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ABSTRACT
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) show a large overlap in clinical 
presentation, which presents diagnostic challenges. As a consequence, invasive and burdensome 
endoscopies are often used to distinguish between IBD and IBS. Here, we aimed to develop 
a noninvasive fecal test that can distinguish between IBD and IBS and reduce the number of 
endoscopies.

We used shotgun metagenomic sequencing to analyze the composition and function of gut 
microbiota of 169 IBS patients, 447 IBD patients and 1044 population controls and measured fecal 
Calprotectin (FCal), human beta defensin 2 (HBD2), and chromogranin A (CgA) in these samples. 
These measurements were used to construct training sets (75% of data) for logistic regression and 
machine learning models to differentiate IBS from IBD and inactive from active IBD. The results were 
replicated on test sets (remaining 25% of the data) and microbiome data obtained using 16S 
sequencing.

Fecal HBD2 showed high sensitivity and specificity for differentiating between IBD and IBS 
(sensitivity = 0.89, specificity = 0.76), while the inclusion of microbiome data with biomarkers 
(HBD2 and FCal) showed a potential for improvement in predictive power (optimal sensitivity = 0.87, 
specificity = 0.93). Shotgun sequencing–based models produced comparable results using 16S- 
sequencing data. HBD2 and FCal were found to have predictive power for IBD disease activity (AUC 
≈ 0.7).

HBD2 is a novel biomarker for IBD in patients with gastro-intestinal complaints, especially when 
used in combination with FCal and potentially in combination with gut microbiome data.
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Introduction

Inflammatory bowel disease (IBD) and irritable 
bowel syndrome (IBS) are two of the most common 
gastrointestinal (GI) disorders, affecting 0.3–0.5% 
and 7–21% of the population, respectively.1–3 

Patients with IBD and IBS often present with simi-
lar symptoms, such as diarrhea, constipation, bloat-
ing, abdominal pain, and abdominal discomfort, 
but their pathophysiology differs.

IBD is characterized by chronic intestinal 
inflammation in which flare-ups in disease activity, 
which cause gut complaints including diarrhea and 
bloody stools, are followed by quiescent periods in 

which patients have fewer gut complaints. The 
main clinical types of IBD are Crohn’s disease 
(CD) which can affect any part of the GI tract and 
ulcerative colitis (UC), which is typically limited to 
the colon. Unlike IBD, IBS is defined as 
a combination of GI symptoms without 
a causative anatomical or biochemical abnormality 
that can be used to make a definitive diagnosis.2,4 In 
the absence of known biochemical tests, IBS diag-
nosis is based on the presence of a combination of 
symptoms described by the Rome committee.4

Since IBD and IBS often show overlap in their 
symptoms, gastroenterologists face diagnostic 
dilemmas on a daily basis. These include how to 

CONTACT F. Imhann f.imhann@umcg.nl University of Groningen, University Medical Center Groningen, Department of Gastroenterology and 
Hepatology, Groningen, The Netherlands
*Equal contribution

Supplemental data for this article can be accessed on thepublisher’s website.

GUT MICROBES                                              
2021, VOL. 13, NO. 1, e1943288 (18 pages) 
https://doi.org/10.1080/19490976.2021.1943288

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4691-5583
http://orcid.org/0000-0003-3743-1544
http://orcid.org/0000-0003-2541-5627
http://orcid.org/0000-0001-7928-7371
https://doi.org/10.1080/19490976.2021.1943288
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2021.1943288&domain=pdf&date_stamp=2021-07-22


diagnose IBS without missing a diagnosis of IBD 
and how to correctly diagnose an exacerbation in 
IBD patients while avoiding unnecessarily invasive, 
burdensome, and costly endoscopic testing.5 

Although the Rome committee emphasizes that 
IBS is not a diagnosis of exclusion, and should be 
based on symptom criteria, invasive diagnostic pro-
cedures like colonoscopy are still frequently used in 
daily clinical practice to exclude other GI disorders 
like IBD, before the IBS diagnosis is made.2

The relapsing-remitting nature of IBD makes it 
very important to quickly and accurately diagnose 
flare-ups as these disease episodes require a quick 
escalation in anti-inflammatory treatments.1 

Diagnosing IBD exacerbations can, however, be 
complicated because clinical disease activity scores 
and currently used biomarkers, such as C-reactive 
protein in blood and fecal Calprotectin (FCal) often 
do not accurately capture inflammatory activity in 
IBD.6–8

FCal is a well-known fecal biomarker that is used 
to help both distinguish IBD from IBS and to 
determine whether an IBD patient has an 
exacerbation.9 During intestinal inflammation, 
FCal is secreted by neutrophils in the gut, leading 
to an increase in FCal levels in fecal samples.9 

While FCal is currently used in patient care, it is 
far from a perfect test, with an area under the curve 
(AUC) of 0.73 for distinguishing IBD from IBS and 
a sensitivity of 0.80 and a specificity of 0.82 for 
detecting exacerbations in IBD (for an FCal cutoff 
of 250 µg/g).3,10 Moreover, FCal is degraded in the 
gut and is therefore not a good predictor of ileal 
inflammation, which makes it less reliable in CD in 
which the terminal ileum is commonly inflamed.,11

The lesser known fecal protein chromogranin 
A (CgA) and human beta-defensin 2 (HBD2) have 
only been used as biomarkers for IBD and IBS in 
scientific research settings. CgA is a member of the 
granite peptides, which are secreted in nervous, 
endocrine, and immune cells under stress. In the 
gut, CgA is secreted by entero-endocrine cells and 
shows co-expression with serotonin, suggesting it 
has a role in the gut-brain axis, and elevated levels 
of fecal CgA have been associated with IBS and with 
ulcerative colitis (UC).12–15 HBD2 is a human anti-
microbial peptide produced by intestinal epithelial 
cells in response to bacteria and inflammatory cyto-
kines. Reduced levels of HBD2 have been reported 

in IBD patients compared to healthy controls, 
whereas elevated levels of HBD2 have been 
reported in patients with IBS.15,16

In addition to the aforementioned fecal proteins, 
the gut microbiota composition can also be used as 
a biomarker because it has been shown to differ 
between IBD patients, IBS patients, and the general 
population.3,17 We previously found that the gut 
microbiome composition and function significantly 
differs between IBD patients and IBS patients, with 
IBD patients displaying strong dysbiosis in the gut.3 

While we also observed significant alterations in 
gut microbiota between patients with CD and UC, 
these differences were less pronounced than in 
IBD-associated dysbiosis.3 We also demonstrated 
that the gut microbiome can distinguish IBD from 
IBS, and that a predictive model combining FCal 
with gut microbiota composition increases the 
diagnostic yield of FCal.3

In this study, we expand on these results by 
increasing the size of the IBD cohort to 447 
patients, newly measuring fecal biomarkers CgA 
and HBD2 alongside FCal in 447 IBD patients,18 

169 IBS patients,15 and 1044 population controls,19 

evaluating diagnostic yield of these biomarkers, and 
combining them with different layers of gut micro-
biome data to construct diagnostic models for non-
invasive discrimination between IBD and IBS. We 
also evaluate the performance of fecal protein and 
microbiome biomarkers for noninvasive monitor-
ing of IBD activity. Finally, we test the microbiome 
models constructed using shotgun metagenomic 
sequencing on the 16S sequencing data we gener-
ated for the same cohorts to estimate if this, less 
expensive method of profiling microbiome pro-
vides a viable approach for the implementation of 
gut microbiome measurements in the clinical 
environment. Our ultimate goal is to improve non-
invasive diagnostic yields in order to reduce the 
number of unnecessary colonoscopies.

