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Abstract: Social species perceive emotion via extracting diagnostic features of body movements.
Although extensive studies have contributed to knowledge on how the entire body is used as context
for decoding bodily expression, we know little about whether specific body parts (e.g., arms and
legs) transmit enough information for body understanding. In this study, we performed behavioral
experiments using the Bubbles paradigm on static body images to directly explore diagnostic body
parts for categorizing angry, fearful and neutral expressions. Results showed that subjects recog-
nized emotional bodies through diagnostic features from the torso with arms. We then conducted
a follow-up functional magnetic resonance imaging (fMRI) experiment on body part images to
examine whether diagnostic parts modulated body-related brain activity and corresponding neural
representations. We found greater activations of the extra-striate body area (EBA) in response to both
anger and fear than neutral for the torso and arms. Representational similarity analysis showed that
neural patterns of the EBA distinguished different bodily expressions. Furthermore, the torso with
arms and whole body had higher similarities in EBA representations relative to the legs and whole
body, and to the head and whole body. Taken together, these results indicate that diagnostic body
parts (i.e., torso with arms) can communicate bodily expression in a detectable manner.

Keywords: bodily perception; Bubbles paradigm; diagnostic body parts; fMRI; EBA

1. Introduction

Humans are able to detect and identify bodily expressions, which is crucial for social
interaction. Bodily expressions are major sources of social and emotional information be-
yond facial expressions [1–3], especially when communicating at a considerable distance [4].
For example, a happy body is associated with large and broad motion patterns [5,6]. How-
ever, it remains largely unclear regarding what, in terms of diagnostic body parts, is
indispensable for decoding bodily expressions, and what underlying neural mechanisms
accompany the process. Diagnostic body parts are critical to effective and efficient social
communication. This study used the Bubbles paradigm to uncover the diagnostic body
parts and functional magnetic resonance imaging (fMRI) methods to investigate how they
were decoded in body-selective cortical regions.

Previous studies have demonstrated that body parts have distinct biological motion
patterns that modulate bodily expression perception. As long ago as the 19th century, Dar-
win [7] proposed that head motion indicates large amount of emotional information, through
tilt direction: an upward orientation conveys joy, and a downward orientation conveys
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shame or sadness. This conjecture was later supported by evidence showing that people
perceived emotion corresponding to specific head motions [8–10]. Even simple leg and foot
gestures exert influence on the evaluation of people’s attitude [11]. These studies showed
that separate body parts play important roles in forming bodily expression perception.

Perception of bodily expressions depends on how motion patterns are processed by
a balance between encoding and decoding [10,12,13]. Encoding refers to expressing one’s
inner emotion with nonverbal information. For example, slower and fewer overall body
movements can express an unhappy or sad state in dance [14], though these movements
are usually interpreted as neutral expressions in daily life. Decoding refers to extract-
ing the nonverbal cues to interpret bodily expression. When an observer had difficulties
identifying bodily expression from an ambiguous face, they would automatically extract
information from other body parts [15,16]. Studies employing whole-body stimuli have
found that decoding bodily expression usually involves how to decode body parts such as
arm or hand gestures [17,18]. Specifically, anger is often recognized through arm move-
ment [19], clenched or shaking fists and hitting gestures [20]. Fear is usually accompanied
by defensive reactions [10,21], such as placing arms over the chest [16,20], or covering
the face with hands [18]. Neutral has more expanded torso and limb shapes to express
relaxed states [22]. However, these studies failed to clearly explain: (1) whether those body
parts were all diagnostic for decoding bodily expression; (2) other body parts, such as the
torso, containing the information of leaning forward or backward, were also helpful for
behavior identification.

Moreover, emotions drive bodily responses [23], because emotions evoke specific
patterns of autonomous nervous system activity [24], which further lead to discrete ‘feeling
fingerprints’ of the human body [25,26]. In these works, many types of emotion showed
that torso and arms were significantly associated with bodily sensations, such as anger and
fear. The evidence from body feelings of emotion possibly explained how people perceive
bodily expressions. We therefore speculated that perceiving anger or fear was probably
achieved by qualifying whether the torso, arms and hands are contracted or expanded. We
combined torso, arms and hands into an integrated part, and hypothesized that diagnostic
features for perceiving fear and anger consist of the combined diagnostic body parts: torso
with arms.

We adopted the Bubbles paradigm to identify diagnostic features for decoding static
bodily expressions. The paradigm applied the theory of reverse correlation to model the
mental representations by reverse correlating all the possible information projected onto
the retina, with the observer’s corresponding response [13,27]. For instance, one observer
selected some specific faces as happy expressions. Researchers computed significantly over-
lapped regions of his/her selected faces as diagnostic features. As the human visual system
can be sampled into five orthogonal spatial frequency bands responsible for transmitting
different scales of information, researchers always compute the diagnostic information
independently for each frequency band. The Bubbles paradigm has been used for identi-
fying human faces [27] and scenes [28]. For faces, many experiments have been designed
to identify gender [27,29], identity [29], expression [27,29] and age [30]. In recent years,
Jack et al. promoted reverse correlation when studying dynamic facial expressions [31,32],
and they revealed cultural differences in features for perceiving dynamic faces between
the East and the West [33]. To our knowledge, few studies have employed the Bubbles
paradigm for bodily expression perception in human participants. By analogy with facial
expressions, we intended to apply this method to how bodily expressions were decoded
through diagnostic body parts.

Then, our next purpose was to reveal the influence of diagnostic body parts on the per-
ception of bodily expressions. The distinction between body form and body action should
be noticed, because they are intimately linked to body parts and bodily expressions. The
evidence from brain lesions demonstrated that body form and body action can be double
dissociated, indicating the functions were from different brain areas or structures [34]. Body
action recognition can be associated with motor-related cortices, such as the somatosen-
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sory cortex, supplementary motor area and ventral premotor cortex [35,36]. Perception of
body form involves independent neural structures, such as the fusiform body area (FBA),
extra-striate body area (EBA) and posterior superior temporal sulcus [37]. In primates, the
neurons in the temporal cortex drive the responses to human body parts [38]. In humans,
the EBA and FBA, both of which are located near the occipito-temporal regions [39], have
been identified to be preferential in processing body-related stimuli [40,41]. Particularly,
the FBA is sensitive to whole-body stimuli, while the EBA is sensitive to images of neutral
bodies and body parts [37,42]. The EBA also contains neural populations overlapped for
form and action perception [34]. In other words, the EBA may drive the perception of body
motion expressed by body parts. However, the EBA representation of body parts (i.e., arms
and hands) remains elusive which is diagnostic for the perception of bodily expressions.
We therefore predict that diagnostic features for perceiving body parts would engage
the involvement of the EBA: (1) the representations of a torso with arms would be more
correlated with the representations of whole bodies than that of other body parts; (2) the
representations of angry body parts would be more correlated with the representations
of fearful body parts than that of neutral body parts. This was motivated by the idea that
the EBA possibly drives the abstraction of diagnostic features from the torso with arms.
Combined with representational similarity analysis (RSA) [43], we conducted a follow-up
fMRI experiment to reveal the influence of diagnostic body parts for the perception of
bodily expression.

