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Immune checkpoint molecules, like CTLA-4, TIM-3, PD-1, are negative regulators

of immune responses to avoid immune injury. Checkpoint regulators are thought to

actively participate in the immune defense of infections, prevention of autoimmunity,

transplantation, and tumor immune evasion. Maternal-fetal immunotolerance represents

a real immunological challenge for the immune system of the mother: beside acceptance

of the semiallogeneic fetus, the maternal immune system has to be prepared for

immune defense mostly against infections. In this particular situation, the role of immune

checkpoint molecules could be of special interest. In this review, we describe current

knowledge on the role of immune checkpoint molecules in reproductive immunology.
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INTRODUCTION

The activation of the immune system to eliminate harmful agents is usually followed by
tissue damage at the site of the exposure. In order to keep this side effect of the immune
response limited and localized, efficient immunoactivation of immune cells requires multiple
incoming signals. Beside antigen recognition, co-stimulatory, survival, and proliferative signals,
even environmental factors can determine the outcome of the immune response (1–4).

Immune checkpoint molecules are co-stimulatory receptors, occurring on the surface of several
immune cells. After ligand binding, these regulators are capable of transducing inhibitory signals
(5). CTLA-4, TIM-3, PD-1 are the most studied members from this group of cell surface receptors
(5). The physiological role of immune checkpoints is to prevent a harmful immune attack against
self-antigens during an immune response by negatively regulating the effector immune cells,
e.g., by inducing T cell exhaustion (5, 6). Recent studies suggest that each checkpoint decreases
immunoactivation through different intracellular signalingmechanisms (5, 7). Immune checkpoint
regulators are thought to actively participate in the immune defense of infections, prevention of
autoimmunity, transplantation, and tumor immune evasion (5, 7).

Pregnancy is a natural model of active immunotolerance, where maternal immune system
simultaneously faces two challenges: beside acceptance of the semiallogeneic fetus, the maternal
immune system has to be prepared for immune defense mostly against infections. In this particular
situation, the role of immune checkpoint molecules could be of special interest. Therefore, this
paper aims to review the literature presenting current knowledge about the role of immune
checkpoint molecules in reproductive immunology.
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CTLA-4

The first described inhibitory receptor CTLA-4 (Cytotoxic
T-lymphocyte-associated protein 4) is predominantly and
constitutively expressed intracellularly in regulatory T cells, and
it is missing in naive conventional T cells (8, 9). Following
activation, CTLA-4 is expressed on the cell surface of Tregs, but
it can also be found on the cell surface of activated CD8+ or
CD4+ T cells (10). The inhibitory effect of CTLA-4 results from
the competition with the T cell activatory CD28 receptor to bind
the B7 ligands CD80/CD86 present on the cell surface of antigen
presenting cells (11). The ability of Treg cells to induce IDO
expression in APCs through the CTLA-4-B7 binding was thought
to be one of the major mechanism of immune suppression
by these cells (12, 13). Interestingly, current thinking suggests,
that the main function of CTLA-4 is not delivering negative
signals through ligand binding but the removal of its ligands
CD80/CD86 from the cell surface of APCs preventing thereby
their binding to the costimulatory CD28 present on T cells (8, 14).

CTLA-4 in Murine Pregnancy
The significance of the CD80/86-CD28 activation pathway in
T cells during fetal rejection was shown by blocking both
ligands with mAb during the pregnancy of the abortion-prone
murine model. The blockade resulted in the improvement of
fetal survival with an increase of Th2 type cytokines at the
maternal-fetal interface (MFI) and in the peripheral expansion
of the CD4+ C25+ T cell population. Furthermore, CTLA-
4 expression by T cells increased as well which was found to
be significantly reduced at the MFI in abortion-prone matings
(15, 16). Preventing binding of CD80/CD86 to CD28 is thought
to be the way of action of CTLA-4 with similar beneficial effects
in maternal-fetal tolerance. Blocking only CD86 using the same
experimental setting resulted in the same observations (17).
These findings support previous theories about CD80 might be
the most functional ligand for CTLA-4. Blockade of the CD86

FIGURE 1 | Summarizing the possible role of the CTLA-4/CD80, CD86 pathway during human pregnancy.

could turn off the co-stimulatory CD86/CD28 pathway while
allowing a prolonged CD80/CTLA-4 interaction with all of the
benefits (17–19).