Methods

Cohorts

This study used data pooled from three Dutch 
cohorts: the 1000IBD cohort consisting of patients 
with IBD from the University Medical Center 
Groningen (UMCG),18 the Lifelines-Deep cohort 
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(LLD) representative of the general population of 
the northern the Netherlands,19 and the Maastrich 
IBS cohort (MIBS) consisting of clinically diag-
nosed patients with IBS and their age and sex- 
matched healthy controls from the Maastricht 
University Medical Center.15 The results of 16S 
sequencing of LLD and 1000IBD Cohorts were 
used as replication data for testing the IBD predic-
tion models. Detailed descriptions of these cohorts 
have been published previously,15,18,19 and the 
cohorts are summarized in Table 1.

Disease assessment and determination of IBD 
disease activity

Diagnosis of IBD was made after expert evaluation 
by gastroenterologists based on endoscopic, histo-
pathological, and radiological characteristics. 
Diagnosis of IBS was made by gastroenterologists 
after extensive follow-up to exclude other explana-
tions for the GI complaints in these patients. We 

defined IBD activity based on the expert opinion of 
a gastroenterologist as established in our previous 
work.20 This assessment was based on IBD- 
associated complaints, clinical disease activity 
scores (Harvey–Bradshaw index (HBI)21 or Simple 
Clinical Colitis Activity Index (SCCAI)22), visits to 
the outpatient clinic, examination of the inflamma-
tory markers C-reactive protein, FCal, and leuco-
cytes derived from blood, medication prescriptions 
such as the start of corticosteroids and results of 
endoscopy and pathology.

Sample collection, DNA extraction, and sequencing

Our protocol for fecal sample collection and profil-
ing of gut microbiota was previously published.3 In 
short, participants produced, collected, and stored 
stool samples at home in a freezer or refrigerator. 
The samples collected and transported to the 
UMCG facility and stored at −80°C until DNA 
extraction. Fecal DNA was isolated using the 

Table 1. Summary of cohorts. Summary statistics of the data used in this study. Summary is sub-divided based on diagnosis, and 
parameters that are significantly different from control group are indicated by * (FDR < 0.05 for Mann–Whitney U test or Chi-Squared 
test). Abbreviations: IBD = Inflammatory bowel disease patients, CD = Crohn’s disease patients, UC = patients with Ulcerative colitis, 
IBD-U = patients with undetermined type of IBD, IBS = patients with irritable bowel syndrome, BMI = body mass index, NSAIDs = non- 
steroid anti-inflammatory drugs, PPIs = proton-pump inhibitors, SSRIs = selective serotonin reuptake inhibitors, IBS-C = constipation- 
dominated IBS, IBS-D = diarrhea-dominated IBS, IBS-M = mixed-presentation IBS, N/A: data not available.

Variable IBD CD UC IBD-U IBS IBS-C IBS-D IBS-M
Healthy 
Controls Total

Sample size 447 250 168 29 169 30 61 69 1044 1660

Anthropometrics
Agea 44 

[33; 56]
38 

[30; 49] *
46 

[35; 57]
41 

[27; 50]
44 

[29; 58]
44 

[25; 58]
46 
[35; 
58]

43 
[28; 
58]

46 
[35; 56]

44 
[33; 56]

Sex (Male)b 41% * 34% * 50% 48% 30% * 27% 36% 29% 47% 44%
BMIa 24.5 

[22; 
27.6]

23.8 
[21.7; 
27.4]

25.2 
[22.7; 
28.2]

24.3 
[23.3; 
27.5]

24.5 
[21.7; 

28]

24.1 
[21.2; 
26.6]

25 
[22;29]

23.6 
[21;28]

24.5 
[22; 

27.2]

24.5 
[22.1; 
27.4]

Medication use
Laxatives (Y)b 4.7% * 6.4% * 3.0% 3.4% 18.3% * 43.3%* 8.20% 14.50% 1.1% 3.9%
NSAIDs (Y)b 4.8% 7.2% 1.2% 6.9% 11.8% * 6.60% 13.10% 14.50% 4.4% 5.3%
PPIs (Y)b 16.3% 18.9% * 12.4% 17.2% 24.9% * 23.30% 21.30% 28.90% 6.5% 11.0%
SSRIs (Y)b 1.0% 0.8% 1.8% 6.9% 17.8% * 6.60% 14.80% 24.60% 2.5% 3.8%
Immunosuppressive 

medication (Y)b
44.5% * 49.4% * 37.3% * 27.6% * 0 0 0 0 0 11.70%

Antidiarrheal (Y)b 10.2% * 14.5% * 4.1% * 3.4% * 4.7% * 0 8.20% 4.30% 0 3.10%
Antibiotics (Y)b 1.4% 1.2% 1.8% 0 0.6% 0.00% 3.30% 0.00% 1.1% 1.1%

IBD phenotypes
Active disease (Y)b 12.10% 10.40% 14.80% 10.30% N/A N/A N/A N/A N/A N/A
Ileal resection (Y)b 6.50% 11% 0 4.20% N/A N/A N/A N/A N/A N/A
Colonic resection (Y)b 8.90% 11.70% 5.30% 4.20% N/A N/A N/A N/A N/A N/A
Ileocecal resection (Y)b 21.6% * 37.1% * 0 4.20% N/A N/A N/A N/A N/A N/A
Bowel movements per day 2.6 

[1; 3]*
2.8 

[1; 3] *
2.5 

[1; 3] *
2.5 

[1; 3] *
N/A N/A N/A N/A 1.4 [1;2] 1.8 

[1;2]
Active IBD 4.0 

[1; 6]*
3.5 

[1; 4] *
4.3 

[2; 6] *
N/A N/A N/A N/A N/A N/A N/A

Inactive IBD 2.5 
[1; 3]

2.2 
[1; 3]

2.7 
[1; 3]

N/A N/A N/A N/A N/A N/A N/A
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AllPrep DNA/RNA Mini Kit (Qiagen; cat. # 80204) 
with the addition of bead-beating as previously 
described.23 Library preparation for metagenomic 
sequencing was performed at the Broad Institute of 
Harvard and MIT (Cambridge, Massachusetts, 
USA), and DNA was sequenced using the 
Illumina HiSeq platform, generating mean cover-
age of 30 million reads (3 Gb) per sample.

The 16S rRNA gene sequencing of the V4 vari-
able region was performed on separate aliquots of 
these samples. Sequencing was done on the 
Illumina MiSeq platform, as previously reported,19 

and generated 175 bp paired-end reads.