In addition, the limbic structures are sensitive to the arousal of negative visual stimuli.
The brain structures of the caudate, thalamus and anterior insula are core hubs of the
salience network, involved in the function of experiencing negative emotion [44,45]. The
amygdala of the limbic structures plays important roles in the rapid automatic perception
of body emotion, such as fear [46]. There are fine-grained distinctions of related sub-cortices
between anger and fear perception [23,45,47,48]. The neural function for fear perception
is characterized by fast and automatic processing, while anger perception depends on
consciousness to some extent. In the present study, we expected that subcortical activations
would be involved in the perception of emotional body parts.

Together, this study comprises two experiments to reveal diagnostic body features
in bodily expression categorization and to uncover the corresponding neural patterns.
In the behavioral experiment, participants viewed a variety of incomplete body images
and indicated the emotion they perceived (i.e., anger, fear and neutral). A separate group
of participants were tested in the fMRI experiment, where they were asked to identify
different body parts. Our findings may provide converging evidence to support how our
brain decodes the diagnostic features.

2. Materials and Methods
2.1. Participants

In the Bubbles experiment, 33 college students (18 females, mean age ± s.d. =
22.39 ± 2.83 years) were recruited from Liaoning Normal University via advertisement.
In the fMRI experiment, 24 students (14 females, mean age ± s.d. = 21.48 ± 2.01 years)
were recruited. All of the participants had normal or corrected-to-normal vision and were
right-handed. The experiments were approved by the local ethics committee. Written
informed consent was provided before participation. No neurological or psychiatric history
was reported. After the experiments, participants were financially compensated.

2.2. Stimuli Presentation

In the Bubbles experiment, 12 body images of 4 different actors (2 female) expressing
3 bodily expressions (anger, fear and neutral) were selected from the BEAST stimulus
set [49]. The mean (s.d.) of the vertical and horizontal extent of bodies was 293 (6.7) and
98 (14.9) pixels. They were therefore imbedded in a grayscale background (grayscale = 128)
with the identical size of 310 × 245 pixels, presented at 6.90◦ × 5.47◦ of visual angle on
a computer screen with a resolution of 1024 × 768 pixels and a refresh rate at 60 Hz. To
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sample the body features in different spatial scales, we decomposed one image into five
nonoverlapping spatial frequency (SF) bandwidths of one octave each, with cut-offs at
123 (22.4), 61 (11.2), 31 (5.6), 15 (2.8), 8 (1.4) and 4 (0.7) cycles/image (c/deg of visual
angle), respectively. The decomposition was processed by the toolbox of matlabPyrTools for
MATLAB (https://github.com/gregfreeman/matlabPyrTools; accessed on 10 April 2012).
The size of each octave was defined based on the image size. For example, the highest SF
band expressed one cycle by 2 × 2 pixels. This SF layer was represented by 310/2 (in the
vertical direction) and 245/2 (in the horizontal direction) cycles/image (cpi) [12,50]. We
used horizontal SFs of 123 cpi here to measure the high-SF octave according to previous
studies [51,52]. This process of peeling off each SF layer was applied recursively. Each band
was independently sampled with a number of randomly positioned Gaussian bubbles
(windows) to generate a bubbles mask (each in the second row of Figure 1). The bubbles
were then adjusted at each scale to reveal 3 cycles per bubble (standard deviations of
bubbles were 0.13, 0.27, 0.54, 1.07 and 2.14 degree of visual angle, from fine to coarse
scales). The sampled information was then recombined to produce a sparse stimulus (the
‘Final Stimulus’ in Figure 1). The number of stimuli would be further adjusted during the
experimental procedure.
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Figure 1. Illustration of generating Bubbles stimulus. As shown in the first row, each original body
stimulus was decomposed into 5 scales of five spatial frequency bandwidths (123 to 4 cpi). Then,
in the second row, each bandwidth was independently and randomly placed Gaussian window
bubbles. The third row shows the body information revealed by bubbles of each scale and the sum of
information across scales. The final stimulus summed the 5 leftmost pictures on the row, and it was
then applied in the formal experiment.

In the fMRI experiment, 36 different body action pictures of 12 actors (6 female)
expressing 3 expressions (anger, fear, neutral) were also selected from BEAST, including
the 12 body images used in the Bubbles experiment. Each whole-body image was split into
3 types of body part (torso with arms, head and legs) and each part was adjusted to the
center of an independent image. Whole bodies were also included to be one type of body
part, resulting in 144 body images as experimental stimuli in total. Participants viewed the
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pictures, subtending 6.86◦ × 5.43◦ of visual angles, through a mirror mounted on the head
coil (mirror size: 3.12 cm × 2.34 cm).

2.3. Experimental Tasks
2.3.1. Bubbles Task

Participants performed emotion categorization of a Bubbles stimulus (the ‘Final Stimu-
lus’ in Figure 1) into one of three emotional types by pressing the ‘1’ to ‘3’ key on the upper
left side of one computer keyboard. The experiment comprised 4 sessions and 1920 trials in
total (160 presentations of each body). Participants viewed each stimulus freely until they
pressed one of the buttons. That is, reaction time was not limited, and the next trial would
begin after the participant had chosen one emotional type. Participants were required to
have a short break after 160 trials. Most of the participants could finish all the trials in 1 h.
During the experiment, we collected two datasets of masks: the bubbles masks (each in the
second row of Figure 1) (1) led to correct response; (2) led to error response. The datasets
were used for analysis after experiments. The sampling density (i.e., the total number of
Gaussian bubbles in each bubbles mask) was adjusted on each trial, independently for each
expression, to maintain 75% accuracy. Two participants were excluded as they failed to
achieve above the accuracy. Experimental programs were performed by scripts [27] on
MATLAB platforms (R2017b).

2.3.2. fMRI Behavioral Task

The whole experiment consisted of 4 functional runs and a structural anatomical scan.
During the functional runs, participants were required to classify the body stimulus (whole
body, torso with arms, heads, legs) into a certain type of bodily expression (anger, fear and
neutral). Within each run, there were 108 trials. Procedures were edited and performed
through E-Prime 2.0 (Psychology Software Tools, Inc., Pittsburgh, PA, USA). Each functional
run started with a white spot presented for 6 s. Within each trial, participants needed
to fixate on a white cross at the center of the screen. The fixation duration was chosen
from a range of 2–6 s (average: 4 s), which approximates the ISI durations in previous
emotion-related tasks [53–55]. Then, one stimulus followed and was kept on the screen for
2 s, during which participants were required to indicate its expression type quickly and
accurately by pressing one of the three response buttons. The sequence of pressing buttons
was counterbalanced across participants. An additional fixation cross was presented for
10 s after 36 trials, in order to increase the fMRI design efficiency (Figure 2).