Further evidence for the immunosuppressive capacity of
CTLA-4 was delivered from experiments with the CTLA4Ig
fusion protein. Using an adenoviral vector, CTLA4Ig was shown
to be heavily expressed at theMFI. CTLA4Ig therapy of abortion-
prone CBA/DBA matings could effectively improve pregnancy
outcome by shifting serum cytokine levels toward Th2 bias
and expanding regulatory T cell population at the periphery
(20). Furthermore, the CTLA4Ig fusion protein significantly
inhibited splenic lymphocyte proliferation and apoptosis of
the fetoplacental unit (21). Interestingly, adoptive transfer of
Treg with CTLA-4 blockade from normal pregnant mouse to
CBA/DBA pregnancy didn’t abolish the protective effect of Treg
treatment without a blockade resulting in decreased abortion
rates (22).

In another abortion-prone setting, in sonic stressed pregnant
mice, decidual lymphocytes expressed decreased levels of CTLA-
4, without any changes in CD28 expression suggesting the failure
of the control of local immunoactivation. CTLA-4 expression by
decidual lymphocytes of stressed animals could be enhanced by
injections of the dipeptidyl peptidase IV inhibitor, a well-known
terminator of T-cell activation (23, 24).

CTLA-4 in Human Pregnancy (Figure 1)
CTLA-4 at the Periphery
Although regulatory T cells increase in number in the periphery
during early pregnancy, the enhanced CTLA-4 expression on
the cell surface was not observed (10, 25). In contrast to these
findings, the expression of one of the ligands of CTLA-4, namely
CD86 showed an increased expression by peripheral DCs and
monocytes in healthy pregnancy while CD80 expression patterns
did not change (26).

CTLA-4Ig treatment of peripheral blood mononuclear cells
resulted in a significantly higher IFN-γ secretion in normal
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pregnancy compared to non-pregnant condition (26). Despite
the fact, that CTLA-4 is capable of inducing indoleamine 2,3
dioxygenase (IDO) expression in dendritic cells and monocytes
through the induction of IFN-γ, there are conflicting data about
whether CTLA-4Ig treatment could enhance IDO expression in
DCs and monocytes in normal pregnancy (13, 26, 27).

CTLA-4 at the Maternal-Fetal Interface
Compared to the periphery, decidual Treg cells further increase
in number, and the frequency of Treg expressing intracellular or
surface CTLA-4 was also found to be elevated in the decidua (10,
27, 28). Interestingly, placental fibroblasts also express CTLA-4,
but it is supposed to have non-immunological functions since
fibroblasts are not directly in contact with maternal tissues
(29). The CTLA-4 ligands, CD80, and CD86, are also present
on decidual DCs and monocytes, and they show the same
expression profile as in the periphery in normal pregnancy (26,
30). The decidual CTLA-4 expression is in a significantly positive
correlation with decidual Th2 cytokine production and a negative
correlation with decidual Th1 cytokine production suggesting
remarkable immunosuppressive effects locally (30).

CTLA-4Ig treatment of decidual lymphocytes resulted in
enhanced IFN-γ and IDO expression (10).