Profiling of microbiome composition and function 
using metagenomic sequencing

The KneadData toolkit (v0.5.1) was used to trim the 
raw metagenomic reads to PHRED quality 30 and 
to remove Illumina adapters. The KneadData- 
integrated Bowtie2 tool (v2.3.4.1)24 was used to 
remove trimmed reads that aligned to the human 
genome (GRCh37/hg19), and the quality of the 
processed metagenomes was examined using the 
FastQC toolkit (v0.11.7).25 The taxonomic compo-
sition of metagenomes was profiled by the 
MetaPhlAn2 tool (v2.7.2)26 using the 
MetaPhlanAn database of marker genes (v. 
mpa_v20_m200). Profiling of genes encoding 
microbial biochemical pathways was performed 
using the HUMAnN2 pipeline (v0.11.1)27 inte-
grated with the DIAMOND alignment tool 
(v0.8.22),28 UniRef90 protein database (v0.1.1)29 

and ChocoPhlAn pangenome database (v0.1.1). 
Analyses were performed using locally installed 
tools and databases from CentOS (release 6.9) on 
the UMCG high-performance computing 
infrastructure.

Profiling of microbiome composition using 16S rRNA 
gene sequencing

Profiling of results of 16S sequencing was per-
formed using the mothur pipeline30 (v.1.40.0), fol-
lowing a protocol based on the mothur standard 
operating procedure guidelines (https://mothur. 
org/wiki/454_SOP): 1) duplicate input 16S 
sequences (in FASTA format) were discarded, 2) 
unique sequences were aligned to the SILVA 

database31 (release 132), 3) sequences that aligned 
to the SILVA database with less than 90% of the 
total length were discarded, 4) columns in the 
alignment that contained missing data were 
removed, 5) aligned sequences were pre-clustered 
and chimeric sequences were removed using the 
chimera.uchime tool and the SILVA-aligned ver-
sion of the gold database (release 132), 6) aligned 
sequences were assigned taxonomical lineage by the 
mothur Bayesian classifier utilizing the mothur 
trainset (v.16_022016) with a classification cutoff 
of 80, 7) potential contaminants were removed by 
discarding all sequences classified as mitochondria, 
chloroplasts, archaea, eukaryote, or unknown taxa, 
and 8) sequences were clustered into operational 
taxonomical units based on a mothur-calculated 
distance matrix with a cutoff of 0.15 and each 
cluster was assigned taxonomy based on the 
“majority-consensus” taxon.

Measurements of fecal biomarkers

FCal concentrations were measured in fecal sam-
ples at the UMCG using the commercial enzyme- 
linked immunosorbent assay (ELISA, Bühlmann 
Laboratories, Switzerland). CgA levels in fecal sam-
ples were measured using the commercial radio-
immunoassay (RIA, Euro-Diagnostica, Sweden) 
and HBD2 levels in fecal samples were measured 
using a commercial enzyme-linked immunosor-
bent assay (ELISA, Immunodiagnostik AG, 
Germany) at the Medische Laboratoria Dr Stein & 
Collegae, the Netherlands.

Filtering, covariate selection, and data 
normalization

Data was prepared for modeling as follows:

(1) Samples with 50% or higher abundance of 
“unclassified” microbial taxa were deemed 
low quality and discarded. Samples from 
patients with a stoma or pouch of the gut 
were discarded.32 Self-reported IBS and IBD 
cases in the general population cohort were 
also discarded from further analysis as these 
samples lacked clinical diagnosis but were con-
sidered a potential source of bias. In total, 1660 
samples (1044 population-based controls, 169 
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IBS cases, and 447 IBD cases) were used for 
modeling.

(2) Microbiome features (taxa and pathways) 
detected in less than 10% of samples and 
features with a mean relative abundance 
lower than 0.01 were deemed unreliable 
and discarded from further analysis. A total 
of 244 taxa (131 species, 55 genera, 29 
families, 14 orders, 10 classes, and 5 phyla) 
and 277 pathways were then used as covari-
ates for training the prediction models.

(3) The distributions of the relative abundances 
of microbial taxa and microbial pathways 
were normalized using the arcsine square 
root transformation. Normalized abun-
dances were corrected using multivariate 
linear regression for the potential con-
founding effect of population characteristics 
(sex, BMI, and age), use of medications 
known to affect the gut microbiota (protein- 
pump inhibitors (PPIs), antibiotics, and 
laxatives)12 and sequencing depth. Fecal 
FCal, HBD2, and CgA values were normal-
ized by natural logarithm transformation. 
All covariates were scaled and centered by 
subtracting the mean of the covariate and 
dividing values by the standard deviation of 
the covariate.

Model training, optimization, and testing

A training set was established that includes 
a randomly sampled pool of 75% of the data (both 
patient and healthy), which left a test set made up 
the remaining 25% of the data. The training set was 
used for construction and optimization of predic-
tion models and assessment of predictive power by 
internal cross-validation while the test set was used 
for testing of model performance.

Two different machine-learning procedures 
were used: a multivariate logistic regression 
model and a support vector machine model with 
radial kernel function. Model training and optimi-
zation were performed using three repeats of 10- 
fold internal cross-validations on the training set, 
with the goal of optimizing Cohen’s Kappa value, 
a balanced metric of positive and negative predic-
tive values.33 The models were optimized by 
recursive feature elimination, with resampling to 

minimize potential overfitting bias and maximize 
performance.34 The optimized set of variables was 
selected as the set with the minimum number of 
variables that achieved 98% of the maximum 
Kappa value observed during recursive feature 
elimination. Learning curves (plots of the perfor-
mance of the model on test and training sets 
versus training set size) were used to evaluate the 
model training and assess potential over-fitting. 
Optimized models were tested on the test set 
composed of 25% of the total cases and controls 
not used in model training, and the performance 
of classification was reported as area under recei-
ver–operator curve (AUC), sensitivity, and speci-
ficity. All prediction performance metrics in the 
main manuscript are reported for the test set. All 
metrics for internal cross-validation and the test 
set are reported in Supplement S2.

Models were trained, optimized, and tested using 
the Caret package (v.6.0–80, https://topepo.github. 
io/caret/) for the statistical programming language 
R (v.3.4.3; https://www.r-project.org/). Source 
codes are available at https://github.com/ 
G R O N I N G E N - M I C R O B I O M E - C E N T R E  
/Groningen-Microbiome/tree/master/Projects/ 
IBD_Predict.

ROC analysis and determination of biomarker 
cutoffs

To determine optimal values of biomarkers for 
separation of IBD and IBS, we performed receiver 
operating curve (ROC) analysis using the pROC 
package for R and selected the value with the high-
est combination of specificity and sensitivity as the 
optimal biomarker cutoff. These values were vali-
dated by examining regression and classification 
tree (CART) models with a maximum depth 1 
(for single biomarkers) or 2 (for combination of 
biomarkers). CART models were trained using 
1000 bootstraps of the input data.

Comparison of performance of machine learning 
models

Areas under the ROC curves of prediction models 
were compared using DeLong’s test, nonparametric 
test for comparing AUCs of ROC curves 
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implemented in roc.test function from pROC pack-
age for R.