2.4. Data Acquisition
2.4.1. Bubbles Data

To record the body information diagnostic for each expression, the bubbles masks were
computed. We added up all the bubbles masks (grayscale of pixels for each scale and each
participant) of the datasets which participants correctly responded to. Similarly, the masks
that led to error responses were added. To build proportion images, the correct-response
mask was divided (independently computed for each pixel) by both the correct-response
and error-response mask for each SF band. Then, we employed the Stat4Ci toolbox [56].
These proportion images were smoothed with a Gaussian filter of a standard deviation
of 8 pixels by using the function of ‘SmoothCi’. After smoothing, these images were
transformed into z scores using the function of ‘ZtransSCi’ to normalize the grayscales
of each mask. Diagnostic information was tested on the z-transformed data by applying
the cluster test from, using the function of ‘StatThresh’ with a significance threshold of
p-value < 0.05, and cluster t-threshold > 2.7.
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2.4.2. fMRI Data

The MRI scanning was carried out at the Brain Imaging Research Center of Southwest
University, Chongqing, China, using a 3T SIMENS Trio Tim Syngo MR B17 scanner (Siemens
Medical, Erlangen, Germany). A gradient-echoplanar imaging (EPI) sequence (scanning
parameters: field-of-view/slice thickness: 192/3.5 mm; voxel size: 3.0 × 3.0 × 3.5 mm3;
matrix: 64 × 64; number of slices: 33; TR/TE: 2000/30 ms; flip angle: 90◦) was unified
for all runs. Each run consisted of 342 functional volumes. Structural images were ac-
quired through a three-dimensional sagittal T1-weighted magnetization-prepared rapid
gradient echo (scanning parameters: field-of-view/slice thickness: 256/1 mm; TR/TE/TI:
1900/2.52/900 ms; voxel size: 1.0 × 1.0 × 1.0 mm3; flip angle: 9◦; matrix: 256 × 256).

2.5. Data Analysis
2.5.1. Bubbles Data

As our aim was to show diagnostic information used in each SF band for a given
expression, we summed the number of the significant pixels presented in each SF band and
divided that by the sum of all the pixels in the corresponding band. This computation was
to reveal the relative use of SF bands across expressions and actors, in terms of the proportion
of diagnostic information per band [51]. We also summed the different information from
5 SF bands to build the whole diagnostic information for each expression and actor. In
order to determine where the diagnostic information could be located, we further divided
each body stimulus into three parts: head (including hair and neck), legs (including feet)
and torso with two arms and hands. Then, we summed the number of significant pixels
presented in each body part of different bands and divided that by the sum of all the pixels
in the same part, for each participant, in terms of the proportion of diagnostic information
per body part. A two-way repeated-measures ANOVA on this diagnostic proportion was
conducted with expression (anger, fear, neutral) and body part (head, torso with arms, legs).
The Greenhouse–Geisser method was used for sphericity corrections. Post hoc multiple
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comparisons were conducted on p-values with the Bonferroni correction. Effect sizes for
each comparison are reported in the Results.

2.5.2. fMRI Behavioral Data

To compare with the statistical results from the Bubbles experiment, we also conducted
repeated-measures ANOVAs with Expression (three levels: anger, fear and neutral) and
Body (four levels: whole body, torso with arms, legs, and head). We found there might be
a response bias that participants preferred to classify the unidentifiable bodies as neutral.
Therefore, we adopted an unbiased index Hu [57] which took account of every response
bias by multiplying hit rate (ACC). Hu was computed for each condition and subject.

2.6. fMRI Localizer and ROI definition

A separate group of 18 participants (10 females, mean age ± s.d. = 22.39 ± 2.06 years)
were recruited for one functional localizer task (240 volumes). This localizer experiment
consisted of 5 conditions: whole bodies, body parts, hands, tools and chairs [58]. Each con-
dition consisted of 13 different grayscale images (450 × 600 pixels) on a white background.
The localizer scan comprised a fully randomized sequence of 25 blocks and ran for 8 min 1 s
in total. Scanning started with a white spot presented for 6 s. Within each category block,
fixation cross was presented at the center of the screen for 1 s and then 13 different images
were randomly presented in the center of the screen. Each image was kept for 800 ms with
a blank inter-stimulus interval (ISI) of 200 ms. One image in the stimuli sequence was
repeated once. Participants were required (1) to press a button with their right index finger
when the repeated image appeared and (2) to pay attention to all 14 images of the stimuli
sequence. Interval between two blocks was 4 s. We used this task to identify the selective
brain area of perceiving whole bodies and hands for RSA. Scanning parameters were the
same as the main fMRI experiment.

Four functional ROIs were defined at the group level of all the participants’ brains: left
EBA, right EBA, left FBA and right FBA. The preprocessed data were analyzed using a GLM
for each participant. The model included 5 experimental condition regressors and 6 motion
correction regressors. In the group-level analysis, four ROIs were selected from the group-
level analysis: the EBA and FBA were defined using the t-map of contrast [whole-bodies +
body-parts > chairs] [58]. The threshold for ROI definition was set at q (FDR) = 0.05. The
EBA covered 684 voxels (left) and 835 voxels (right) in the occipito-temporal cortex. The
FBA covered 155 voxels (left) and 171 voxels (right) in the fusiform gyrus.

2.7. Image Data Preprocessing

Brain imaging data were preprocessed by using the CONN functional connectivity
toolbox (version: 16.b; https://www.nitrc.org/projects/conn/; updated on 15 June 2016).
First of all, these functional images were slice-timing corrected, realigned and un-warped,
and outlier detected (ART-based scrubbing). They were identified as an outlier if (1) the
head displacement of any frame surpassed the threshold of 0.9 mm, and (2) the global mean
intensity of any frame surpassed 5 standard deviations above the mean intensity of the
entire scan. Due to the constraints of head motion and whole-brain intensity, five subjects
were excluded. Functional images were co-registered to each subject’s gray matter image
segmented from the corresponding high-resolution T1-weighted image, then spatially
normalized into a common stereotactic Montreal Neurological Institute (MNI) space and
smoothed by an isotropic three-dimensional Gaussian kernel with 6 mm full-width at
half-maximum (FWHM).