CTLA-4 in Pregnancy Complications
In the case of spontaneous abortion/miscarriage peripheral
and decidual Tregs fail to increase to the levels observed in
normal pregnancy (10). Data about CTLA-4 expression in these
conditions are conflicting. In one hand, the overall ratio of
CTLA-4+ peripheral and decidual lymphocytes as wells as the
ratio of CTLA-4+ Tregs was found to be significantly reduced.
Moreover, the ratios of CTLA-4+/CD28+ in regulatory T cells
from miscarriage were significantly lower than that of normal
pregnancy (30, 31). On the other hand, there was no significant
difference in intracellular and cell surface expression of CTLA-4
on both peripheral and decidual Tregs when compared to non-
pregnant and healthy pregnant controls (10). These controversy
data may result from different patient inclusion criteria. From the
two possible CTLA-4 ligands, only CD86 expression was found
to be affected in miscarriage: peripheral monocytes, decidual
monocytes, and DC showed significantly lower expression rates
compared to those in normal pregnancy (26, 30). Response levels
of IDO expression by both peripheral and decidual monocytes
and DCs in spontaneous abortion with CTLA-4 treatments were
lower compared to a healthy pregnancy (26).

Extensive research focused on the role of CTLA-4 gene
polymorphism with different conclusions (32–37). The A/G
polymorphism at position 49 in exon 1 of cytotoxic T lymphocyte
antigen-4 (CTLA-4) gene may result in abnormal protein
modification in the rough endoplasmic reticulum leading to
reduced expression (38, 39). Further studies confirmed, that
the 49 GG genotype was associated with a reduced inhibitory
function of CTLA-4 whereas individuals with AA genotype had
more expression of CTLA-4 both intracellular as on the cell
surface of activated T cells (33, 40, 41). Further studies with larger
sample sizes are needed to prove increased frequencies of G allele
and GG genotype among patients with recurrent miscarriage.

Although preeclampsia is characterized by a diminished Treg
frequency, a well-known alteration (42–46), little information is
available about the possible role of CTLA-4 in the pathogenesis
of the disease. CD80 and CD86 ligand expression levels on
monocytes decrease in preeclampsia, while data about CTLA-4
expression of Treg are not conclusive, increased and unchanged
expression patterns were reported as well. Therefore, it is
difficult to determine the significance of the CTLA-4 pathway
in preeclampsia (47–49). Two gene polymorphism studies of the
exon-1 A49G region of the CTLA-4 gene revealed an increased
frequency of the heterozygosity and GG phenotype in pre-
eclamptic women (38, 50).

In women with successful IVF treatment, there is an increase
in the peripheral Treg population compared to failed IVF
attempts. Investigating CTLA-4 expression at themRNA level, no
differences could be observed in the two IVF patient group (51).

Heterozygous mutations in the immune checkpoint protein
CTLA-4 leading to CTLA-4 deficiency results in different
autoimmune clinical features, but no further information is
available about pregnancy proceeding in these patients (52, 53).

TIM-3

Extensive research has established that Tim-3/gal-9 pathway
plays a significant role in the regulation of immune responses and
induction of tolerance (54–58). TIM-3 was shown to be expressed
by many types of immune cells, including Th1, Th17, NK and
NKT-like cells, Tregs, and also on antigen-presenting immune
cells (59). Interestingly, TIM-3 activity is thought to participate
in both activation and inhibition of immune response (60, 61).
In the case of a healthy pregnancy, expression of TIM-3 on
Th1 cells may be a key element for reducing proinflammatory
Th1-dependent T-cell response (57).

The ligand of TIM-3 receptor is galectin-9 (Gal-9), a β-
galactose binding protein (62). Among other identified receptors
of Gal-9, TIM-3 has been studied most intensively (54). Both
in mice and humans, binding of TIM-3 to its ligand Gal-
9 leads to the apoptosis of Th1 and Th17 cells and induce
immunotolerance (63–65). Thus, the TIM-3/Gal-9 pathway may
serve as a checkpoint regulator limiting the Th1- and Th17-
driven immune response and modulating the Th1/Th2 cytokine
balance (54).