Evaluation of impact of sequencing technology on 
IBD diagnosis models

To evaluate if models constructed on microbiome 
data generated by shotgun metagenomic sequencing 
retain predictive power when applied on 16S sequen-
cing data, we tested models for identification of IBD 
using the 16S sequencing generated from our cohorts 
of healthy controls and IBD patients. We constructed 
an IBD-diagnosis model using the relative abun-
dances of microbiome genera of 447 IBD patients 
and 1044 healthy controls and tested this model 
using 16S sequencing data of the same cohorts.

Results

Cohort description

This study included 1660 participants: 1044 popula-
tion-based controls from the LLD cohort19 and 
healthy controls from the MIBS cohort,15 169 clini-
cally diagnosed IBS patients from the MIBS cohort15 

and 447 patients with IBD from the UMCG 1000IBD 
cohort.18 The average age of CD patients was signifi-
cantly lower than controls, and patients with IBD or 
IBS had a higher proportion of females compared to 
controls, but no significant differences were observed 
in BMI of patient groups and controls (Table 1). In 
addition, the use of prescription drugs was higher in 
disease cohorts compared to the healthy controls. 
Patients with IBS showed increased use of five drugs 
(laxatives, non-steroid anti-inflammatory drugs 
(NSAIDs), selective serotonin reuptake inhibitors 
(SSRIs), proton-pump inhibitors (PPIs), and antidiar-
rheal drugs) compared to controls. Patients with IBD 
showed increased use of laxatives, immunosuppres-
sants, and antidiarrheal drugs (Table 1). IBD patients 
also had higher use of immunosuppressants and laxa-
tives and lower use of SSRIs than IBS patients (FDR < 
0.05 for Chi-Squared tests).

Fecal biomarker HBD2 is a strong predictor of IBD

For all 1660 participants in this study, we measured 
fecal concentrations of HBD2, CgA, and FCal 
(Figure 1) and determined the taxonomical and 

functional profiles of gut microbiota using shotgun 
metagenomic sequencing of fecal samples. 
Biomarker measurements are summarized in 
Table 2. Summary statistics of the gut microbiome 
profiling are shown in Supplement S1. 
Concentrations of FCal and HBD2 were signifi-
cantly elevated in IBD patients as compared to 
healthy controls or IBS patients (Mann–Whitney 
U test, p-values <1.0e-5, Figure 1). The levels of 
both biomarkers were significantly higher in each 
subgroup of IBD (CD, UC, and IBDU) compared to 
the control cohort (Table 2). HBD2 was also found 
to have a significant decrease in IBS patients 
(Mann–Whitney U test p-value 0.004) as compared 
to healthy controls and IBD patients. The concen-
tration of CgA was, however, only found to be 
elevated in IBS cases compared to controls 
(Mann–Whitney U test p-value 3.0e-5). No relation 
between IBD and CgA was identified. Within IBD 
cases, we identified an increase in FCal in patients 
with IBD with active disease. We also observed 
a significant negative correlation between HBD2 
and the number of bowel movements per day 
(adjusted R-squared of linear model = 0.014, 
F-Test p-value = 0.006), which suggests that the 
lower HBD2 in patients with active IBD might be 
a result of lower colonic transit time and looser 
stools, which can dilute the fecal concentration of 
the biomarker. We also examined associations 
between medication use and biomarker levels in 
IBD patients (Table 2) and found that CgA levels 
are significantly decreased in laxative users.

Next, we evaluated the predictive power of these 
biomarkers for discrimination between IBD and 
IBS (Figure 2). We constructed multivariate logistic 
regression models in the randomly selected 75% of 
the data and used these models to classify the 
remaining 25% of the data. FCal 
(Sensitivity = 0.76, Specificity = 0.67, 
AUC = 0.78), and HBD2 (Sensitivity = 0.89, 
Specificity = 0.76, AUC = 0.91) were found to be 
highly accurate in separating patients with IBD 
from patients with IBS, while the predictive power 
of CgA was considerably lower (Sensitivity = 0.73, 
Specificity = 0.05, AUC = 0.59). A model comprised 
age, sex, and BMI – factors known not to be pre-
dictive of IBD3 – was used as a negative control to 
identify potential bias in the data and showed no 
predictive power (AUC ≈ 0.5). Combining FCal 
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and HBD2 led to a considerable increase in predic-
tive power when compared to single-biomarker 
models (Sensitivity = 0.86, Specificity = 0.83, 
AUC = 0.93) while adding CgA to the FCal and 
HBD2 models did not further improve the predic-
tive power (AUC ≈ 0.93). We also constructed 
binary classification models using biomarker cut-
offs obtained by ROC analysis and training classi-
fication and regression tree models to determine 
the optimal separation of IBD and IBS cases. 
Optimal values for IBD diagnosis using a single 
biomarker were found to be FCal ≥111 µg/g 
(Sensitivity = 0.86, Specificity = 0.58) or 
HBD2 ≥41 ng/g (Sensitivity = 0.9, 
Specificity = 0.64), while a classification tree using 
HBD2 and FCal achieved Sensitivity = 0.9 and 
Specificity = 0.72 with a simple decision tree that 
classifies a sample as IBD if HBD2 ≥41 ng/g or FCal 
≥377 µg/g.

Inclusion of microbiome has potential to increase 
optimal specificity and sensitivity of fecal biomarker 
tests

To assess if the gut microbiome can be used to 
diagnose IBD in patients with gut complaints, we 
trained prediction models for identification of IBD 
using gut microbiome profiles obtained by metage-
nomic sequencing of these samples. We trained 

separate prediction models using relative abun-
dances of microbial phyla, genera, species, bio-
chemical pathways, and combinations of these 
profiles. We then compared these models to the 
models using our biomarker panel (FCal, HBD2, 
and CgA). We also assessed the additive value of 
the gut microbiome in the biomarker panel. 
Training was performed using a randomly selected 
training set of 336 IBD cases and 127 IBS cases. 
Testing was performed on the remainder of the 
data (111 IBD cases and 42 IBS cases).

