
SAGE Open Medicine

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons  
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, 

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open 
Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/20503121241263032

SAGE Open Medicine
Volume 12: 1 –11

© The Author(s) 2024
Article reuse guidelines: 

sagepub.com/journals-permissions
DOI: 10.1177/20503121241263032

journals.sagepub.com/home/smo

Introduction

Water is essential for life, and access to clean drinking water 
is one of human’s fundamental rights. Among many other 
factors, the contamination of food and water is a major 
source of disease transmission. Every year thousands of chil-
dren lose their lives due to contaminated sources of water. 
These sources cause acute diarrhea diseases, typhoid, chol-
era, and so on, which are termed as waterborne diseases.1,2 
Waterborne diseases pose significant public health chal-
lenges worldwide, particularly in regions with inadequate 
sanitation infrastructure and limited access to clean water. 
According to UNICEF,3 water-related infections extinguish 
1.8 million lives each year, the leading cause of death, across 
the world. Among these regions, Khyber Pakhtunkhwa (KP), 

Pakistan, stands out as a hotspot for waterborne diseases due 
to rapid population growth, industrialization, and limited 
infrastructure development.4 Contaminated water sources 
serve as breeding grounds for pathogens, leading to the 
transmission of diarrhea, gastroenteritis, typhoid fever, and 
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hepatitis. These diseases not only cause immense suffering 
but also impose a substantial economic burden on healthcare 
systems and society at large.5,6

There has been a significant increase in waterborne dis-
eases in Pakistan as a result of people being compelled to 
drink stagnant, dirty water after the floods. More than 
660,120 cases of acute, watery diarrhea, skin infections, 
typhoid, malaria, and dengue fever have been reported.7,8 
The frequent floods in Pakistan destroy the infrastructure, 
resulting in a lack of toilet facilities, water sanitation, and 
hygiene. Zahid5 showed that sources of drinking water and 
toilet facility are the most common environmental house-
hold-level indicators for a high prevalence rate of waterborne 
diseases. Waterborne infections such as dysentery, cholera, 
giardiasis, and hepatitides A and E have grown more com-
mon as a result of poor sanitation and water quality.

The World Health Organization (WHO) estimates that 
between 25% and 30% of diseases are gastrointestinal disor-
ders. Almost 46% of the KP population is dependent on the 
polluted water sources that cause a high risk of waterborne 
infections. Ahmad et al.9 conducted a research on drinking 
water quality in the District Peshawar, KP, Pakistan that con-
tained bacteriological studies and evaluation of antibiotic-
resistant bacteria from several drinking water sources.

Pakistan has abundant freshwater resources, but with ris-
ing population, urbanization, industry, and inadequate sani-
tation, the water quality is deteriorating, resulting in a high 
prevalence rate of waterborne diseases.10 The in-depth 
exploration of literature reveals that water consumption or 
recreational water susceptibility is the root cause of water-
borne infection. According to UNICEF,3 water-related ill-
nesses kill 1.8 million people each year and cause 4 billion 
cases, making them a major cause of death and morbidity 
across the world.

In order to prevent the spread of diseases that are transmit-
ted through water, it is essential to effectively monitor water 
sources. However, monitoring these sources and identifying 
vulnerable regions with waterborne diseases poses significant 
challenges. These difficulties are caused by a number of fac-
tors, such as the dynamics of waterborne diseases, insuffi-
cient infrastructure, and scarce resources.11,12 Due to the 
inadequate surveillance infrastructure, they are able to spread 
unnoticed until they reach dangerous levels. The primary 
challenge contributing to this phenomenon is the limited 
availability of water samples over time and the difficulty in 
detecting certain organisms.13,14 Consequently, we have 
designed a methodology for monitoring the evolution of most 
prevalent waterborne diseases and identify the vulnerable 
regions. This can be achieved by monitoring and tracing the 
changes in cluster solutions of data stream over time.

