an effect on the degradation of

IkBa (Figure 4G). HeLa cells stimulated with the inflammatory

cytokine tumor necrosis factor a (TNFa) that rapidly activates NF-

kB, were used as positive control for the degradation of IkBa. To

better mimic the long-lasting effect of CHC knockdown on

endocytosis, endocytosis and IkBa degradation were examined

after 48 hours of dynasore treatment. Although endocytosis was

still effectively blocked (Figure 4H), the degradation of IkBa was

unchanged compared to untreated cells (Figure 4I), showing that

inhibition of endocytosis had no effect on the activation of NF-kB.

Taken together, these results strongly indicated that CHC

regulates basal NF-kB activation independently of its function in

endocytosis.

CHC is associated to CLCs in clathrin triskelion structures. The

functional roles of CLCs have been recently characterized using

RNAi. Knocking down CLCs has no effect on CME or the

formation of clathrin-coated pits [26]. However, it causes

alterations in protein trafficking at the TGN resulting from

disruption of huntingtin interacting protein 1 related (HIPR1)

recruitment to clathrin-coated structures and disorganization of

the actin cytoskeleton [26]. Since CLCs are unstable unless they

are bound to CHC [27], we tested whether the effect of CHC

depletion on NF-kB activation was indirectly due to CLC

degradation. For this purpose, IkBa degradation and IL-8

secretion were analyzed in HeLa cells depleted of the protein

clathrin light chain a (CLCa) by RNAi. Although the degree of

CLCa depletion detected by western immunoblotting was similar

in cells transfected with CHC and CLCa siRNAs (Figure 4J),

knocking down CLCa failed to induce constitutive IkBa
degradation (Figures 4J and 4K) and IL-8 secretion (Figure 4L).

These results showed that the effects of CHC depletion on NF-kB

signaling were directly caused by the depletion of CHC and not by

the associated depletion of CLCa. Altogether, these results strongly

indicated that CHC prevents constitutive NF-kB activation

independently of endocytosis and clathrin light chains.

Discussion

Most research groups investigating the regulation of NF-kB

activation have focused their studies on the mechanisms induced

after cell exposure to various stimuli, including inflammatory

cytokines and microbial products. In particular, the canonical

pathway of NF-kB activation that depends on the phosphorylation

and degradation of IkB proteins downstream of the activation of

the IKK complex has been well characterized. In contrast,

although constitutive NF-kB activation has been associated with

inflammatory disorders and numerous cancers [3,28], the

mechanisms that lead to elevated basal NF-kB activation remain

unclear.

Here we show that CHC functions as a built-in molecular brake

that ensures a tight control of basal NF-kB activation and gene

expression by preventing constitutive nuclear localization of p65 in

absence of stimulation. Using RNAi to reduce cellular levels of

CHC, we found that CHC is required for the proper spatial

regulation of p65 in unstimulated epithelial cells. Whereas p65 was

almost exclusively localized in the cytoplasm of control cells, both

cytoplasmic and nuclear localization was observed in cells depleted

of CHC. The localization of p65 is largely dependent on IkB

proteins that sequestrate the transcription factor in the cytoplasm.

Genetic deletion or mutations of IkBa lead to constitutive nuclear

localization and NF-kB activation [11,28]. In line with these

studies, we found that the effect of CHC depletion on p65 was

associated with a strong reduction in the level of IkBa suggesting

that constitutive p65 nuclear localization was likely due to reduced

IkBa level. Quantification of IkBa mRNA by quantitative real

Figure 3. CHC prevents constitutive IL-8 expression in un-
stimulated epithelial cells. (A) Constitutive IL-8 expression after
knockdown of CHC in HeLa cells. Cells were transfected with control or
CHC siRNAs. After 72 hours, supernatants were collected and analyzed
for their content in IL-8 by ELISA (results are expressed as the mean 6
SD of 3 independent experiments). (B) Constitutive IL-8 expression after
knockdown of CHC in MCF-7 cells. MCF-7 cells were treated as
described in (A) (results are expressed as the mean 6 SD of 3
independent experiments). (C) IKKa-depletion abolishes the constitu-
tive secretion of IL-8 induced by CHC knockdown. HeLa cells were
transfected with different combinations of IKKa and CHC siRNAs for
72 hours. Total siRNA concentration was kept constant by adding
appropriate amounts of control siRNAs. Supernatants were collected to
measure the concentration of IL-8 by ELISA (results are expressed as the
mean 6 SD of 3 independent experiments).
doi:10.1371/journal.pone.0017158.g003
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Figure 4. CHC regulates NF-kB activation independently of endocytosis and CLCa. (A) Uptake of Alexa 594-transferrin (Alexa 594-Tf) in
cells transfected with control (left panels), AP2M1 (middle panels) or CHC (right panels) siRNAs; Scale bars, 10 mm. (B) Quantification of transferrin
uptake by automated image analysis (results are expressed as the mean 6 SD of 12 images; graph representative of 2 independent experiments). (C)
AP2M1 knockdown fails to enhance IkBa degradation. Cell lysates from control, AP2M1 or CHC siRNA-transfected cells were analyzed by
immunoblotting using indicated antibodies. Actin is shown as a loading control. (D) Densitometric quantification of the levels of IkBa shown in
Figure 4C (graph representative of 2 independent experiments). (E) AP2M1 knockdown fails to induce constitutive IL-8 expression. HeLa cells were
transfected with control, AP2M1 or CHC siRNAs for 72 hours. Supernatants were collected to measure the concentration of IL-8 by ELISA (results are
expressed as the mean 6 SD of 3 independent experiments). (F) Inhibition of transferrin uptake after dynasore and PAO treatment. HeLa cells were
left untreated (Ctrl) or treated with dynasore (80 mM) (Dyn) or PAO (5 mM) 10 minutes before and during the transferrin uptake assay (results are
expressed as the mean 6 SD of 18 images; graph representative of 2 independent experiments). (G) Dynasore and PAO fail to enhance basal
degradation of IkBa. HeLa cells were pretreated for 10 minutes with dynasore (80 mM) or PAO (5 mM) and analyzed by western immunoblotting using
an IkBa antibody. Actin is shown as a loading control (results representative of 2 independent experiments). (H) Long-term inhibition of endocytosis
in dynasore-treated HeLa cells. Transferrin uptake in HeLa cells left untreated or treated with dynasore (80 mM) for 48 hours (results are expressed as