2.8. fMRI Activation Analysis

The whole-brain GLM analysis was performed based on the toolbox of SPM12 soft-
ware packages (https://www.fil.ion.ucl.ac.uk/spm/; updated on 13 January 2020). The
statistical model consisted of 12 regressors of experimental conditions and 6 regressors
of head motion parameters. We applied a 3 × 4 ANOVA with emotion and body part to

https://www.nitrc.org/projects/conn/
https://www.fil.ion.ucl.ac.uk/spm/
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analyze the group random effects. We focused on the main effect of expression conveyed by
the whole body or torso with arms. To further test the expression effects, the paired-sample
t-test was performed on the contrast of ‘anger > neutral’ and ‘fear > neutral’ under both the
whole body and torso with arms. The statistical tests were performed at the q = 0.05 level
corrected for multiple comparisons using the false discovery rate (FDR).

Additionally, in order to evaluate the overlap of activations within the cluster under
the contrasts of ‘anger > neutral’ and ‘fear > neutral’ of the whole body and torso with
arms, we computed the Sørensen–Dice coefficient (Dice, 1945):

Roverlap = 2 × Voverlap/(V1 + V2). (1)

Voverlap represents the number of voxels in the common activation region of the two
contrasts. V1 and V2 represent the number of voxels in each overlapped cluster.

2.9. Constructing Candidate RDMs

We constructed 12 candidate representational dissimilarity matrices (RDMs) to simu-
late how the ROIs distinguish the bodily conditions and decode their emotional information
(Figure 3). The matrices predicted 7 different candidate models: 3 body-effect models (body-
separate, body-pattern1 and body-pattern2), 3 emotion-effect models (emotion-separate,
emotion-pattern1 and emotion-pattern2) and a random model. Among these models,
body-separate, body-pattern1, emotion-separate, emotion-pattern1 were categorical mod-
els where two conditions were identical categories (dissimilarity = 0) or different categories
(dissimilarity = 1). For body-separate, each bodily condition represented one indepen-
dent category. For body-pattern1, whole body and torso with arms represented the same
category. We designed body-pattern1 by assuming that the ROI representations of the
torso–arms and the whole body would represent the same category for processing body
parts, if there was no difference in the similarities of the true representations with the
body-pattern1 and body-separate model. In other words, body-separate and body-pattern1
together examined whether the EBA extracted diagnostic information mainly from the torso
with arms. Similar, the emotion-patterns focused on whether two stimuli shared emotional
information. Emotion-separate predicted that each emotional condition represented one
independent category. Emotion-pattern1 predicted that the emotion category could be
distinguished from the whole body and torso with arms. The 2 models together examined
whether the ROIs could abstract the same emotional information from the torso with arms.

The above predictions differentiated whether the ROI representations belonged to
independent categories, which might not depict the real similarity relations well. Therefore,
we additionally used 2 special candidate models: body-pattern2 and emotion-pattern2.
They predicted all the conditions that elicited 5 different prototypical response patterns.
We used different ranks, rather than degree, to predict the similarity and all the ranks
of each model were rank-transformed from 0–1 before statistical tests. Specifically, in
body-pattern2, dissimilarity rank 1 (dark green entries of body-pattern2 in Figure 3) was
used to predict the closest category, which might be found in the relationship between the
torso with arms and whole body, and between the torso with arms and legs. Rank 2 (red
entries of body-pattern2) was used between the legs and whole body, between the head and
torso with arms and between the head and legs. Rank 3 (yellow entries) was used between
the whole body and head. Based on body-pattern2, emotion-pattern2 distinguished the
emotion category from the relationship of the whole body and torso with arms (dissimilarity
rank = 0–6). The remaining red and yellow entries of in the emotion-pattern represented
dissimilarity ranks 7 and 8, separately.
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Figure 3. Candidate models. Body-separate, body-pattern1, emotion-separate and emotion-pattern1
are categorical models of simulating the similarity of the BOLD activation patterns induced by the
emotional categorization task, if the body or emotion factors independently dominate the underlying
representations. Body-pattern2 assumes that the similarities of activation patterns induced by
torso + arms, legs and head with that induced by whole body vary from high to low. Emotion-
pattern2 combines emotion-pattern1 and body-pattern2, assuming that torso + arms and whole body
share similar patterns for emotion categorization.

2.10. Representational Similarity Analysis

Representational similarity analysis (RSA) was performed using the scripts according
to rsatoolbox [59,60]. For each participant, response patterns were extracted from the t-maps
of the 12 conditions across voxels inside the 4 ROIs. Then, the true RDM was computed
by quantifying the degree of dissimilarity (1 minus correlation) of the response patterns
for each pair of conditions, for each of the ROIs. The group RDMs were obtained by
averaging all the individual RDMs. In addition, multidimensional scaling (MDS) and
hierarchical cluster trees were used to visualize the similarity structure of each group RDM.
We performed the RSA to assess (1) whether each candidate RDM was significantly related
to the true RDMs and (2) whether there were differences between any two conceptual
RDMs in the degree of relatedness to the true RDMs. Kendall’s τA correlation was used
to compute the two relationships. For each candidate RDM and the true RDM, a two-
tailed t-test was used to assess whether the correlation was significantly against zero over
subjects. The statistical threshold for these results was also q (FDR) = 0.05 corrected for
multiple comparison.

3. Results
3.1. Bubbles Results

Figure 4 shows the descriptive results of the diagnostic information from the Bubbles
analysis. It presents diagnostic information used on one female actor and one male actor
for each expression (rows) and each SF band (columns 2–6). The first column presents
an integration of the diagnostic information collapsed across the five SF bands. The final
column presents a bar graph representing the diagnostic spectrum for each actor (for the
results of the other two actors, see Figures A1 and A2).



Brain Sci. 2022, 12, 466 10 of 28Brain Sci. 2022, 12, x FOR PEER REVIEW 11 of 30 
 

 
Figure 4. Diagnostic information revealed by the Bubbles experiment. The significant body infor-
mation (red regions) for categorizing each bodily expression is displayed in a separate row. The first 
three rows show the three expressions by a female actor and the latter three rows those by a male 
actor. The first column shows the diagnostic SF features overlaying all the SF bands sampled in our 
experiment. The next five columns show the SF features of each band, respectively. The last bar 
graph is about the diagnostic SF spectrum for each expression (proportion of the diagnostic infor-
mation per band). The numbers at the top show the range of each bandwidth (unit: cpi). The num-
bers at the top correspond with those below each bar graph. 