In this study, we implement the clustering algorithm for the 
segmentation of waterborne diseases dataset. Subsequently, 
the segment profile diagram was used for detailed profiling of 
each cluster. This approach enables us to identify regions vul-
nerable to specific waterborne diseases that are predominant 

within each cluster. Furthermore, the data stream was discre-
tized by using the landmark window model and the evolution 
of clusters were traced over time.

In the last couple of decades, researchers have increas-
ingly focused on investigating changes in the patterns of 
underlying populations. The literature has proposed numer-
ous models and algorithms for monitoring and tracing cluster 
solutions in temporal streams. These approaches offer valu-
able tools for analyzing dynamic data and capturing evolving 
patterns over time.15–20 These algorithms are widely used in 
various domains for tracking changes in cluster solutions, 
allowing for the detection of evolving patterns and anoma-
lies in data streams. The study conducted by Atif et al.20 
showcases the practical applications and significance of trac-
ing cluster evolution across a range of real-life datasets. The 
research highlights the process of segmenting data streams 
and emphasizes the importance of monitoring changes in 
clustering solutions. Through their findings, the study illus-
trates how change detection can offer valuable insights for 
policymakers, enabling them to effectively address clusters 
that evolve over time.

Research objectives

1. To investigate the evolution of waterborne diseases 
in Khyber Pakhtunkhwa and identify the regions vul-
nerable to exposure.

2. To monitor and trace changes in cluster solutions of 
waterborne disease dataset.

Methods

Dataset

This study is an observational investigation utilizing sec-
ondary data collected by the Director-General Health 
Services (DGHS) from 21 districts of KP, Pakistan. Among 
various health concerns, waterborne diseases present sig-
nificant threats to public health. These diseases often stem-
ming from contaminated water sources, inadequate 
sanitation infrastructure, and limited access to clean water. 
To evaluate the existing healthcare and safety conditions, 
the DGHS conducted data collection on waterborne dis-
eases across 21 districts of KP. Over a span of 28 weeks, this 
study examined six variables related to waterborne diseases. 
These variables included acute watery diarrhea (AWD) 
(cholera), AWD (non-cholera), bloody diarrhea, acute viral 
hepatitis (AIS), typhoid fever, and extensively drug-resist-
ant (XDR) typhoid. A total of 478 cases of waterborne dis-
eases were observed during the study span. In this study, we 
utilize this dataset to monitor the evolution of waterborne 
diseases in KP, aiming to gain insights into their dynamics 
and identify regions requiring targeted intervention. In the 
initial step, we cleaned the dataset by removing cases with 
missing values and outliers.
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Clustering

Clustering, a cornerstone technique in machine learning and data 
analysis, involves grouping similar data points together based on 
their similarities. The goal of cluster analysis is to partition a 
dataset into groups such that objects within the same group are 
more similar to each other than to those in other groups. Overall, 
cluster analysis is a powerful tool for exploring and summarizing 
complex datasets, aiding in data interpretation, and decision-
making processes. Clustering has numerous applications across 
various domains, including customer segmentation, image seg-
mentation, outliers detection, and document clustering.21,22 The 
process of clustering typically involves the following steps.

Choosing a proximity measure: In cluster analysis, proxim-
ity measure, is used to quantify the similarity or dissimilarity 
between data points. This measure defines the distance 
between pairs of observations in the feature space and forms 
the basis for clustering algorithms to group similar data points 
together. Common proximity measures include Euclidean, 
Manhattan, Minkowski, Cosine Similarity, and Correlation. 
The choice of proximity measure depends on the nature of the 
data and the characteristics of the clustering problem.

Choosing a clustering algorithm: Select an appropriate 
clustering algorithm that fits the characteristics of the dataset 
and the objectives of the analysis. Some common clustering 
algorithms include k-means, hierarchical clustering, density-
based clustering, and Gaussian mixture models.

Determining the number of clusters: Identifying the opti-
mal number of clusters is a critical aspect of cluster analysis, 
ensuring that the resulting clusters accurately represent the 
underlying structure of the data. The process involves select-
ing the number of clusters that best represent the underlying 
structure of the data while avoiding over-fitting. Several 
techniques can be employed for this purpose, each offering 
insights into the most suitable clustering solution.