TIM-3 in Murine Pregnancy
TIM-3 has been studied in detail in murine pregnancy models
by several groups (66–71). First, immunofluorescence stainings
revealed the presence of TIM-3 in midgestational uterus and
flow cytometric analysis proved that this inhibitory molecule is
expressed by a variety of immune cells residing locally in the
uterus/decidua: uterine NK cells, γ/δ T cells, NKT-like cells,
macrophages, dendritic cells (DC), and even by myeloid-derived
(66–68). TIM-3 expression by these cells was shown to be
dominant but variable throughout pregnancy, in the case of the
most prevalent decidual immune cell type, NK cells upregulate
TIM-3 during the first half of murine gestation (66, 67). Although
TIM-3 expression of decidual NK cells and γ/δ T cells is similar to
that in the periphery, their upregulated relative TIM-3 expression
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locally suggest that these cells are more mature and entirely
functional (68, 72). However, the cytotoxic capacity of TIM-3+
decidual NK cells and γ/δ T cells was shown to be reduced when
compared to the periphery; this might be due to the special local
microenvironment at the MFI (68). In contrast to these findings,
there is a smaller TIM-3+ NKT-like cell subset in the decidua
with stronger lytic capacity. Therefore, separate action of TIM-3
on different immune cell types with varying functional outcomes
could be concluded (68).

The TIM-3 ligand, galectin-9 is also present at the MFI at
different sites. Both murine placental spongiotrophoblast and
decidual regulatory T cells express galectin-9 and decidual Gal-
9+ Th cells are the main source of the secreted, soluble form
of Gal-9 (68). Since the presence of both the ligand, Gal-9
and its receptor, TIM-3 side by side, their binding interaction
could be hypothesized, and the inhibitory signal derived from
TIM-3 might contribute to maternal immunotolerance observed
in murine pregnancy. This hypothesis is supported by the
observation that TIM-3 blockade of allogeneic murine pregnancy
resulted in litter size reduction, reduced live births, and an
increased rate of resorption in vivo (66, 71).

Blocking TIM-3 with monoclonal antibodies (mAbs)
provided further information about the possible function of this
molecule at the MFI. Following inhibition, both apoptotic cells
and macrophages accumulate locally, suggesting a deficiency of
phagocytic clearance via failed recognition of phosphatidylserine
through TIM-3 and enhanced pro-inflammatory cytokine
production (66). Uterine granulocytes were also shown to
increase in number and to enhance Th1 cytokine expression.
These observations are in line with previous studies of
experimental autoimmune/ischemic murine models where
increased inflammation was due to macrophage and granulocyte
activation following TIM-3 blockade (73, 74). Blocking TIM-3
on uterinal NK (uNK) cells affect both physiologic phenotype
and function of these dominant cell population at the MFI (67).
Although local accumulation and cytotoxic capacity of TIM-3+
uNK cells did not change, uNK cells upregulated the activation

marker CD69, and their expression pattern of activating and
inhibitory cell surface receptors was notably altered. Secretion
of both proangiogenic (VEGF, IFN-γ) and immunosuppressive
(IL-10) cytokines by TIM-3+ uNK cells were decreased.
Additionally, TIM-3 inhibition resulted in reduced placental
expression of the cytokines IL-15 and IL-9, which are important
factors for NK cell survival and development (67, 75).

In abortion-prone mouse models, a reduced number of TIM-
3+ dNK and CD4+ Th cells can be observed with predominantly
Th1 cytokine profiles (69, 70).

All these data from murine pregnancy models suggest a
protective role of TIM-3 present at the MFI.

TIM-3 in Human Pregnancy (Figure 2)
TIM-3 at the Periphery
In pregnant women, upregulation of TIM-3 expression by
peripheral leukocytes throughout pregnancy was mainly
observed on monocytes and NK cells (59, 76). The percentage of
TIM-3+ Th, Tc, and NKT-like cells remained relatively constant
(57). In the third trimester of a healthy pregnancy, among
lymphocytes, ∼80% of NK cells, 15% of CD8+ T cells express
TIM-3, in the case of CD4+ T, and NKT-like cells, the ratio of
TIM3+ cells was below 5% (77).