Figure 4. Diagnostic information revealed by the Bubbles experiment. The significant body informa-
tion (red regions) for categorizing each bodily expression is displayed in a separate row. The first
three rows show the three expressions by a female actor and the latter three rows those by a male
actor. The first column shows the diagnostic SF features overlaying all the SF bands sampled in our
experiment. The next five columns show the SF features of each band, respectively. The last bar graph
is about the diagnostic SF spectrum for each expression (proportion of the diagnostic information per
band). The numbers at the top show the range of each bandwidth (unit: cpi). The numbers at the top
correspond with those below each bar graph.
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Repeated-measures ANOVAs on diagnostic proportion showed that the main effect of
expression type was significant (F (1.4, 42.00) = 5.542, p = 0.014, η2 p = 0.156) (Figure 5). Main
effects of body part were significant (F (2, 60) = 17.716, p < 0.001, η2 p = 0.371). The interac-
tion between them was also significant (F (2.45, 73.49) = 4.901, p < 0.001, η2 p = 0.140). Fur-
ther simple effect analysis showed that in anger, the torso with arms (M ± SE: 0.151 ± 0.015)
was higher than the head (0.077 ± 0.013, p = 0.003) and legs (0.050 ± 0.008, p < 0.001),
while there was no significant difference between the head and legs (p = 0.335). In fear,
the head (0.214 ± 0.029, p = 0.003) and torso (0.191 ± 0.027, p < 0.001) were larger than the
legs (0.089 ± 0.023), while there was no significant difference between the head and torso
(p > 0.999). In the neutral condition, there was no significant difference between any pair of
the three parts (head: 0.234 ± 0.048, torso: 0.211 ± 0.037, legs: 0.187 ± 0.036; p > 0.05).
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3.2. fMRI Behavioral Performance

Behavioral results (Figure 6) showed significant main effects of expression (F (2, 36) = 27.381,
p < 0.001, η2 p = 0.603) and body (F (2.244, 40.395) = 236.183, p < 0.001, η2 p = 0.929). The
interaction between expression and body was also significant (F (2.984, 53.708) = 42.275,
p < 0.001, η2 p = 0.701). To further examine which body part can be better perceived,
simple effects analyses were used to compare the Hu of all the bodies under each ex-
pression condition. There were significant differences among body parts for the anger
condition (F (3, 16) = 238.242, p < 0.001, η2 p = 0.970). Whole body (0.329 ± 0.015) was
performed better than legs (0.043 ± 0.008, p < 0.001) and head (0.001 ± 0.001, p < 0.001).
Torso with arms (0.307 ± 0.016, p = 0.015) was also performed better than legs (p < 0.001)
and head (p < 0.001). However, there were no differences between torso with arms and
whole body. Legs were performed better than head (p < 0.001). For the fear condition,
there were significant differences among bodies (F (3, 16) = 53.272, p < 0.001, η2 p = 0.909).
Whole body (0.313 ± 0.016) was performed better than torso with arms (0.268 ± 0.019,
p = 0.029), legs (0.055 ± 0.013, p < 0.001) and head (0.030 ± 0.008, p < 0.001). Torso with
arms was performed better than legs (p < 0.001) and head (p < 0.001). However, there was
no differences between legs and head (p = 0.827). For the neutral condition, there were
significant differences among bodies (F (3, 16) = 11.052, p < 0.001, η2 p = 0.674). Whole
body (0.183 ± 0.009) was performed better than torso with arms (0.129 ± 0.011, p = 0.007),
legs (0.090 ± 0.008, p < 0.001) and head (0.117 ± 0.008, p = 0.001). Torso with arms was
performed better than legs (p < 0.009). Head was also performed better than legs (p < 0.045).
However, there were no differences between torso with arms and head.
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3.3. Brain Activations

A whole-brain ANOVA (flexible factorial design) was conducted on the two within-
participants factors expression (anger, fear, neutral) and body part (whole body, torso with
arms, legs, head) at the group level. The interaction of expression and body part was
observed in clusters of the medial frontal cortex, right anterior insula and precuneus. The
main effect of expression was found in clusters in the frontal lobe, parietal lobe, fusiform
gyrus, post cingulate gyrus, caudate, insula and cerebellum. The main effect of body part
was found mainly in the supplementary motor area and occipito-temporal cortex close to
the EBA (for more details, see Figures A3 and A4, Table A1). Figure 7 shows the activation
difference of the contrasts ‘anger > neutral’ and ‘fear > neutral’ under the condition of
whole body and torso with arms. All the contrasts yielded clusters of the left occipito-
temporal cortex, showing higher activity for expression-related processing. The whole body
and torso with arms showed overlap in 21 voxels (Roverlap = 0.50) for the ‘anger > neutral’
contrast and 14 voxels (Roverlap = 0.48) for the ‘fear > neutral’ contrast (Figure A5). This
indicated that the EBA may contribute to encoding the diagnostic information used in
bodily expression perception.

3.4. Representations of EBA and FBA

Three main results (to be quantified in subsequent analyses) were found by visual
inspection of the four RDMs (Figure 8). (1) All of the RDMs exhibited a dominant body
part effect that the whole matrix can be split into sixteen 3 × 3 sub-matrices. Within each
sub-matrix, the pairwise correlation tended to be in a similar degree, while it was different
between adjacent sub-matrices. (2) The RDMs seemed to contain emotion effects that the
neural representations between emotional stimuli shared a low degree of dissimilarity, and
neutral stimuli showed large dissimilarity with emotional stimuli. (3) For the EBA RDM,
the emotion effects seemed to appear on specific body parts such as whole body and torso
with arms, which is consistent with our assumption that torso with arms is the diagnostic
body part for emotion recognition. (4) For the FBA RDM, the whole body showed large
dissimilarity with all of the three split body parts.
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Figure 7. Group analysis results for the contrast of ‘anger vs. neutral’ and ‘fear vs. neutral’ under
whole body (WB, yellow clusters) and torso with arms (TA, red clusters) conditions. WB and TA
were overlapped in orange clusters. The clusters were significantly located in occipitotemporal cortex
around EBA.

Multi-dimensional scaling (MDS) arrangements and hierarchical plots were performed
to visualize the dissimilarity structure arranged by all conditions, and they generally
revealed three separate clusters: one for whole body, one for large body parts (torso with
arms and legs) and one for head. Torso with arms and legs produced similar responses in
both the EBA and FBA. However, the visualizations revealed at least two main different
organization of clusters for the EBA and FBA: (1) in the MDS plots, the whole body showed
the largest distances from the head for the two EBA ROIs, while the whole body showed
large distances from all of the three split body parts for both the FBA ROIs. (2) In the
dendrogram, for the EBA, torso with arms and legs were grouped into one cluster, then
they were directly grouped with whole bodies. For the FBA, after the three body parts were
grouped together into one cluster, whole body was grouped with the cluster. Statistical
inference was needed to further examine the relationships.