Interpreting and visualizing results: Examine the result-
ing clusters to understand their characteristics and interpret 
the patterns present in the data. This may involve visualizing 
the clusters using techniques such as scatter plots, dendro-
grams, heatmaps, and t-distributed Stochastic Neighbor 
Embedding (t-SNE).

In this article, we employed the standard k-means algo-
rithm to cluster the dataset. The variables used for clustering 
included AWD (non-cholera), AWD (cholera), bloody diar-
rhea, AIS, typhoid fever, and XDR typhoid. To determine the 
optimal number of clusters, we utilized the elbow method, sil-
houette score, and Gap statistics. These techniques allowed us 
to identify the most suitable number of clusters that best cap-
tured the inherent structure of the data. The Euclidean distance 
function was utilized as a dissimilarity measure index.

Windowing approach

Over the recent past, a number of applications in real life 
have been generating data streams, where data items are 

continually produced by different sources over time. Unlike 
traditional datasets that are static and stored in databases, 
data streams are dynamic in nature and continuously updated 
with new observations. As a result, the underlying structure 
is nonstationary and undergoes evolution over time. Due to 
their high volume, velocity, and variability, data streams pre-
sent unique challenges for processing, storage, and analysis. 
In order to achieve this, the continuous data stream must be 
discretized into subsets according to some ordered phenom-
ena. The term “windowing approach” refers to this discre-
tization of the stream into smaller groups. The windows 
represent segments of the data stream and are defined based 
on specific criteria, such as time intervals or the occurrence 
of certain events. Data within each window is then analyzed 
or processed independently, allowing for the detection of 
patterns, trends, or anomalies within that time frame. In this 
research article we implement the landmark window models 
to discretize the stream and accumulate the data items at suc-
cessive time points. The landmark window model is a spe-
cific approach to windowing in data stream processing. In 
this model, the data stream is discretized into subsets or win-
dows based on specific landmark points in time. In the land-
mark window model, data points are accumulated from a 
specific landmark time t1 up to the current time point ti. This 
means that the window includes all data points that have 
been observed between the landmark time t1 and the current 
time ti, that is,
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where D represents the window, d represents the data 
items accumulated within the window, and n represents the 
total number of time points observed up to the current time.

Tracing changes in cluster solutions

Monitoring changes in cluster solutions of streaming data 
involves tracking how clusters evolve over time. This pro-
cess is crucial for understanding how patterns within the 
stream change over different time periods and identifying 
any shifts in cluster memberships. By systematically moni-
toring changes in cluster solutions of temporal data, research-
ers can gain valuable insights into the temporal dynamics of 
the data and make decisions accordingly. Some of the famous 
algorithms for monitoring changes in cluster solutions are 
given in Table 1.

To monitor and trace the evolution of clusters extracted 
from the re-clustering of cumulative datasets, a framework 
known as the MONIC algorithm was introduced.23 In this 
paper, we implement the clusTransition package in 
R-software for change detection in the waterborne disease 
dataset.24,25 This helps in understanding the evolution of 
waterborne diseases in KP.
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Results

Figure 1 demonstrates the correlation plot between variables, 
where the darker shade represents strong correlation and 
lighter shade represents weak or no correlation. The plot sug-
gests a mild correlation of AWD (non-cholera) with AIS and 
typhoid fever. Similarly, AWD (cholera) is correlated with 
bloody diarrhea, while AIS is correlated with typhoid fever.

Since some of the variables in our dataset are correlated, 
Principal Component Analysis (PCA) allows us to gain 
insights into the relationships and patterns among the dis-
eases represented by the variables. Based on the scree plot 
analysis presented in Figure 2, we decide to retain only two 
dimensions, as the first two principal components collec-
tively explain approximately 60% of the total variation in the 
dataset.