TIM-3+ CD8+ T and NK cells show increased cytotoxicity
in the third trimester of pregnancy suggesting altered functional
capacities toward the end of pregnancy. The increasing levels
of soluble Gal-9 throughout pregnancy might have a counter-
regulatory function to control enhanced cytotoxicity of TIM-
3+ CD8+ T and NK cells (57, 78). These data are inconsistent
with other findings where TIM-3+ NK cells were found to
have a high capacity to secrete Th2 type cytokines and reduced
cytotoxicity toward trophoblast cells as a possible consequence of
galectin-9/TIM-3 interaction (76).

TIM-3 expression on monocytes is regulated by IL-4
(upregulation) and IFN-γ (downregulation) cytokines, and it
is involved in the effective anti-microbial immune defense by
synergizing with TLR signaling (59).

FIGURE 2 | Summarizing the possible role of the TIM-3/Gal-9 pathway during human pregnancy.
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It has been demonstrated, that TGF-β1 can induce peripheral
NK cells to form decidual NK-like phenotype (79, 80). TGF-
β1 treatment upregulated TIM-3 expression on peripheral NK
cells proposing an important function of this co-receptor at the
MFI (81).

TIM-3 at the Maternal-Fetal Interface
Although TIM-3 expression at the MFI was shown on different
decidual lymphocyte subsets, like CD8+, CD4+ T cells, NK
cells (69–71, 81), little is known about their role in successful
implantation and placentation. The majority of decidual NK
(dNK) cells express TIM-3 (60–90%) (69, 81). According to
CD117/CD94 expression, TIM-3+ dNK cells have a mature
phenotype with Th2 cytokine profile (69, 81). Secretion of IL-
4 could be further increased and secretion of TNF-α could
be decreased by recombinant human Gal-9 treatment of LPS
stimulated dNK cells suggesting regulatory function of TIM-
3+ dNK cells on the exaggerated inflammatory response since
trophoblast is capable of secreting a large amount of Gal-9, as
well as decidual tissue showed high galectin-9 expression (69, 81).
Interestingly, blocking TIM-3 signal with TIM-3 fusion protein
resulted in the reduction of IFN-γ and TNF-α production of dNK
cells (81). Immunohistochemical studies demonstrated, that the
fetal part of the MFI, trophoblast cells of term placenta highly
express galectin-9 as well (78).

Beside decidual immune cells, decidual stromal cells (DSCs)
also express TIM-3, and TIM-3+ DSCs produce higher levels
of Th2 cytokines suggesting immune activities of the decidual
tissue itself (82). Furthermore, TIM-3 activation seems to be anti-
apoptotic when DSCs were stressed through Toll-like receptor
activation which is a new potential of this molecule since it acts
pro-apoptotic on CD4+ T cells (64, 82, 83).

TIM-3 in Pregnancy Complications
The possible involvement of the TIM-3/Galectin-9 pathway
in the pathogenesis of unexplained miscarriages, recurrent
spontaneous abortion (RSA), and preeclampsia (PE) has been
studied by several groups, both in the periphery as well as at the
MFI. However, data should be interpreted cautiously since the
inclusion and exclusion criteria for these clinical syndromes and
recruitment of the patients involved may vary.

