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Abstract

Development normally occurs similarly in all individuals within an isogenic population, but 

mutations often affect the fate of individual organisms differently1-4. This phenomenon, known as 

partial penetrance, has been observed in diverse developmental systems. However, it remains 

unclear how the underlying genetic network specifies the set of possible alternative fates and how 

the relative frequencies of these fates evolve5-8. Here, we identify a stochastic cell fate 

determination process that operates in Bacillus subtilis sporulation mutants and show how it 

allows genetic control of the penetrance of multiple fates. Mutations in an inter-compartmental 

signaling process generate a set of discrete alternative fates not observed in wild-type cells, 

including rare formation of two viable “twin” spores, rather than one within a single cell. By 

genetically modulating chromosome replication and septation, we could systematically tune the 

penetrance of each mutant fate. Furthermore, signaling and replication perturbations synergize to 

dramatically increase the penetrance of twin sporulation. These results suggest a potential pathway 

for developmental evolution between monosporulation and twin sporulation through states of 

intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-

type Clostridium oceanicum showed a strong resemblance to twin sporulation in these B. subtilis 

mutants9,10. Together the results suggest that noise can facilitate developmental evolution by 

enabling the initial expression of discrete morphological traits at low penetrance, and allowing 

their stabilization by gradual adjustment of genetic parameters.

Under nutrient limited conditions, an individual B. subtilis cell can develop into a resilient 

dormant spore11. Many sporulation mutations reduce the fraction of cells that sporulate 

successfully (Fig. 1a,b).4,12-14 This makes sporulation an ideal model system to study the 

origins and impact of partial penetrance.
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At the onset of sporulation, B. subtilis cells divide asymmetrically into smaller (forespore) 

and larger (mother-cell) compartments. Septation leads to the forespore-specific activation 

of the transcriptional regulator σF (Fig. 1c,d)11. σF in turn activates expression of spoIIR, 

which initiates an inter-compartmental signaling cascade that activates the mother cell-

specific regulator σE, causing mother cell differentiation11,15. Deleting σE allows a second 

asymmetric septum to form, resulting in ‘abortively disporic’ cells with two DNA-

containing immature forespores, and a mother cell devoid of DNA16,17. Attenuation of 

spoIIR expression results in a partially penetrant mixture of successfully sporulating and 

abortively disporic cells12,13.

To explore the effects of spoIIR mutations on sporulation penetrance, we constructed a set of 

strains, collectively denoted as spoIIRPP mutants, where the rate and/or the time of onset of 

spoIIR expression is specifically perturbed (supplementary methods and Fig. S1-S4). We 

characterized spoIIRPP mutants by time-lapse imaging of cells expressing fluorescent 

reporters for σF and σE activity (Methods, Fig. S1 and supp. Mov. 1). These movies revealed 

a diverse set of discrete cell fates (Fig. 2), whose relative frequencies depended on the type 

and severity of the perturbation to spoIIR expression. In all of these mutants, after an initial 

asymmetric septation and activation of σF in the forespore, mother cells exhibited one of 

three ‘primary’ fates (Fig. 2a-c). One population of cells activated σE and continued to 

sporulate normally (Fig. 2a). Another population formed the abortively disporic morphology 

(Fig. 2b). In the third population, neither σE activation nor asymmetric septation was 

observed (Fig. S5). In these cells, the activated forespores did not develop further, but the 

mother cells continued to grow in a process we term sporulation ‘escape’ (Figs. 2c, S5 and 

methods)11,18.

Escape enabled the formation of an additional cell type. About ∼25% of the time, escaping 

cells immediately re-initiated sporulation. In ∼5% of such cases two new forespores 

developed sequentially (∼20 min apart) within the same mother cell (Figs. 2d, S6). Unlike 

abortively disporic cells, these “twin” sporulating cells completed sporulation, producing 

two mature viable spores in a single mother cell compartment (Fig. S7). Twins exhibited the 

transcriptional and morphological hallmarks of proper sporulation (Figs. 2d and S8). Twin 

spores germinated properly, and were UV-resistant (Fig. S9). Similar morphologies (called 

‘bipolar’) appear to have evolved independently many times in the class Clostridia9,10, 

whose sporulation pathway is homologous to Bacillus19, but have not been observed in 

Bacillus itself (Fig. S10). Twin sporulation may be adaptive under some conditions, 

including when vegetative growth is inhibited and proliferation occurs principally by 

sporulation10,20.

The ability of cells to form twins is surprising because only two chromosome copies are 

present during normal sporulation11, while twins require at least three. Therefore, we 

tracked the number and cellular compartment of chromosomes tagged with TetR-GFP 

“dots” bound to a cassette of chromosomally integrated tetO operators (Figs. 2e, S11)21,22. 