3.5. Statistical Inference of RSA

Statistical inference was performed to test whether each candidate RDM was sig-
nificantly related to the true RDMs. The relatedness was tested using the signed-rank
test. The four bar graphs (Figure 9A) showed that (1) body-pattern1, body-pattern2, body-
separate and emotion-pattern2 were positively related to the EBA and FBA RDM except
the random, emotion-pattern1 and emotion-separate model. (2) In general, the candidate
models predict lower similarities with the FBA, indicating the predictions might not fit
the FBA representations well. (3) Among the significant models, emotion-pattern2 and
body-pattern2 had high correlations with the true RDM (EBA and FBA, both left and right)
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while body-separate and body-pattern1 had relatively low correlations, and the results
need further pairwise comparisons.
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Figure 8. Representation structures in EBA and FBA. (A) True RDMs, averaged across subjects for the
four ROIs, show the neural dissimilarity (1 – r) between any two of the body parts. (B) MDS, calculated
based on the RDM matrices, plotting the pairwise distance in a 2D space. The distances reflect the
response-pattern similarity: the pairs which are located next to each other shared similar response
patterns, while those far away from each other had dissimilar response patterns. (C) Dendrogram,
grouping the body parts (nearest neighbor), aiming at revealing their categorical divisions.
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Next, we also tested whether any two candidate RDMs differed in their relatedness 
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q(fdr) < 0.05; right EBA: q(fdr) < 0.01). Body-pattern2 was more correlated than body-sep-
arate (left and right EBA: q(fdr) < 0.01). Among these candidate models, emotion-pattern2 
was the best model to simulate the representation of the EBA RDMs. (2) However, there 
were no significant differences between the correlation of body-separate (to the EBA) and 
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nificant differences between the correlation of emotion-pattern1 and the correlation of the 

Figure 9. Statistical test results. (A) Correlation (Kendall’s rank correlation coefficient τA) between
the true RDMs and the candidate RDMs, respectively. The correlation coefficients were tested using
a default one-sided signed-rank test. Significant results are marked by one ‘*’ below the bars. (B) The
difference between any two candidate RDMs in their relatedness to the true RDMs. Each entry
represents the significance of the difference tested by a two-sided signed-rank test. The colors of each
entry represent different significant thresholds: q(FDR) = 0.05 (deep red) and q(FDR) = 0.01 (red);
the nonsignificant entries are black. (C) Candidate models. BS: body-separate; BP: body-pattern;
ES: emotion-separate; EP: emotion-pattern; r: random.

Next, we also tested whether any two candidate RDMs differed in their relatedness
to the true RDMs. The upper triangular matrices (Figure 9B) showed that for the cor-
relation to the EBA, (1) emotion-pattern2 was more correlated than body-pattern2 (left
EBA: q(fdr) < 0.05; right EBA: q(fdr) < 0.01). Body-pattern2 was more correlated than
body-separate (left and right EBA: q(fdr) < 0.01). Among these candidate models, emotion-
pattern2 was the best model to simulate the representation of the EBA RDMs. (2) However,
there were no significant differences between the correlation of body-separate (to the EBA)
and the correlation of body-pattern1 (to the EBA). Both body-pattern1 and body-separate
correlated more than the random model (left and right: q(fdr) < 0.01). (3) There were
no significant differences between the correlation of emotion-pattern1 and the correla-
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tion of the random model. Emotion-separate was the worst model to simulate the EBA
representation similarities.

Similarly, for the correlation to the FBA, (1) emotion-pattern2 was more correlated
than body-pattern2 (left and right FBA: q(fdr) < 0.05), and body-pattern2 was more corre-
lated than body-separate (left and right FBA: q(fdr) < 0.01). This was consistent with the
correlation to the EBA. Emotion-pattern2 was also the best candidate RDM to simulate the
representation of the FBA RDMs. (2) However, body-separate was also more correlated
than body-pattern1 (left and right FBA: q(fdr) < 0.05). Body-pattern1 correlated more than
emotion-pattern1 (left and right FBA: q(fdr) < 0.01). (3) There were no differences between
the correlation of emotion-pattern1 and the correlation of the random model to the left
FBA (q(fdr) > 0.05), or between the correlation of the random model and the correlation of
emotion-separate (left and right FBA: q(fdr) > 0.05). Body-pattern1 was more correlated
than the random model (q(fdr) < 0.05).

4. Discussion

The current study explored the diagnostic parts for bodily expression recognition
and their mechanisms by analyzing the brain representations of bodily expression. To
illustrate, clenched fists and flexed arms of hit gestures reliably allowed observers to
categorize the emotion as anger. Similarly, a backward-leaning torso, arms in front of
torso and hands shielding the body all reliably indicated fear. Our findings were generally
consistent with behavior types used for expression decoding and encoding in previous
expression communication studies [10,18,61]. Moreover, in the fMRI experiment we found
that the response patterns in the EBA carried information to clearly distinguish different
body parts. In contrast, the FBA only distinguished between the whole body and body
parts. Furthermore, the EBA decoded the information which may be used for further
expression perception.

4.1. Torso with Arms as Diagnostic Body Parts

Previous researchers manipulated behavioral type (spatial form, such as head tilted
up or down) or quality (spatiotemporal properties, such as speed and energy) to study
bodily behaviors, and identified some specific behaviors which can be used to perceive both
static and dynamic expressions [17,62]. For example, hot anger (or rage) portrayals can be
expressed by a forward lean or movement [5]. However, in more cases, bodily expression
is transmitted through flexible and variable motion patterns [10], and it is difficult to focus
on all the patterns in one experiment. We therefore adopted another perspective which
directly focused on the diagnostic body parts.

The main contribution of the Bubbles experiment is that we identified the diagnos-
tic body parts to summarize the diagnostic features, for understanding the mechanisms
underlying expression perception. Here, the Bubbles methods we used were not entirely
consistent with previous studies, which revealed the diagnostic information in different
SF bandwidths [51,52]. Instead, we additionally divided the whole body into three body
parts, and analyzed the proportions of diagnostic information for each body part. The
purpose of doing this analysis is that we contrived to integrate the flexible postures or
movements. Previous studies used the Bubbles paradigms on facial expression, however,
facial expression and bodily expressions differed a great deal in their structures or configu-
rations [62,63]. Bodily expressions have flexible postures or movements, therefore, there
were many limitations in generalizing the results of diagnostic features to other bodily
behavior patterns even in perceiving the same expression. However, at the level of body
parts, there were significant differences in the amount of diagnostic information that the
body parts contained. If two irregular dynamics share ‘similar’ posture or movement, they
probably share the ‘same’ diagnostic body parts for perception. That is, to distinguish
whether the bodily expression is anger or fear, we can simply pay attention to the torso
with arms.
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The current experiment showed two characteristics consistent with previous studies.
(1) Diagnostic feature selection basically depends on the information structure provided by
visual inputs [13]. For perceiving anger, observers selected the area of the thighs as a diag-
nostic feature for one of the female actors, however little information was selected from the
thighs for one of the male actors (Figure 4). For the male actor, observers considered visual
information only from his fist. This variation in diagnostic features cannot be attributed
solely to perceived gender association with certain expressions, because the two actors
differed subtly in body postures. (2) Diagnostic feature selection also depends on flexibly
utilizing the spatial locations of body parts. For example, extracting head information
differed obviously between the Bubbles task and fMRI experiment. The diagnostic features
for heads originally contained both the neck and lower half of the head, while they could
not be recognized in fMRI experiments. We inferred the reason was that head orientation
was difficult to be identified when heads were presented alone, but may be easy when inte-
grated with torso parts. This is consistent with the notion that spatial location was extracted
by a top-down processing mechanism [13,64], which is modulated by task requirements,
memory representations and strategies [13,52,64]. Here, the absence of spatial location for
head orientation leads to more flexible strategies in utilizing memory representations of
diagnostic features.