In RSA patient, reduced TIM-3 expression level of peripheral
NK cells was observed which could be the result of lower
serum TGF-β1 levels, a lack of stimulus for upregulation of
TIM-3 (76, 81). Besides TIM-3 surface expression changes,
there is an increase of soluble TIM-3 (sTIM-3) and a
decrease of soluble galectin-9 in the sera of these patients
assuming enhanced competitive binding of galectin-9 by sTIM-
3 leading to failed inhibitory signals controlling inflammation
(76, 84). Furthermore, TIM-3+ NK cells of RSA patients
produce more pro-inflammatory and less anti-inflammatory
cytokines suggesting functional deficiencies (76). The only
genetic polymorphism analysis of the TIM-3 gene was carried
out in RSA patients. TIM-3 polymorphism can affect ligand
binding properties and may be involved in some immune-
mediated diseases (85). However, analyzing polymorphism
of the promoter region of the TIM-3 gene, no differences
between the different genotype frequencies could be observed

in healthy pregnant women and RSA patients (86). At the MFI,
immunohistochemical studies revealed reduced expression of
TIM-3 by decidual tissue of women with RSA. Furthermore,
same findings were confirmed in the case of DSCs by flow
cytometry (82). A decreased percentage of TIM-3 by dNK cells
was also demonstrated, although in patients with unexplained
miscarriage not with RSA (69). Conflicting data exist according
to decidual TIM-3 expression, one study found upregulated TIM-
3 and galectin-9 expression in decidua and chorionic villi, both at
mRNA and at the protein level in patients with RSA. The authors
interpret these findings as being reactive to downregulate Th1
responses observed in RSA (87).

There are few inconsistent data about the possible role of
the TIM-3/Gal-9 pathway in the pathogenesis of preeclampsia.
On the one hand, in preeclampsia, both TIM-3 and Gal-9 were
found to be upregulated in decidual tissue, and TIM-3 expression
of peripheral blood monocytes was shown to increase (4). On
the other hand, a decreased ratio of TIM+3+ Th, NK, and
Vdelta2+ T cells could be confirmed in the peripheral blood of
preeclamptic patients (48, 77). Both findings suggest disturbed
immune regulation of Th1 responses due to altered Gal-9 and
TIM-3 interactions.

PD-1

PD-1 is a transmembrane receptor expressed by e.g., T cells,
B cells, natural killer (NK) cells, antigen presenting cells (5,
88). PD-1 generates a strong inhibitory signal upon binding to
its ligands PD-L1 and PD-L2, resulting in down-regulation of
pro-inflammatory T-cell activity (89). PD-L1 can be found on
several immune cells (resting T cells, B cells, dendritic cells,
macrophages), in various tissues, like placenta, heart, spleen
(5, 90, 91). In contrast to that, PD-L2 expression is limited
to dendritic cells and macrophages (92). Furthermore, ligand
expression of PD-1 can be regulated, e.g., through the local
cytokine environment. PD-L1 expression is increased by many
pro-inflammatory factors (LPS, GM-CSF, VEGF) and cytokines
(IFN-γ, TNF-α) (5, 93, 94).

PD-1 in Murine Pregnancy
In the allogeneic murine pregnancy model, surface expression of
PD-1 on peripheral CD4+ and CD8+T cells was not altered after
conception and during gestation (1). PD-1 blockade in vivo was
shown to enhance the proliferation of CD4+ and CD8+ T cells
in unmated and pregnant mice and to erase the protective effect
of Treg cells in Treg treated abortion-prone animals (1, 22).

There are only a few but very informative data about the local
presence of PD-1 in murine pregnancy showing PD-1 expression
by a broad spectrum of decidual lymphocyte subsets including
CD4+ T cells, CD8+ T cells, T follicular helper cells, γδ T cells,
NK, and NKT-like cells (1, 68, 95, 96). Furthermore, increased
PD-1 expression by decidual NK, NKT-like, and γδ T cells
was associated with the reduced cytolytic activity of these cells
when compared to the periphery suggesting PD-1 dependent
regulation of innate effector functions at the MFI (68).