We found that 30% of ‘escaping’ spoIIR mutant cells over-replicated to produce 3 or more 

chromosomal dots within a single cell. 15% of these cells then underwent two consecutive 

asymmetric septation events without additional replication, producing twins. Because 

spoIIRPP mutations cannot affect chromosome number prior to the initial septation event 
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(when spoIIR is first expressed), this result explains why twins only formed as secondary 

fates in spoIIRPP mutants. Furthermore, some of these over-replicating (polyploid) cells 

sporulated normally (to produce a single spore) despite the presence of extra chromosomal 

copies in the mother-cell (see Figs. 2f, S11).

What determines the fate of an individual cell within a clonal mutant population? Because 

spoIIR mutations reveal alternative fates, and because sporulation penetrance is directly 

linked to the strength of spoIIR mutations12,13 (Fig S3,S4), fluctuations in spoIIR 

expression represent the most direct candidate for fate determination. To test this hypothesis, 

we constructed a specific spoIIRPP strain, called spoIIRPP-CY (Fig S2), where spoIIR 

expression is reduced and delayed by ∼10 min, and its expression can be monitored using a 

co-transcribed yfp reporter. The onset of spoIIR expression can be compared in the same cell 

to that of another, non-delayed, σF-dependent promoter controlling cfp expression (Figs. 

3a,S2). We observed variation of 5 minutes in the timing and ∼56% in the rate of spoIIR 

expression (n=148 cells, inset, Fig. 3b). However, spoIIR expression rate fluctuations 

explained only ∼15% of the decision between sporulation and other fates (based on Relative 

Mutual Information, p<10-4). Variation in the expression delay had weaker explanatory 

power. Thus, fluctuations directly related to the genetic perturbation in spoIIR only partially 

account for cell fate. Much of the fate decision is apparently determined by other 

fluctuations, whose effects are revealed when spoIIR expression is attenuated.

Next, we analyzed the genetic control of fate penetrance in the spoIIRPP mutants. 

Sporulation frequency varied from 0% in a ΔspoIIR mutant to approximately 75% across the 

set of spoIIRPP strains. Strikingly, however, the ratio of escape and abortively disporic 

frequencies remained approximately constant across this range (Fig. 3c, supp. methods). 

This behavior suggests that two independent levels of primary cell fate determination can be 

distinguished: The decision between sporulating and non-sporulating fates depends on how 

spoIIR is perturbed, while the decision between escape and abortively disporic fates is 

independent of this perturbation (Fig. 3f).

Can the ratio of escape and abortively disporic frequencies also be controlled? The 

membrane protein SpoIIE promotes asymmetric septum formation23, and hence could 

promote a second asymmetric septation and thus an abortively disporic fate, over escape 

(Fig. 1d). To test this hypothesis, we constructed a strain, spoIIEhypo, where the level of 

spoIIE expression could be modulated by the inducer IPTG without affecting its temporal 

dynamics (Methods and Fig. S12). This strain included a ΔspoIIR mutation to make the 

measurement independent of the additional indirect function of SpoIIE in spoIIR 

activation11 (Fig. 1d). As expected, the ratio of escape and abortively disporic frequencies 

increased as the level of spoIIE expression was reduced (Figs. 3d,S12).

To similarly increase the frequency of twin sporulation would require increasing both the 

number of chromosomes and the number of compartments generated during sporulation 

(Fig. 2f). Perturbations of spoIIR expression primarily affect compartment number, but have 

only a modest effect on chromosome number (through the escape state). We reasoned that 

mutations that increase chromosome copy number could synergize with spoIIRPP mutations, 

increasing the frequency of twins at the expense of abortively disporic cells. To test this 
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possibility, we used two mutations that increase chromosome replication: a null mutation of 

the chromosome replication inhibitor YabA (ref. 24), and hypomorphic fusion of 

chromosome replication regulator Spo0J with GFP (Ref. 22) (Fig. S11). Intriguingly, these 

over-replication mutations generated a low penetrance of twins in the wild-type background 

(Fig. 3e), suggesting that they may affect inter-compartmental signaling. Combining these 

mutations with spoIIRPP mutants permitted twins, as well as polyploid mother cells, to occur 

as a primary fate, because some cells now possess additional chromosomes prior to the first 

asymmetric septation event (Fig S11). Finally, the over-replication mutations synergized 

with signaling mutations, increasing the penetrance of the twin fate to >30% of all viable 

sporangia, a level comparable to those observed in some natural twin-forming species25 

(Fig. 3e, S11). Together, these results indicate, first, that all four terminal fates can be 

‘primary’ (i.e. occur without a round of escape), and second, that the penetrance of all fates 

can be manipulated by specific genetic perturbations affecting the processes signaling, 

septation, and replication (Fig. 3f).