A comparison of the models showed that the 
predictive power of the model increases when the 
microbiome is profiled at a lower taxonomic level 
(e.g. genus- or species-level as opposed to phylum- 
level). The use of bacterial biochemical pathways 
did not improve predictive power (Figure 3/A), and 
no significant difference was observed between the 
support vector machine model and multivariate 
logistic regression model (Supplement S2). 
Examination of these models identified that opti-
mal performance was achieved using 20 bacterial 
genera (Supplement S3/A) or 23 bacterial species 
(Supplement S3/B). Of these, the strongest signal 
was observed for the species Eubacterium rectale, 
Collinsella aerofaciens, Lactobacillus delbrueckii, 
Odoribacter sp. and Ruminococcus sp. and for gen-
era Eubacterium, Collinsella, Sutterellaceae, 
Adlercreutzia, and Streptococcus. Our microbiome- 

HC            IBS           IBD

A) CgA (nmol/g) B) FCal (µg/g) 

HC   IBS     IBD

C) HBD2 (ng/g)

HC        IBS        IBD

Figure 1. Fecal biomarker measurements. Biomarker measurements in fecal samples from healthy controls (blue), IBS patients (pink), 
and IBD patients (orange). Statistically significant differences (Mann–Whitney U test, adjusted for multiple testing by Bonferroni 
correction) are shown in the plots.
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based IBD prediction performance was comparable 
to that found by previous studies using 16S sequen-
cing to predict pediatric IBD35 or using metage-
nomics sequencing to predict IBD in American36 

and Chinese37 cohorts.
Models trained on the fecal biomarkers and 

microbiome data were found to be more accurate 
than models utilizing biomarkers or microbiome 
alone (Figure 3/B). The increase in performance 
was significant in cross-validation test for biomar-
ker models combined with bacterial species, bacter-
ial genera, or bacterial species and pathway 

(DeLong’s test p-value <0.05, Supplements S2 and 
S3/E). The difference was not statistically signifi-
cant on the test sets, possibly due to the limited 
sample sizes of the test sets. However, the models 
combining biomarkers and the microbiome 
showed increased optimal specificity and sensitivity 
and required fewer features to achieve high predic-
tive power. For example, the biomarker-only model 
showed optimal Sensitivity = 0.90 and 
Specificity = 0.74, while the model combining bio-
markers with five microbiome genera (Collinsella, 
Coprococcus, Ruminococcus, Methanobrevibacter, 

Table 2. Summary of biomarker measurements. Summary statistics of biomarker measurements, grouped per diagnosis. 
Measurements significantly different from healthy control group (Mann–Whitney U test or Chi-Squared test) are marked as * for 
p-value <0.05 and as ** for p-value < 1.0E-5. Control groups are Healthy controls (for comparison with IBS patients, all IBD cases, UC 
cases, CD cases, and IBD-U cases), male group (for Sex), positive cases for binary variables (IBD activity and resections), and lowest class 
for Montreal classifications and HBI/SCCAI values. Abbreviations: M: Montreal classification, HBI: Harvey–Bradshaw index, SCCAI: Simple 
Clinical Colitis Activity Index.

Variable
Sample 

size
FCal (μg/g) 

median [Q1;Q3] p-value
HBD2 (ng/g) 

median [Q1;Q3] p-value
CgA (nmol/g) 

median [Q1;Q3] p-value

IBS patients 169 40 [40; 73.2] * 0.0076 31.6 [19.1; 50.0]* 5.10E-04 0.82 [0.65; 1.50] * < 1.0e-5
IBS-D 61 40 [40;75.9] 0.24 25.9 [15; 46.9] 0.24 0.9 [0.67; 1.55] 0.36
IBS-C 30 40.1 [40; 73.6] 0.91 30.8 [21.9; 37.1] 0.91 0.77 [0.69; 1.23] 0.64
IBS-M 69 40 [40; 74.3] 0.21 33.9 [20.7; 52.1] 0.21 0.83 [0.633; 1.4] 0.6
all IBD cases 447 150 [50; 380] ** < 1.0e-5 172 [77; 342] ** < 1.0e-5 0.83 [0.63; 1.08] 0.1
Sex: Male 183 160 [56.5; 458] 0.31 189 [89; 390] 0.11 0.81 [0.62; 1.1] 0.49
Sex: Female 264 142 [49.5; 320] N/A 161 [71; 314] N/A 0.83 [0.65; 1.1] N/A
IBD activity: Active 54 340 [104; 822] ** 4.00E-04 106 [57; 214] * 0.01 0.81 [0.63; 1] 0.51
IBD activity: Inactive 393 135 [48; 335] N/A 185 [86; 348] * N/A 0.83 [0.64; 1.1] N/A
Ileal resection(s): N 343 150 [50.5; 405] N/A 176 [80.5; 334] N/A 0.84 [0.66; 1.1] N/A
Ileal resection(s): Y 24 167 [58.5; 275] 0.77 119 [66.6; 179] 0.11 1.02 [0.78; 1.26] 0.11
Colonic resection(s): N 337 150 [50; 390] N/A 176 [77.6; 333] N/A 0.84 [0.66; 1.11] N/A
Colonic resection(s): Y 33 180 [54; 575] 0.63 156 [72.4; 203] 0.4 0.99 [0.76; 1.36] 0.09
Ileocecal resection(s): N 290 158 [54.2; 411] N/A 185 [87; 356] N/A 0.84 [0.66; 1.07] N/A
Ileocecal resection(s): Y 80 125 [44.1; 366] 0.27 139 [64.3; 222] * 0.018 0.93 [0.73; 1.32] * 0.017
IBD location: colon 215 155 [52.1; 390] N/A 188 [84; 379] N/A 0.80 [0.63; 1.05] N/A
IBD location: ileum 86 123 [44; 242] 0.07 169 [90.7; 285] 0.39 0.87 [0.64; 1.12] 0.27
IBD location: ileocolonic 100 192 [63.2; 475] 0.42 164 [60.2; 303] 0.08 0.88 [0.65; 1.17] 0.12
IBD: Laxative use: Y 22 148 [78; 229] 0.60 176 [76; 345] 0.3 0.67 [0.47; 0.80] * 0.0015
IBD: NSAID use: Y 22 152 [71; 285] 0.92 135 [83; 392] 0.63 0.79 [0.54; 0.91] 0.11
IBD: PPI use: Y 73 255 [125; 500] * 0.005 176 [94; 440] 1.00 0.73 [0.6; 0.94] 0.3
IBD: Immunosuppresives: Y 194 132 [40; 340] 0.14 165 [83; 332] 0.91 0.84 [0.67; 1.1] 0.051
IBD: Antidiarrheal drugs: Y 44 175 [60; 475] 0.55 141 [63; 303] 0.32 0.89 [0.7; 1.2] 0.11
Crohn’s disease cases 249 157 [57; 359] ** < 1.0e-5 176 [74; 344] ** < 1.0e-5 0.85 [0.66; 1.14]* 6.60E-04
Active CD 26 178 [98.5; 730] 0.09 104 [32.7; 213] * 0.03 0.83 [0.70; 1.05] 0.62
Inactive CD 223 150 [52.5; 330] N/A 187 [80; 361] N/A 0.86 [0.66; 1.15] N/A
M/B3 (Penetrating disease) 31 225 [83.5; 390] 0.27 158 [77.2; 223] 0.36 1.01 [0.73; 1.43] 0.04
M/B2 (Stricturing disease) 85 155 [61; 310] 0.79 187 [68; 303] 0.37 0.85 [0.66; 1.27] 0.21
M/B1 (Uncomplicated CD) 133 160 [44; 340] N/A 185 [79.7; 387] N/A 0.83 [0.64; 1.05] N/A
HBI 10 or higher 20 305 [165; 684] * 0.02 133 [59.5; 270] 0.22 0.88 [0.71; 1.14] 0.76
HBI 6–9 25 125 [70; 340] 0.99 127 [49.1; 297] 0.19 0.85 [0.67; 1.02] 0.75
HBI 5 or less 202 145 [51.2; 336] N/A 187 [80.6; 378] N/A 0.84 [0.65; 1.14] N/A
Ulcerative colitis cases 169 133 [41; 420] ** < 1.0e-5 170 [80; 331] ** < 1.0e-5 0.80 [0.60; 1.02] 0.87
Active UC 25 385 [115; 750] * 0.005 150 [60.8; 209] 0.18 0.77 [0.70; 1.05] 0.62
Inactive UC 144 111 [40; 336] N/A 178 [91.3; 337] N/A 0.86 [0.66; 1.15] N/A
M/S0-1 (Mild UC or remission) 63 90.2 [40; 265] N/A 170 [86.2; 340] 0.18 0.77 [0.62; 0.93] N/A
M/S2 (Moderate UC) 74 195 [64.7; 462] * 0.04 184 [69.2; 375] 0.99 0.81 [0.546; 1.04] 0.77
M/S3 (Severe UC) 29 170 [48; 505] 0.19 127 [76.9; 207] 0.1 0.86 [0.635; 1.07] 0.22
SCCAI 0–1 127 130 [44; 333] N/A 180 [92.3; 380] N/A 0.80 [0.62; 1.03] N/A
SCCAI 2–4 47 130 [44.5; 610] 0.87 167 [85.8; 292] 0.3 0.80 [0.59; 1.02] 0.49
SCCAI 5 or higher 18 562 [374; 1060] * 3.00E-04 96.2 [58; 177] * 0.01 0.87 [0.67; 0.98] 0.51
Undetermined IBD cases 29 155 [91; 440] ** < 1.0e-5 157 [90; 345] ** < 1.0e-5 0.82 [0.65; 1.14] 0.46
Healthy Controls 1044 40 [40; 58.3] N/A 38 [23; 64] N/A 0.70 [0.62; 0.97] N/A
Sex: Male 489 40 [40; 57.5] 0.5 40 [25; 72] * 1.00E-04 0.70 [0.62; 1.03] 0.75
Sex: Female 555 40 [40; 58.9] N/A 35 [22; 57] N/A 0.7 [0.63; 0.93] N/A
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and Alistipes) had optimal Sensitivity = 0.93 and 
Specificity = 0.87 (Supplement S3/C). The biomar-
ker and species model showed optimal perfor-
mance (Sensitivity = 0.93, Specificity = 0.81) when 
FCal, HBD2, and eight bacterial species 
(Eubacterium rectale, Veillonella atypica, 
Lachnospiraceae sp., Collinsella aerofaciens, 
Streptococcus sanguinis, Dorea longicatena, 
Clostridium nexile, and Bacteroides fragilis; 
Supplement S3/D) were included into the model.