4.2. Brain Activations Related to Body Parts

Brain activation results were generally consistent with the body recognition litera-
tures [28,46,58,65]. Notably, the angry vs. neutral contrast of leg stimuli revealed stronger
activations of the lingual gyrus, the inferior parietal lobule (IPL), supplementary motor area
(SMA), thalamus and the anterior insula (AI). The lingual gyrus has been demonstrated
to be involved in processing both human faces [66] and bodies [67]. The lingual gyrus
was activated during passive viewing of body parts [67]. Therefore, the stronger activa-
tion of angry torsos relative to neutral torsos possibly reflected processing information of
body motion.

The IPL also modulates the perception of facial expressions and interpretation of
character information [68]. Importantly, the IPL plays a causal role in processing fearful
bodies [69]. However, we only observed IPL activation during the ‘anger versus neutral’
contrast. More experiments are needed to explain this finding. Activation of the SMA upon
viewing angry legs implies that the area is collecting information on body motion [70,71],
given that the region is involved in planning or preparation of movements [72]. Our
results also found the activation of the caudate in the thalamus was enhanced in this
contrast. Studies found that the thalamus and AI could be linked with the experience of
unpleasant and highly arousing affect [38]. In particular, the AI may be responsible for the
integration of interoceptive awareness with feelings of disgust and phobia subjects with
higher interoceptive awareness could require less AI activity to maintain similar behavior
when viewing phobia stimuli [73,74]. This function may explain why AI activation occurred
when viewing nondiagnostic body parts (e.g., head, legs). However, the AI is critical to
the salience network, particularly in switching access to working memory and attentional
resources to detecting salient events [74].

Other subcortical structures, such as the amygdala, were not found in the anger vs.
neutral contrast, nor in other contrasts. We could not draw conclusions that these regions
were not involved in the perception of bodily expression, because the results might be
dependent on the experimental design. As we mentioned in the Introduction, the current
design may not evoke a rapid response of the amygdala.

4.3. Neural Representation of Diagnostic Body Parts

We confirmed the significance of the torso part for expression perception by examining
the brain activities of separate body parts. Regions activated by the torso part and whole
body overlapped a great deal in the left occipito-temporal lobes near the EBA which
is sensitive to body parts and biological motion [37,46,75]. This indicated that the EBA
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might process the bodily expression by extracting the information from the torso and arms.
Therefore, we further examined the dissimilarity structures of neural representation in the
EBA. First of all, we found that the EBA RDMs were more correlated to body-pattern2 than
body-separate and body-pattern1. There were no differences in the correlation between any
pair of the latter two models with the EBA RDMs, indicating that among the three body
parts, the neural representation for the torso part was most similar to that of the whole
body. As the FBA differentiates body configurations [75,76], the same analysis was also
applied to the neural representations in the FBA. We also found the effects of body-pattern2,
however, the FBA RDMs were more correlated to body-separate than body-pattern1. This
indicated that the FBA preferred to decode the body parts as independent categories. Poyo
Solanas and colleagues [76] demonstrated that both the EBA and FBA could decode the
information of limb contraction. However, their neural representations differed. Our results
may contribute to showing the representational difference between the EBA and FBA.

Second, we showed an organizational structure for representations in the EBA and
FBA, related to distinguishing posture or movement of body parts. This is consistent with
previous studies [43,77] that showed that the EBA could produce response to body parts at
the semantic level rather than at the physical property level. However, these researchers
did not clarify the posture or movement of body parts. Body-separate was better than
body-pattern1 in the correlation to both sides of the FBA. This reflected that the FBA might
not be as sensitive as the EBA to decode the torso with arms. The FBA was therefore
not a good brain area sensitive to the diagnostic body parts. This functional difference
is consistent with the studies emphasizing the functional specialization of the EBA and
FBA [76,78].

Furthermore, postural features from the torso and arms possibly drive the bodily
expression perception. For example, limb contraction drives fear perception [76]. Our
results further indicated that decoding the posture was probably derived from diagnostic
body parts. The EBA RDMs were more correlated to emotion-pattern2 than body-pattern2.
This provided evidence that the torso with arms was decoded in a similar way as the
whole body. Combining the facts that the EBA plays a role in action perception [12] and is
connected to parietal cortex regions [78], we inferred that the EBA possibly transmits the
movement information of the upper limbs for more abstract perception. Taken together,
the main contribution of the current experiment was that the EBA may convey diagnostic
information for perceiving bodily expressions.

4.4. Limitations and Future Expectations

We employed methods that have been previously used to investigate diagnostic infor-
mation and neural representations. However, the approaches we used have limitations in
some respects: (1) group-level functional ROIs were adopted, rather than individual-subject
level ones, limiting the accuracy of the functional localization of MVPA effects. (2) Only
a limited set of basic emotions (fear and anger) were employed, limiting the generality
of the conclusions. (3) Likewise, only static stimuli were used—a different answer might
be obtained for information conveyed by body motion. For instance, recent works on the
‘forrest dataset’ [79] investigated emotional representations during movie watching [80,81].
Dynamic bodily expressions unfolded time-varying and complex emotions, which were
closer to real-life experiences. Dynamic features conveyed more details, such as the time
to rise, or the probability of resurgence [82]. Future research should expand the types of
emotion and stimuli to further investigate the features and related neural mechanisms of
bodily emotion.