At the evolutionary level, partial penetrance could facilitate transitions between discrete 

phenotypes by enabling gradual changes in their frequencies, rather than an all-or-none 

switch from one phenotype to the other, which might require simultaneous changes in 

multiple processes. As described above, mutations that increase the probability of either 

additional septation or replication increase the penetrance of the maladaptive abortive 

dispore state or the polyploid monospore state, respectively (Figs. 2f and 3). Two conditions 

would thus facilitate the gradual evolution of twin sporulation: First, a relatively high 

sporulation efficiency for the polyploid monospore state would allow sequential 

accumulation of mutations that favor over-replication to be followed by additional mutations 

that affect septation. In fact, we found that polyploid cells carry a fitness cost far smaller 

than abortive dispores, completing sporulation successfully about 75% as often as normal 

sporulating cells (Fig. S11). Thus, there does not appear to be any fundamental obstacle to 

high fitness for this state. Second, mutations that cause correlation between replication and 

septation would favor the monospore and twin fates over the polyploid and abortive dispore 

states. Analysis of fate frequencies revealed evidence for these correlations and their genetic 

control: In spoIIRPP spo0J-gfp mutants, the frequency of re-septation (forming 3 

compartments) differs by ∼3-fold depending on the number of chromosomes observed prior 

to asymmetric septation (p<10-3 Fig. 4A). This correlation enhances the penetrance of twins 

and reduces the penetrance of the maladaptive abortive dispore state. Neither over-

replication nor re-septation is known to occur in wild-type strains; as a result, this 

correlation may not be under selection, and could therefore vary between backgrounds. 

Consistent with this, the measured interaction between spoIIRPP and yabA mutations 

differed significantly between two closely related strain backgrounds (Fig. 4b). Together, 

these results suggest that under appropriate selection for twins, B. subtilis could acquire 

mutations that affect septation, replication, and their correlation, and thereby enable gradual 

evolution of twin sporulation.

Finally, we sought to determine whether natural twin sporulation occurs in a manner similar 

to that observed in B. subtilis mutants. We acquired time-lapse movies of C. oceanicum, a 

marine anaerobe which exhibits twin sprorulation, with fluorescent membrane and DNA 
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probes (Movie 2)9. We observed partially penetrant mixture of fates including twins and 

mono-spores, but not the abortively disporic fate. Analysis of DNA content in monospores 

was consistent with a subpopulation of polyploid mother cells, as in B. subtilis (Fig. S13). 

We analyzed the temporal sequence of septation and chromosome replication events in 

individual cells (Fig. 4c, supp. Movie 2 and Methods). DNA staining was observed to 

increase prior to the first septation event, and subsequently decrease in the mother cell (Fig. 

4e), consistent with replication before the first septation, and subsequent translocation of 

DNA into the forespores, as occurs in B. subtilis mutants. The two forespore compartments 

were formed by consecutive septation events separated by an interval of 30±10 minutes, 

slightly longer than observed in B. subtilis (Figs. 4d,S6). Together, these results suggest that 

the natural process of twin development is similar to that observed in the B. subtilis mutants.

The concept of developmental canalization was introduced to explain the reproducibility of 

wild-type development and its contrast with developmental variability in mutants26,27. 

However, it has been difficult to understand how canalization arises at the molecular level in 

specific genetic networks and, conversely, how its disruption facilitates the evolution of 

novel developmental programs. In this case, competition among the core processes of 

septation, replication, and signaling is crucial for generating discrete alternative 

morphologies (Fig. 3f). Mutations that increase the penetrance of twin sporulation and 

reduce its dependence on noise provide a gradual mechanism for the stabilization of a 

discrete change in developmental morphology. The ability to combine single-cell, genetic, 

and evolutionary analysis in bacterial developmental systems like B. subtilis sporulation 

may help to identify basic principles underlying the evolution of developmental 

mechanisms.

Methods Summary

Strains and conditions

All B. subtilis strains, unless otherwise stated, were derived from parental strain PY79 (ref 

28) using standard protocols29. Details of plasmid and strain construction are described in 

Methods and SI Methods section. Sporulation in liquid culture was performed using the 

exhaustion method in MSSM12. C. oceanicum ATCC 25647 (ref 9), was obtained from the 

American Type Culture Collection.