Models based on metagenomics sequencing– 
generated data are compatible with 16S rRNA 
sequencing

To evaluate if simpler and less expensive gut micro-
biome profiling using 16S rRNA sequencing of fecal 
samples is a viable strategy for diagnosis of IBD, we 
performed a method replication experiment where 
the IBD-prediction model was trained on whole- 

genome shotgun metagenomic sequencing- 
generated microbiome profiles of 447 IBD patients 
and 1044 population controls and then tested using 
16S rRNA tag sequencing-generated microbiome 
profiles of the same cohort. The replication experi-
ment identified that the model trained on 21 bac-
terial Genera (Supplement S4) successfully 
separated the IBD from controls using 16S micro-
biome profiles (Figure 4), with an only minor loss 
of accuracy compared to metagenomic data 
(Sensitivity = 0.9, Specificity = 0.63, AUC = 0.86 
for metagenomic test set; Sensitivity = 0.82, 
Specificity = 0.65, AUC = 0.83 for 16S test set).

Microbiome and HBD2 are limited predictors of IBD 
activity

To determine if our biomarker panel and micro-
biome data can be used to monitor the IBD disease 
course, we evaluated disease activity in our IBD 

Figure 2. Model for differentiation of IBD from IBS using fecal biomarkers. Receiver operating characteristics (ROC) and area under the 
curve (AUC) of logistic regression models are trained to separate IBD and IBS cases based on age, sex, and BMI (Phenos), individual 
biomarkers (CgA, FCal, and HBD2) and a combination of HBD2 and FCal (BM). The predictive power of these models was calculated on a 
test set of 25% of the samples (n = 153) not used for model training and optimization. The shaded area represents one standard 
deviation of the ROC obtained using 1000 bootstraps.
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cohort using clinical records, colonoscopy, FCal, 
and the expert opinion of the gastroenterologist 
using the methodology we previously employed in 
the analysis of flare-ups in CD.20 Comparison of 
biomarkers in patients with active IBD at the 
moment of fecal sampling (N = 54) and patients 
with inactive disease (N = 393) identified that the 
concentration of FCal was significantly elevated 
(Mann–Whitney U test FDR = 0.001) in patients 
with active disease, that the concentration of HBD2 
was significantly decreased in patients with active 
IBD (FDR = 0.03), and that CgA was not signifi-
cantly different between groups (Figure 5).

The predictive power of FCal and HBD2 was 
found to be significant but limited (AUC = 0.7 for 
logistic regression model with both biomarkers; 
AUC  0.6 for individual biomarkers), whereas 
CgA and the model using age, sex, and BMI were 
not predictive for IBD activity (AUC ≅ 0.5). 
Additionally, combining the biomarkers with the 

microbiome did not significantly increase the pre-
dictive power of these models (Supplement S2).

Discussion and conclusions

We analyzed the predictive potential of the fecal 
biomarkers FCal, HBD2, and CgA and the gut 
microbiome in order to: 1. distinguish patients 
with IBD from healthy controls, 2. distinguish 
patients with IBD from individuals with GI com-
plaints, e.g., patients with IBS, and 3. distinguish 
active from inactive disease within patients with 
IBD. We identified that fecal HBD2 is highly ele-
vated in patients with IBD and better distinguishes 
IBD from controls and IBS patients than the cur-
rently used FCal. We also discovered that gut 
microbiome composition and function are predic-
tive of IBD, and the predictive power is increased 
when the microbiome profile is combined with 
HBD2 and FCal.

a) b)

Figure 3. IBD vs IBS prediction models based on microbiome and fecal biomarkers. A) Comparison of ROC curves and areas under the 
curves (AUC) of microbiome-based models for prediction of IBD built on different levels of taxonomical and functional profiling of gut 
microbiome: microbial Phyla, Genera, Species, Metacyc pathways (PWYs), and combination of Pathways and taxonomy (PWYs+Taxa). 
B) Comparison of models trained on the gut microbiome profiled at the genus level (MB), a combination of microbial Genera and 
biomarkers (MB+BMark) and only age, sex and BMI (Phenos model). The ROC curves were calculated on a test set of 415 samples not 
used for model training and optimization. Shaded area represents one standard deviation of ROC, obtained using 1000 bootstraps.
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Noninvasive diagnosis of IBD in patients with 
bowel complaints and monitoring of IBD disease 
activity are currently unsolved clinical problems. 
While colonoscopy performed by skilled medical 
practitioners is highly successful in both diagnosing 
IBD and identifying disease activity, it entails con-
siderable patient burden and high healthcare 
costs.2,5 The only biomarker currently available in 
clinical practice is the FCal test, which is based on 
the detection of calprotectin protein secreted by 
neutrophils in the inflamed gut.9 This test, while 
rapid and inexpensive compared to colonoscopy, 
suffers from multiple limitations. Its performance is 
far from perfect, with a reported AUC in the range 
of 0.75,3,10 which results in a high rate of false 
positives when the test is calibrated for high sensi-
tivity. It is also not a good predictor of ileal inflam-
mation as FCal is degraded in the gut and tends to 
generate false positives in patients with colonic 
polyps, diverticulitis, infectious diarrhea, and col-
orectal neoplasia.38 Furthermore, a comparison of 
different commercial FCal kits has found up to 