Figure 3 demonstrates the contribution of each variable to 
the corresponding PCs. Subplot A illustrates that typhoid 
fever, AIS, and AWD (non-cholera) significantly contribute 
to the variability explained by the first PC. Similarly, in sub-
plot B, AWD (cholera), and bloody diarrhea are shown to 
make substantial contributions to the variability explained 
by the second PC. In subplot C, it is observed that AWD 
(cholera), bloody diarrhea, and XDR typhoid constitute one 

dimension, whereas, AWD (non-cholera), typhoid fever, and 
AIS constitute the second dimension, suggesting a separate 
source of variability.

Figure 4 illustrates the determination of the optimal num-
ber of clusters in the dataset using three different methods: 
the gap statistic, silhouette statistic, and elbow method. The 
elbow method indicates that additional clusters beyond the 
fourth add only a small value in minimizing the within-clus-
ter variation, suggesting that four clusters may be optimal. 
Similarly, according to the gap statistic, the optimal number 
of clusters is k = 4, with k = 5 being a potential contender. The 
silhouette statistic also supports the conclusion that k = 4 
clusters is optimal based on the dataset. These analyses pro-
vide consistent evidence that k = 4 clusters is the most suita-
ble choice for partitioning the data.

Figure 5 provides a profiling of each individual cluster in 
the dataset generated by the k-means algorithm. The largest 
cluster, Cluster 3, represents 37% of the data items and is 
characterized by a relatively high proportion of bloody diar-
rhea patients and an extremely low proportion of AWD (non-
cholera) and typhoid fever patients. The second largest 
cluster, Cluster 1, represents 28% patients and is distin-
guished by a very high proportion of AWD (cholera) and 
typhoid fever patients. The Cluster 2, comprising 28% of the 
data items, exhibits a high proportion of AIS patients. The 
Cluster 4 is characterized by an extremely high proportion of 

Table 1. Models and algorithms for monitoring changes in cluster solutions.

Algorithm Name Description

MONIC A heuristic framework for monitoring changes in cluster solutions of temporal datasets
DStream A clustering algorithm designed for streaming data that adapts to concept drift and changes in data distribution
BIRCH An algorithm for clustering large datasets incrementally while maintaining low memory usage
OPTICS An algorithm for density-based clustering that provides a hierarchical view of clusters and can adapt to changes 

in density
CluStream A stream clustering algorithm that continuously updates cluster models and monitors changes in cluster 

structure over time
FOCUS An algorithm based on the self-organizing maps to monitor changes in temporal datasets
CEDAS Online approach for clustering evolving data streams into arbitrary-shaped clusters in real time

Source: Atif et al.19

Figure 1. Correlation plot for variables.

Figure 2. Explained variation by PCs.
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AWD (non-cholera) and typhoid fever patients. The disease 
such as XDR typhoid is homogeneously distributed among 
all segments.

Table 2 (provided in Annexure I) presents the district-
wise summary of all clusters in the dataset. Utilizing the 
segment profiling plot, we identified the most vulnerable 
districts to various waterborne diseases on the map of KP, 
as depicted in Figure 6. The largest cluster (Cluster 3) 
comprises of Swat Valley (Dir Upper, Dir Lower, 
Malakand, Swat, Shangla, and Buner), Hangu, Karak, and 
Lakki Marwat. These regions are identified as highly sus-
ceptible to bloody diarrhea. However, this cluster exhibits 

relatively lower risk levels for AWD (non-cholera) and 
typhoid fever. The second largest cluster (Cluster 1) 
includes districts such as Charsadda, Mardan, Swabi, 
Haripur, Abbottabad, and Dera Ismail Khan. These regions 
are identified as being exposed to both AWD (cholera) and 
Typhoid fever patients. Cluster 2 encompasses Battagram, 
Kohat, Bannu, and Tank districts. These regions are identi-
fied as being extremely vulnerable to AIS disease. 
However, the districts belonging to Cluster 2 are consid-
ered safe in terms of AWD (non-cholera) disease. Similarly, 
Peshawar, Nowshera, and Swabi belong to Cluster 4 and 
are identified as being extremely vulnerable to 

Figure 3. Contribution of PCs to the dimensions.