CHC in NF-kB Signaling
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time PCR revealed that the level of IkBa mRNA was slightly

elevated in CHC depleted cells. This result, which can be explained

by the fact that IkBa is a target gene of NF-kB that is upregulated by

constitutive NF-kB activation, indicated that the reduction of IkBa
found in CHC depleted cells, was not due to transcriptional

inhibition but to elevated basal IkBa degradation. This hypothesis

was further supported by data showing that the knockdown of CHC

induced constitutive phosphorylation of IkBa at position 32, a

phosphorylation event critical to target IkBa for rapid degradation

via the ubiquitin proteasome pathway. The role of CHC in the

control of basal NF-kB activation was functionally relevant. Indeed

a strong induction of IL-8, whose expression is controlled by NF-kB,

was observed in cells depleted of CHC showing that, via its activity

on NF-kB, CHC participates to gene regulation. Interestingly, a

role of CHC in p53-mediated transcription has been recently

reported. Enari et al. showed that a fraction of CHC proteins that

localize to the nucleus bind to p53-responsive promoters and favor

transcription by stabilizing p53 interactions with proteins such as

the histone acetyltransferase p300 [19]. Although CHC contributes

to p53 and NF-kB-regulated gene expression by different

mechanisms, our data provide a second set of evidence for a role

of CHC in gene regulation.

Via its role in CME, CHC is involved in many cellular processes

including intracellular trafficking of receptors and nutrient uptake

[13]. To investigate whether CHC indirectly affected basal NF-kB

activation via its implication in CME, we analyzed the level of IkBa
and IL-8 expression in conditions where CME was disrupted by the

depletion of the m2-subunit of the main CME adaptor AP-2 or by

chemical inhibition. Whereas the CME-dependent process of

transferrin uptake was almost completely abolished, AP2M1

depletion or treatment with the endocytosis inhibitors PAO and

dynasore had no effect on the activation of NF-kB signaling,

suggesting that CHC was involved in this pathway independently of

endocytosis. As CLCs are unstable unless bound to CHC, the

knockdown of CHC is associated with cellular depletion of CLCs.

Interestingly, we showed that the depletion of CLCa has no effect on

IkBa degradation and IL-8 expression, indicating that CHC alone

contributes to the regulation of the NF-kB pathway. It also suggested

that CHC functions in this pathway independently of the roles that

CHC and CLCa share in protein trafficking at the TGN [26].

A raising number of proteins involved at different levels of the

signaling pathway contribute to the tight control of basal NF-kB

activation in resting cells [3]. For instance, expression of the tumor

suppressor Gprc5a prevents constitutive p65 nuclear localization

and NF-kB activation [29]. Although the mechanism remains

unclear, the authors propose that the presence of Gprc5a may

promote the stabilizing interaction between b-arrestin and IkBa.

The role of silencer of death domain (SODD) has also been reported

[30]. SODD deficiency leads to an increase of NF-kB activation and

cytokine expression in absence of stimulation. This protein functions

as a gatekeeper that constitutively associates with the cytoplasmic

death domain of TNF receptors (TNFR) and blocks TNFR

signaling in the absence of ligand. Constitutive activity of NF-kB

was also described in c-Abl null fibroblasts [31]. In contrast to

previous mechanisms, unstimulated fibroblasts did not exhibit an

increase in IkBa degradation or p65 nuclear translocation but

reduced levels of the negative regulator histone deacetylase

HDAC1. The mechanism by which CHC functions in NF-kB

signaling remains to be elucidated. Based on our data, we propose

that this protein acts as a built-in molecular break that prevents the

spontaneous activation of the IKK complex. This hypothesis is

supported by the observation that constitutive IkBa degradation

and IL-8 secretion were almost completely abolished when IKKa
was depleted, and that basal IkBa phosphorylation was enhanced

after CHC knockdown. Because the localization of IKKs is critical

for their activity [32], the implication of CHC in the sub-cellular

distribution of the IKK complex should be further investigated.

We also report here that CHC impedes constitutive IL-8

secretion by unstimulated HeLa and MCF-7 cells. It is well

established that constitutive IL-8 secretion by epithelial cells can

lead to chronic recruitment of macrophages that produce and

secrete into the microenvironement a variety of cytokines,

chemokines and growth factors involved in inflammation-related

diseases such as inflammatory bowel disease. In addition, some of

these factors promote angiogenesis and act directly on epithelial

cells to favor adenoma formation and progression to adenocarci-

nomas [1]. Therefore by showing that CHC prevents constitutive

expression of the proinflammatory and tumorigenic factor IL-8,

our data suggest that alterations in CHC expression may be

associated with chronic inflammation disorder or cancer. As a

consequence, CHC expression, that can be regulated by external

stimuli such as androgens [33], should be systematically investi-

gated in tumors and inflamed tissues.
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