5-fold differences in the reported levels of FCal, 
leading to concerns about the between-assay stabi-
lity of FCal test results.39–41 Given these limitations, 
supplementation of the FCal test with other inde-
pendent biomarkers is a potential strategy to 
increase the diagnostic power of noninvasive diag-
nosis of IBD.

In this study, we focussed on HBD2, CgA, and the 
gut microbiome as potential biomarkers for enhan-
cing the FCal test based on previously described rela-
tions of these biomarkers to IBD,42 availability of 
commercial assays for CgA and HBD2, and our pre-
vious research on the gut microbiome, which identi-
fied striking changes in the gut microbiota of patients 
with IBD3 and, independently, a strong association of 
CgA with the composition of the gut microbiome in 
a population-based cohort.12

HBD2 is a potential novel fecal biomarker for 
diagnosis of IBD
HBD2 is an antibiotic peptide expressed in 
response to inflammation and infection. Its basal 

Figure 4. Performance of 16S data on the MGS model of IBD. Comparison of ROC curves of IBD prediction models trained on bacterial 
genera profiled using MGS sequencing of fecal samples of 447 IBD patients and 1044 population controls (green) to ROC curves 
constructed by testing the MGS model on the 16S-sequencing generated profile of the same cohort (red).
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expression level is very low in the colon, but it was 
found to be induced during inflammation of the 
gastrointestinal epithelium, which makes it 
a potential biomarker for IBD.42 We identified 
that IBD patients had significantly increased fecal 
concentrations of HBD2 compared to healthy con-
trols or patients with clinically diagnosed IBS 
(Figure 1), and this increase was observed for both 
CD and UC patients (Table 2). These results are 
consistent with previous studies that show induc-
tion of colonic expression of HBD2 in the gut of 
patients with IBD.43 Increased levels of HBD2 have 
also been observed in fecal samples of pediatric 
patients with IBD44 and in colonic biopsies of 
adults with IBD.43 Notably, HBD2 is not increased 
in the serum of IBD patients,45,46 possibly because 
it is degraded before reaching systemic circulation 
at levels sufficient for detection.

When tested for predictive power, HBD2 showed 
high sensitivity and specificity for IBD in our cross- 
validation and test sets (Supplement S2, Figure 2), 
with predictive power further increased when 
HBD2 was combined with FCal (Figure 2), 

suggesting that HBD2 is a promising candidate 
biomarker for IBD. Furthermore, these results 
showed an additive value of HBD2 on top of FCal, 
indicating that the HBD2 signal is independent of 
the FCal signal. In our cohort, HBD2 calibrated at 
HBD2 ≥ 41 ng/g for IBD classification outper-
formed the FCal test in both sensitivity (0.9 for 
HBD2 vs 0.86 for FCal) and specificity (0.64 for 
HBD2 vs 0.58 for FCal), while the logistic regres-
sion model using both biomarkers further 
improved these values to a sensitivity of 0.86 and 
a specificity of 0.83. While there are no minimal 
predictive power values defined for medical bio-
markers, the ROC values obtained in this study 
can be considered “acceptable” for FCal (ROC > 
0.7), “excellent” for HBD2 (ROC > 0.8) and “out-
standing” for the combination of biomarkers (ROC 
> 0.9).47

When translated to potential clinical benefits, 
our results imply that combining HBD2 and FCal 
has the potential to considerably (≈40%) decrease 
proportion of false-positive test results, overcoming 
what is currently one of the major weaknesses of 

A) CgA (nmol/g) B) FCal (µg/g) C) HBD2 (ng/g) 
Active IBD 

Inactive IBD 
   [N = 393] 

Active IBD 
  [N = 54] 

Inactive IBD 
   [N = 393] 

Active IBD 
  [N = 54] 

Inactive IBD 
   [N = 393] 

Active IBD 
  [N = 54] 

Figure 5. Fecal biomarkers in patients with active and inactive IBD. Biomarker measurements in fecal samples from IBD patients with 
active disease (red) and patients with inactive IBD (blue). Statistically significant differences (Mann–Whitney U test, adjusted for 
multiple testing by Bonferroni correction) are shown.
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the FCal test. As patients with suspected IBD who 
have high FCal levels (>200 considered positive) 
require colonoscopy to confirm the IBD diagnosis, 
this reduction in false positives would lead to 
a ≈40% reduction in unnecessary colonoscopies. 
This could result in reduced patient burden and 
healthcare costs. For test comparison, we assumed 
that 20% of the tested population (patients with GI 
complaints suspected of IBD or IBS) have IBD, that 
all patients who test positive undergo colonoscopy, 
commercial FCal and HBD2 test cost of ≈€50 and 
colonoscopy cost of ≈€1,000.48 Based on these 
assumptions, the FCal test from our models 
(Sensitivity = 0.79, Specificity = 0.44) results in 
406 unnecessary colonoscopies per 1000 FCal tests 
and the average cost of ≈€656 per patient due to the 
high rate of false positives in the tested population. 
In comparison, our proposed test utilizing HBD2 
and FCal would result in ≈167 unnecessary colo-
noscopies per 1000 tests and an average cost of 
≈€466 per patient, resulting in considerable reduc-
tion in patient burden and healthcare costs 
(detailed cost and benefit calculations and assump-
tions are provided in Supplement S2/C). It should 
be noted, though, that commercial HBD2 kits are 
currently not available for medical use and our 
proposed tests need further standardization, test-
ing, and validation.

No significant change in fecal CgA levels is observed 
in IBD patients
CgA is a member of the granin family of neuroen-
docrine secretory proteins that is used as a serum 
biomarker for diagnosis and monitoring of carci-
noid tumors and other neuroendocrine tumors.49 

Previous studies have suggested that interactions 
between the enteric nervous system and the 
immune system play important roles in the patho-
physiology of IBD, and that CgA could potentially 
be used as a biomarker for IBD.50 Additionally, 
CgA levels in serum,51 plasma,52 and fecal 
samples53 show mixed values in patients with 
IBD. These values have been observed to be ele-
vated in patients with IBD, especially in patients 
with active disease, but there are other studies that 
have shown no relation between CgA levels and 
patients with IBD.53 Furthermore, our previous 
work identified that CgA has a strong association 
with the composition of the gut microbiota.12 In 

this study, we observed a significant increase in 
CgA levels in fecal samples of clinically diagnosed 
IBS patients, but not in IBD patients (Table 2).