Figure 4. Optimal number of clusters using elbow, gap, and silhouette methods.
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AWD (non-cholera) and typhoid fever. This observation 
underscores the importance of implementing targeted pub-
lic health interventions in these areas to address the high 
prevalence of these waterborne diseases. By focusing 
resources and efforts on these vulnerable districts, authori-
ties can effectively mitigate the spread of diseases and 
improve overall public health outcomes in the region.

Change detection

The stream of data was discretized by accumulating it over 
the weeks. This was done by implementing the landmark 
window to the stream, accumulating it at successive time 
points. A window of 8 weeks was used. The implementa-
tion of the landmark window model generates four win-
dowpanes, which comprise data evolving during [t1, ti]. 
Table 3 summarizes the optimal number of clusters in each 
windowpane of cumulative dataset estimated using elbow, 
gap, and silhouette methods. The details of estimating 
optimal number of clusters in each windowpane are pro-
vided in Figure 12 in Supplemental files. These methods 
provide consistent evidence that the optimal number of 
clusters in windowpanes D1, D2, D3, and D4 is 3, 4, 4, and 
4, respectively.

Clustering cumulative datasets at successive time points 
results in a series of cluster solutions, with each solution cor-
responding to a specific windowpane of the dataset. The sur-
vival thresholds of τ = 0.6, 0.7, 0.8, and 0.9 were used to 

monitor any changes in these cluster solutions over time. 
Figure 7 demonstrates the survival ratio of clusters for differ-
ent values of survival threshold. It is evident that τ ⩽ 0.7 pro-
duces very stable cluster solutions at successive time points. 
As the survival threshold τ exceeds 0.7, it signifies a strong 
temporal dependency in the data. In this scenario, only a few 
clusters from previous time points survived, while new clus-
ters emerge in the dataset.

Figure 8 in the Annexure demonstrates the changes in 
cluster solution for τ = 0.7 and τ = 8. For τ = 0.7, hardly any 
changes are detected, while for τ = 0.9, only one cluster sur-
vived. For small τ, we observed that the resulting clusters 

Figure 5. Segment profiling plot.

Table 2. Optimal number of clusters in each windowpane.

Windowpane D1 (week 1–week 8) D2 (week 9–week 16) D3 (week 17–week 24) D4 (week 25–week 29)

ki 3 4 4 4

Figure 6. Vulnerable regions with waterborne diseases.
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were highly inconsistent. Conversely, for very large τ, hardly 
any changes were detected in the clusters over time. 
Therefore, we decided to select a survival ratio of 0.8 for 
further analysis of the evolution of disease. This threshold 
strikes a balance between capturing meaningful changes in 
cluster composition while minimizing inconsistency in the 
clustering results.

Figure 9 demonstrates the evolution of clusters over time 
for τ = 0.8. It is evident that one cluster survives from time 
point t1 till time point t4 (C12 → C24 → C32 → C43), growing 
more diffuse than its ancestor clusters. Similarly, one cluster 
that emerged at time point t2 survived till time point t4 (⊙ → 
C22 → C34 → C44). One cluster disappears at each successive 
time point (C13 →⊙C23 → ⊙ C31 → ⊙). Two clusters t4 (C12 → 
C24 → C32 → C43) and (⊙ → C22 → C34 → C44) are important 
clusters, which require detailed analysis and special atten-
tion. The other clusters are inconsistent and is constantly dis-
appearing at τ = 0.8 threshold.

Figure 10 demonstrates the profiling plot of survived 
clusters (C12 → C24 → C32 → C43). The plot clearly indicates 
that the proportion of bloody diarrhea patients is increasing 
gradually with the passage of time. This suggests that the 
water quality in Swat Valley, Hangu, Karak, and Lakki 

Figure 7. Effect of survival threshold on survival ratio.

Figure 8. Transition of clusters for different survival threshold.

Figure 9. Evolution of clusters over time. The nodes represent 
the clusters at respective.
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Marwat is contaminating day by day causing an increase in 
the bloody diarrhea in the region.