5. Conclusions

Behavioral evidence supports that diagnostic emotional information is involved in
the torso (including arms and hands) for perceiving both anger and fear. The body part
and whole body also share similar neural representations in the EBA. Furthermore, we
demonstrated that the canonical area of the EBA distinguished the posture or movement
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for decoding bodily emotion. In sum, both behavioral and imaging results showed that the
action or postures of upper body parts can provide core features for emotion recognition.
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ters results for a main effect of body and (B) a main effect of expression. (C) Clusters results revealed
by the interaction between body and expression. Abbreviations: EBA = extra-striate body area,
aITG = anterior inferior temporal gyrus, PHG = parahippocampal gyrus, FG = fusiform gyrus,
ACC = anterior cingulate cortex, INS = insular, MTG = middle temporal gyrus, IOL = left infe-
rior occipital, LG = lingual gyrus, IFG = inferior frontal gyrus, STG = superior temporal gyrus,
PCC = posterior cingulate cortex, MTG = middle temporal gyrus, SFG = superior frontal gyrus,
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vmPFC = ventromedial prefrontal cortex, MSF = medial superior frontal cortex, IPL = inferior
parietal lobule.
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Figure A5. Overlapping of the ROI and maps of emotional torso parts. Abbreviations:
TA_AN = anger vs. neutral under torso with arms, TA_FN = fear vs. neutral under torso with
arms, WB_AN = anger vs. neutral under whole body, WB_FN = fear vs. neutral under whole body.

Table A1. Information of brain activations.

Contrasts or Region MNI Co-Ordinates Peak z or t Cluster p Cluster Size

x y z

Emotion × body interactions
Ventromedial prefrontal gyrus −8 56 2 7.6 1.5 × 10−5 143
R anterior insula 30 20 0 7.5 0.0021 62
L precuneus −8 −56 28 6.9 1.2 × 10−4 103
Inferior frontal gyrus −50 36 24 6.5 6.4 × 10−4 426

Main effect of expression
L cerebellum −12 −74 −34 14.5 0.0033 104
R cerebellum 24 −66 −30 13.5 4.7 × 10−4 150
L fusiform gyrus −30 −36 −20 13.4 0.031 58
L middle temporal gyrus −60 −4 −18 18.0 0.0019 118
Ventromedial prefrontal gyrus 0 44 −16 16.4 2.7 × 10−7 380
L inferior frontal gyrus, L insula −30 22 −4 25.2 8.3 × 10−15 1115
R inferior frontal gyrus, L insula 34 20 2 19.5 1.4 × 10−8 489
R caudate 12 10 6 11.8 0.050 50
L(R) posterior cingulate, precuneus −6 −60 20 16.1 4.0 × 10−10 633
L(R) medial frontal gyrus 6 52 10 16.6 7.5 × 10−5 205
L inferior parietal lobule −38 −50 54 16.5 1.3 × 10−5 257
L middle frontal gyrus −24 30 48 15.0 0.0038 99
L(R) supplementary motor area −4 22 48 11.3 0.0018 122



Brain Sci. 2022, 12, 466 24 of 28

Table A1. Cont.

Contrasts or Region MNI Co-Ordinates Peak z or t Cluster p Cluster Size

x y z

Main effect of body
R anterior inferior temporal gyrus 60 −10 −24 11.0 1.7 × 10−4 202
L anterior inferior temporal gyrus −62 −14 −18 9.0 0.0032 118
L middle occipital lobe (covering L
EBA, L FBA gyrus, cerebellum) −42 −82 4 14.9 7.1 × 10−23 2311

R middle occipital lobe (covering R
EBA, R FBA gyrus, cerebellum) 14 −100 12 40.0 5.7 × 10−19 1732

L(R) medial frontal gyrus and
anterior cingulate −4 44 −20 11.4 1.3 × 10−14 1160

L insula, L inferior frontal gyrus −30 22 −2 15.9 3.3 × 10−6 332
R insula, R inferior frontal gyrus 32 22 2 16.9 4.3 × 10−5 247
Precuneus, posterior cingulate −2 −22 40 13.5 1.5 × 10−16 1405
L inferior frontal gyrus −42 28 26 9.2 0.0083 92
L angular −46 −68 46 11.3 1.7 × 10−4 197
R inferior frontal gyrus 46 4 28 9.5 0.0039 112
L superior parietal lobule 18 −68 50 11.5 1.7 × 10−4 198
L(R) supplementary motor area −4 20 50 17.3 6.8 × 10−10 654
L superior frontal gyrus −16 46 40 8.3 0.0083 93
L superior frontal gyrus −20 32 54 14.5 0.0012 144

In whole body,
Anger > neutral

L occipito-temporal gyrus (EBA) −48 −76 −2 4.3 0.015 25

Fear > neutral
L occipito-temporal gyrus (EBA) −54 −60 12 5.2 0.010 35

In torso with arms,
Anger > neutral

R lingual gyrus 20 −84 6 5.4 0.032 80
L occipito-temporal gyrus (EBA) −50 −74 0 4.6 0.048 60

Fear > neutral
R middle temporal gyrus 50 −62 8 4.6 0.045 23
L occipito-temporal gyrus (EBA) −54 −62 10 4.6 0.012 24

In legs,
Anger > neutral

R cerebellum 44 −56 −34 4.4 0.010 212
L cerebellum −12 −70 −36 4.7 0.0038 285
L middle temporal gyrus −42 −60 4 4.0 0.0053 259
L insula −30 22 −2 5.2 2.6 × 10−16 3593
R insula 32 20 0 4.8 4.6 × 10−4 435
R middle frontal gyrus 42 4 52 5.0 3.1 × 10−9 1557
R thalamus (including R caudate) 20 −4 14 3.9 0.016 185
L thalamus (including L caudate) −6 −18 12 3.9 0.0091 223
R inferior parietal lobule 68 −34 24 3.8 0.019 171
L inferior parietal lobule −32 −42 42 4.9 2.8 × 10−8 1297
R inferior parietal lobule 32 −42 44 4.4 5.2 × 10−5 604
L(R) supplementary motor area −6 20 50 4.5 3.3 × 10−6 841
L(R) precuneus −14 −68 56 4.1 0.023 159
R superior parietal lobule 18 −64 54 4.0 0.0028 310
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Table A1. Cont.

Contrasts or Region MNI Co-Ordinates Peak z or t Cluster p Cluster Size

x y z

Fear > neutral
L insula −30 22 −4 5.4 5.4 × 10−5 273
R insula 34 20 2 5.0 7.1 × 10−4 173
L inferior frontal gyrus −56 10 22 4.7 0.0090 97

In head,
Anger > neutral
- − − − − − −

Fear > neutral
R cerebellum 24 −66 −32 4.6 0.042 70
R insula, R inferior frontal gyrus 32 18 0 4.6 1.7 × 10−4 282
L insula −34 20 −2 4.6 0.0020 177
L inferior frontal gyrus −42 18 16 4.8 0.0032 142
L supplementary motor area −6 22 44 4.7 0.0020 164
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