The gut microbiome has potential to supplement 
biomarkers for diagnosis of IBD
Gut microbiome changes have been associated with 
IBD in numerous studies, with strong microbiome 
signals reported in both major subtypes of IBD (UC 
and CD), in pediatric54 as well as adult3 patient 
groups, and in treatment-naïve55 as well as in trea-
ted patients of different ethnicities.37 We previously 
reported that the gut microbiome has the potential 
to be used as a biomarker for distinguishing 
patients with non-IBD gut complaints, such as 
IBS, from patients with IBD.3 Here, we expand 
this research by building predictive models using 
multiple fecal biomarkers, integrating these bio-
markers with gut microbiome data, and replicating 
the results using microbiome profiles obtained 
using the 16S sequencing of fecal samples.

Our results suggest that inclusion of a limited 
number of microbiome signals into a diagnostic 
model based on biomarkers has the potential to 
increase the power of biomarker tests for IBD. In 
our cohort, inclusion of five bacterial genera into 
a biomarker model using FCal and HBD2 increased 
the specificity of the test from 0.89 (biomarker test) 
to 0.92 and the sensitivity from 0.76 to 0.87 
(Supplement S2). This increase in predictive 
power over FCal and HBD2 test would translate 
into approximately a doubling of the true positive 
rate of the test, potentially leading to a reduction in 
unnecessary colonoscopies. Assuming the 20% pre-
valence of IBD in the test group and healthcare 
costs listed above, the inclusion of bacterial genera 
into HBD+FCal test would reduce the number of 
unnecessary colonoscopies from ≈167 per 1000 
patients (HBD+FCal test) to ≈90 per 1000 patients, 
considerably reducing the patient burden. The 
microbiome test would, however, lead to an ≈10% 
increase in average cost per patient (Supplement 
S2/C) and potential delays in test results due to 
the need for microbiome sequencing. While the 
shotgun metagenomic sequencing (MGS) is unli-
kely to be implemented in healthcare in the near 
future due to the added costs and the need for 
specialized bioinformatics infrastructure expertise, 
our results show that 16S rRNA sequencing 
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provides a feasible alternative to MGS (Figure 4) at 
a fraction of the MGS sequencing and data proces-
sing costs. Quantitative PCR test for limited num-
ber of bacterial taxa (for example, genera 
Collinsella, Coprococcus, Ruminococcus, 
Methanobrevibacter, and Alistipes, which were 
found to be strongest predictors of IBD in our 
data) would provide another option for fast, low 
cost and high precision microbiome test, but such 
test would have to be rigorously tested in clinical 
environment to ensure precision and 
reproducibility.

Monitoring disease activity in IBD with fecal 
biomarkers
We also identified that FCal and HBD2 have pre-
dictive potential for monitoring disease activity in 
patients with IBD (Supplement 2). While these 
results suggest that microbiome, FCal and HBD2 
could be used for the identification of active IBD, 
our study was limited by the small number of 
patients with active IBD at the time of sampling 
(54 patients with active IBD). Larger training and 
test sets will therefore be necessary to achieve the 
full predictive potential of these biomarkers. In our 
previous work, we identified that the biochemical 
functionality of the gut microbiome changes before 
the onset of the IBD flare,20 which suggests that 
longitudinal sampling of the microbiota should 
increase the predictive power of microbiome- 
based models for prediction of IBD exacerbations 
before the onset.

Study limitations

The nature of our study does pose some limitations. 
First, we were not able to perform replication ana-
lyses on an independent cohort because the combi-
nation of gut microbiome data and biomarkers 
derived from fecal samples were not available for 
any other cohort. Even though we did use separate 
training and test sets in our prediction models, with 
no overlapping samples, and replicated the results 
using 16S sequencing technology of our cohorts, it 
is important to replicate our findings in an inde-
pendent cohort. This would ascertain whether dif-
ferences in ethnicity, diet, geography, or the 
different techniques used for determining these 
biomarkers influence the results, thereby providing 

more insight into the possibility for widespread use. 
This is especially notable for our results for HBD2 – 
while this biomarker shows very high diagnostic 
yield in our study, especially when combined with 
FCal, this is the first time the fecal HBD2 was 
evaluated for the prediction of IBD, and potential 
differences in this biomarker in different popula-
tions and potential impacts of laboratory kits for 
measurement of HBD2 should be evaluated before 
it can be implemented in the clinic. In addition to 
the lack of replication cohorts, a limitation intro-
duced by our splitting of data into a training and 
test sets is the limited sample size of the test set, 
which might have been insufficient to establish if 
models combining biomarkers and microbiome 
have higher predictive power than biomarker-only 
models. Combined models showed a significant 
increase in performance on cross-validation sets, 
but while they showed an increase in AUC, speci-
ficity, and sensitivity in test sets, these differences 
were not statistically significant in test sets. 
Therefore, larger test sets will be needed to evaluate 
whether combining the microbiome and biomar-
kers warrants the cost of adding microbiome 
sequencing and the expertise required to generate 
these and analyze these data.

Second, cohorts containing patients with IBD 
had all been previously diagnosed and treated for 
their IBD. However, we do have detailed informa-
tion about these previous treatments and current 
medication use. To better validate our models for 
diagnosing IBD, new-onset patients with IBD 
should be included as they are treatment-naive 
and the target group for diagnostic testing.

Third, due to the cross-sectional nature of this 
study, we were not able to determine the stability of 
the measured biomarkers and microbiome. 
Longitudinal profiling of the gut microbiome and 
biomarkers by collecting multiple fecal samples for 
each individual to capture the microbiome 
dynamics before, during and after the onset of 
IBD flare-up is required.

Finally, the use of the microbiome as a biomarker 
requires there be a standardized protocol (DNA iso-
lation, sample collection, sample storage, and sequen-
cing platform or quantification of bacterial taxa) 
because variations in methodology are known to 
affect the readout of the fecal microbiome.56 While 
our study demonstrates that 16S sequencing is a viable 
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alternative to shotgun metagenomics for use in mod-
els for the diagnosis of IBD, a clinical fecal micro-
biome test would ideally use a quantitative approach 
rather than the currently used relative abundance 
measurements produced by 16S and metagenomic 
sequencing. This could be achieved using qPCR spe-
cific for limited number of bacterial taxa. These novel 
qPCR tests will require new testing and replication 
studies before clinical implementation.

Conclusions

We evaluated the diagnostic potential of nonin-
vasive fecal FCal, HBD2, and CgA, as well as the 
gut microbiome profiles, for the diagnosis of 
IBD in patients with gut complaints. HBD2 is 
a promising novel biomarker for IBD, with 
a predictive power comparable to FCal test. 
Combining the HBD2 with FCal test has poten-
tial to considerably increase the noninvasive 
diagnostic yield of IBD tests. The gut micro-
biome has limited predictive power in compar-
ison to FCal and HBD2, but could potentially 
supplement biomarker tests to provide 
a decrease in false-positive rates.
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