Similarly, Figure 11 suggests an increase in the AWD 
(non-cholera) and typhoid fever in the regions of Peshawar, 
Nowshera, and Swabi.

Discussions

In Pakistan, the drinking water quality is being eroded due to 
the threatening growth of population size and rapid industri-
alization. Contaminated water is the primary source of sev-
eral diseases such as diarrhea, gastroenteritis, and typhoid.26 
Findings of this study shed light on the complex relationship 
between waterborne diseases, their prevalence, and dynam-
ics in KP, Pakistan. For instance, typhoid fever and AIS are 
often linked to fecal contamination of water sources, with 
poor sanitation and inadequate hygiene practices contribut-
ing to their common transmission route.23 The correlation 
between these diseases suggests common risk factors and 
environmental conditions conducive to their spread, empha-
sizing the need for comprehensive sanitation and hygiene 
interventions to prevent their transmission. Similarly, study 

by O’Reilly et al.27 have highlighted the role of bacterial 
pathogens such as Vibrio cholerae and Escherichia coli in 
the etiology of both AWD (cholera) and bloody diarrhea 
cases. Interestingly, the contribution of XDR typhoid to the 
principal components was found to be minimal, indicating 
that this disease is spread homogeneously across KP. This 
suggests that XDR typhoid may pose a consistent and wide-
spread threat to public health in the region, warranting fur-
ther attention and targeted intervention efforts.28

Waterborne diseases are among the foremost causes of 
death across the globe. It is suspected that contaminated 
water is the primary source of spreading these diseases. 
Inadequate access to clean water and poor sanitation facili-
ties significantly contribute to the spread of these diseases. 
For instance, cholera, caused by the bacterium Vibrio chol-
erae, is often linked to drinking water contaminated with 
fecal matter. Similarly, typhoid fever, which is caused by 
Salmonella typhi, is frequently transmitted through inges-
tion of water or food that has been contaminated by the 
feces of an infected person.29 Unfortunately, the identifica-
tion of risk factors related to waterborne diseases is a dif-
ficult task. Because, on one hand, the time to time water 
samples is not available for all regions. Similarly, on the 
other hand, some pathogens are difficult to detect. Effective 
prevention strategies include ensuring access to safe drink-
ing water, improving sanitation and hygiene practices, and 
implementing robust water quality monitoring systems. 
These measures are essential to reduce the burden of water-
borne diseases and improve public health outcomes world-
wide.30 For the identification of the vulnerable regions to 
different waterborne diseases, we cluster the dataset and 
detailed profiling of each segment was studied. The dis-
eases were used to generate clusters, and then summaries of 
districts were used to identify the vulnerable regions. The 
study’s finding reveals that bloody diarrhea is extremely 
prevalent in Swat Valley (which includes Dir Upper, Dir 

Figure 10. Profiling plot of survived cluster (C12 → C24 → C32 → C43).

Figure 11. Profiling plot of survived cluster (⊙ → C22 → C34 → 
C44).
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Lower, Malakand, Swat, Shangla, and Buner), Hangu, 
Karak, and Lakki Marwat. However, this is extremely safe 
zone for AWD (non-cholera) and typhoid fever. Rahman 
et al.31 suggested that renovating existing drinking water 
sources and implementing new safe drinking water schemes 
could significantly reduce the prevalence of waterborne 
diseases and lower household healthcare costs in the region. 
Similarly, Charsadda, Mardan, Swabi, Haripur, Abbottabad, 
and Dera Ismail Khan are extremely vulnerable to bloody 
diarrhea and typhoid fever, but are considered safe for 
AWD (non-cholera). The AIS is more prevalent in the 
regions of Battagram, Kohat, Bannu, and Tank. Similarly, 
the AWD (non-cholera) and typhoid fever is extremely 
prevalent in Peshawar, Charsadda, and Swabi.