Experimental procedure

B. subtilis cells were placed on agarose pads containing sporulation-inducing re-suspension 

medium. Time-lapse microscopy protocol is described in Methods. Exposure times were 

minimized to prevent photo-damage. For membrane staining 0.2-1 μg/ml FM4-64 

(Invitrogen) was added to the agarose pad before adding cells, or mitotracker green 

(Invitrogen) was added at a concentration of 5 μg/ml. Regulated promoters of the strains 

spoIIRhypo and spoIIEhypo were controlled by addition of appropriate levels of IPTG to the 

agarose pad. C. oceanicum microscopy was similar except anaerobic conditions were 

maintained by a custom nitrogen flow chamber. Chromosomes were stained with Vybrant 

DyeCycle Green (Invitrogen).
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Quantitative analysis

Quantitative movie analysis used custom image analysis code in Matlab (Mathworks Inc.), 

similar to that previously described30. Briefly, phase contrast or fluorescence images were 

segmented by edge detection to identify individual cells. Segmented cells were tracked 

semi-automatically from frame to frame based on position and orientation. Fluorescence was 

defined as the sum of pixel intensities within the area of the cell. When the same structure 

appears at both poles of the cell (e.g. in abortively disporic cells), fluorescence was 

separately calculated for the two halves of the cell. Fate frequencies were manually scored 

based on criteria detailed in methods section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Partial penetrance in the developmental process of sporulation
(a) In wild-type sporulation each sporulating cell produces a single spore. (b) Partially 

penetrant mutants exhibit a mixture of normal sporulation, lethal failures (‘X’) and 

alternative viable fates (‘?’) due to cellular fluctuations (cloud). (c,d) Schematic illustrations 

of events (c) and genetic interactions (d) leading to differentiation of the mother cell and 

forespore compartments (see text).
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Figure 2. Time-lapse movies reveal alternative developmental pathways in spoIIRPP signaling 
mutants
(a-d) Green and red represent fluorescent protein expression from σF and σE-dependent 

promoters, respectively, overlaid on phase contrast images (gray). Developing forespores 

appear white at late times. Times indicated in minutes from σF activation. (a) Normal 

sporulation. (b) Abortively disporic cells. (c) Escaping cells activate σF but continue to 

elongate without activating σE (Fig. S5). Note that the activated forespore (right) does not 

develop further. (d) Twin sporulation occurs after escape. Green fluorescence at the initial 

time-point is a remnant of escape from the previous sporulation attempt. (e) Chromosome 

over-replication occurs prior to the formation of twin forespores. TetR-GFP-tagged 

chromosomal loci appear as green “dots”. Membrane staining (red) shows septation events. 

The rightmost dot is the remnant from a previous escape. (f) Schematic diagram showing the 

temporal sequence of events leading to observed terminal fates, which are classified by the 

numbers of chromosomes (x-axis) and compartments (y-axis). * indicates potential for 

return to vegetative division and/or additional sporulation attempt. Scale bar, 1μm.
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Figure 3. Noise and gene expression control cell fate in a hierarchical fashion
(a) Time traces indicating delay (arrow) and reduction (slope of yellow line compared to 

cyan line) in spoIIR expression rate of a typical spoIIRPP-CY cell. (b) Cumulative histograms 

of spoIIR expression rate are shown for two sub-populations of a single spoIIRPP strain in 

the same microcolony (n=150 cells). Sporulating cells show a systematically higher level of 

spoIIR expression. Inset: cell-cell variability in spoIIR expression rate. (c-e) Systematic 

genetic manipulation of fate penetrance. Error bars (s.e) are based on three replicate 

experiments. (c) spoIIR expression controls the overall frequency of sporulation (x-axis) but 

does not systematically affect the ratio of escape cells to abortive disporics (y-axis). Points 

represent spoIIRPP strains differing in spoIIR expression level and delay (supplementary 

methods). (d) spoIIE expression level tunes the penetrance ratio of escape to abortively 

disporic fates (methods, Fig. S12). (e) Deletion of yabA interacts synergistically with 

spoIIRPP mutants to increase twin penetrance (see also Fig. S11). (f) Fate determination can 

be controlled hierarchically—different genes affect different decision points.
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Figure 4. Evolution of twin sporulation
(a) Fate tree showing relative frequencies of over-replication (second row) and additional 

septation (third row) inferred from analysis of terminal fates (bottom row) of n=285 

individual cells. Note that the probability of having three compartments depends on 

chromosome number (blue percentages). Day to day variation was ≤ 2% across all 

measurements. (b) Strain backgrounds PY79 (used throughout the paper) and BR151 differ 

in twin penetrance with the same spoIIRPP mutation (error bars, s.e., based on multiple 

experiments). yabA mutations reduce this difference. (c-e) Twin sporulation in C. oceanicum 

resembles that in B. subtilis mutants. (c) Filmstrip shows typical events during C. oceanicum 

sporulation (times in minutes from first frame). Shown are DNA (green), membrane staining 

(red), and phase contrast (gray). Yellow arrowheads mark first appearance of asymmetric 

septa. (d) The distribution of time intervals between two septation events during twin 

sporulation (n=70). (e) The rate of change of DNA staining was quantified in individual 

cells. Staining increases prior to septation (green area), consistent with chromosome 

replication, and decreases after septation (red area), consistent with transport of DNA into 

forespores. Data were averaged over n=30 cells due to cell-cell variability (error bars, 

s.e.m.).
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