Monitoring changes in cluster solutions identifies regions 
facing persistent water quality challenges and increasing prev-
alence of waterborne diseases. Specifically, analysis reveals 
concerning trends in the water quality of Peshawar, Nowshera, 
and Swabi, where pollution levels are consistently rising, lead-
ing to a significant increase in cases of AWD (non-cholera) and 
typhoid fever.32,33 These regions require urgent attention and 
targeted interventions to address the underlying causes of water 
pollution and mitigate the associated health risks. Furthermore, 
the Swat Valley, Hangu, Karak, and Lakki Marwat are experi-
encing a rapid increase in cases of bloody diarrhea. This alarm-
ing trend underscores the need for immediate action to improve 
sanitation infrastructure, enhance water treatment processes, 
and implement effective public health measures to prevent the 
spread of these diseases in these regions.

While this study contributes to understanding the dynam-
ics of waterborne diseases in KP, it is essential to acknowl-
edge its limitations to provide a foundation for future 
research and public health interventions.

This study does not account for all potential confounding 
factors that could influence the relationship between water 
quality and disease prevalence. Factors such as socioeco-
nomic status, access to healthcare, and environmental varia-
bles could have significant impacts on disease transmission 
but were not explicitly considered in the analysis. 
Additionally, as an observational study, the findings shed 
light on the dynamics of waterborne diseases and identify 
vulnerable regions affected by them. However, it’s crucial to 
acknowledge that causality cannot be established solely 
from observational data. While we observed correlations 
between certain variables, further research, including longi-
tudinal studies or randomized controlled trials, is needed to 
explore the causal relationships.

Conclusion

The findings of this study underscore the relationships 
among different waterborne diseases in KP, Pakistan, 
emphasizing the need for comprehensive strategies to 
address public health challenges. Identifying vulnerable 
regions to different waterborne diseases through clustering 

and detailed profiling enables targeted interventions and 
resource allocation for effective disease prevention and 
control. The findings highlight alarming trends, such as 
the rapid increase in cases of bloody diarrhea in Swat 
Valley, Hangu, Karak, and Lakki Marwat, and rising pollu-
tion levels in Peshawar, Nowshera, and Swabi leading to 
an increase in cases of AWD (non-cholera) and typhoid 
fever. Urgent action is needed to improve sanitation infra-
structure, enhance water treatment processes, and imple-
ment effective public health measures to prevent the spread 
of these diseases.

Based on the findings of this study, several recommenda-
tions can be made to address the challenges posed by water-
borne diseases and improve public health outcomes. Firstly, it is 
essential to enhance water quality monitoring by implementing 
robust systems across all districts to identify and mitigate 
sources of contamination promptly. Additionally, investing in 
infrastructure projects to improve access to clean water and 
sanitation facilities, particularly in vulnerable communities, is 
crucial. Public health campaigns should be launched to raise 
awareness about the importance of clean water, proper hygiene 
practices, and the prevention of waterborne diseases. 
Furthermore, developing targeted interventions for regions 
identified as high risk based on the clustering analysis is neces-
sary, focusing on disease prevention and control measures. 
Finally, further research, including longitudinal studies or rand-
omized controlled trials, is necessary to explore causal relation-
ships and inform more targeted public health interventions.
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Annexure

Table 3. District wise summary of each cluster.

District Cluster 1 Cluster 2 Cluster 3 Cluster 4

Abbottabad 38 27 11 0
Bannu 1 54 21 0
Battagram 0 45 0 0
Buner 0 7 69 0
Charsadda 46 22 8 0
Dera Ismail Khan 56 4 0 16
Dir Lower 57 15 35 0
Dir Upper 0 0 76 0
Hangu 0 0 76 0
Haripur 21 18 23 14
Karak 0 0 76 0
Kohat 18 58 0 0
Lakki Marwat 0 15 61 0
Malakand 12 34 30 0
Mardan 36 32 5 3
Nowshera 14 0 0 62
Peshawar 19 7 2 48
Swabi 41 0 0 35
Shangla 0 33 43 0
Swat 24 11 32 9
Tank 0 61 15 0