Concerning the tissue distribution profile of the two ligands
for PD-1, PD-L1, and PD-L2 at the MFI, both fetal and maternal
compartments are involved: PD-L2 is expressed throughout
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the murine decidua, whereas PD-L1 expression is limited to
the decidua basalis (97). Insufficient data exist about PD-L
expression by the trophoblast suggesting PD-L1 expression by
the syncytiotrophoblast but not by trophoblastic giant cells,
which are next to the decidua basalis (97, 98). Therefore, PD-1
interaction with its ligands may occur in the decidua itself and
is not affected by the fetal part. In vivo blockade of PD-1 ligands
in allogenic murine pregnancy highlighted the functional role of
the PD-1/PD-L1 pathway since anti-PD-L1 treatment resulted in
increased fetal resorption rate and a reduction in the litter size,
whereas PD-L2 blockade had no effect on fetal resorption (97).
At the MFI, PD-L1 blockade resulted in infiltration of T cells,
complement deposits, and higher levels of IFN-γ suggesting T
cell-mediated rejection mechanisms locally. Another supportive
report on the protective role of the PD-1/PD-L1 interaction in
maternal-fetal tolerance was revealed by observations of the PD-
L1 deficient pregnant mice, which showed similar results in fetal
resorption rate, litter size, and a shift toward Th17 emphasizing
the role of PD-L1 expressing regulatory T cells controlling fetal
antigen-specificmaternal T cell (99, 100). Yet, data are conflicting
since in another experimental setting neither PD-L1 nor PD-
1 deficient mice had significant alterations in gestational or
in neonatal offspring parameters (101). These findings indicate
doubt about the role of the PD-1/PD-L1 pathway in the survival
of the fetal allograft in mice and further studies are needed to
reconcile previous controversial results.

PD-1 in Human Pregnancy (Figure 3)
PD-1 at the Periphery
Although immunological acceptance of the fetus is primarily
based on maternal tolerance mechanisms at the MFI locally,
it exerts a significant impact on systemic immunity as well
(102). Despite the fact that syncytiotrophoblast cells—which
are bathed in maternal blood—express PD-L1 and PD-L2, data
about possible changes in the PD-1 mediated systemic immune
response during human pregnancy compared to healthy, non-
pregnant controls are lacking (90, 103). The only information
regarding this topic is that the frequency of PD-1 expressing
T lymphocytes is elevated in the blood of healthy pregnant

women compared to non-pregnant counterparts and soluble
PD-L1 levels increase throughout gestation (78).

PD-1 at the Maternal-Fetal Interface
Immunofluorescent studies revealed a significantly higher PD-1
expression by decidual T lymphocytes similarly to non-pregnant
endometrial T cells. This increase in PD-1 expression was
demonstrated more in detail when compared to the periphery
during pregnancy: decidual CD8+, CD4+, and regulatory T cells
were shown to enhance PD-1 expression (104).

As already mentioned before, PD-L1 and PD-L2 are present
in the placenta throughout pregnancy (90, 103, 105). In the
first trimester, the major fetal source of PD-L1 is the villous
syncytiotrophoblast and extravillous cytotrophoblast, while PD-
L2 expression is much more restricted to villous cytotrophoblast
(103, 105). On the maternal side, decidual stromal cells
constitutively express both PD-L1 and PD-L2, but Th1 cytokines
can further enhance their surface expression. PD-L1 expression
by decidual macrophages is evident as well (104, 106).

PD-1 interaction with its ligand PD-L1 in different co-culture
experiments resulted in reduced Th1 cytokine production by
CD4+ T cells (104, 106). These findings suggest the contribution
of the PD-1 mediated pathway to the establishment of a
favorable Th2 type immune balance at the FMI in healthy
human pregnancy.

PD-1 in Pregnancy Complications
Limited information is available about the involvement of the
PD-1/PD-L pathway in pregnancy disorders. In preeclampsia, the
percentage of PD-1 positive regulatory T cells was significantly
higher than in healthy pregnancy with no difference in their
PD-L1 expression. While the ratio of PD-1+ Th17 cells was
not altered, the PDL1 expression by Th17 cells increased.
PD-1 expression by CD3+, and CD4+ T cells did not
significantly differ suggesting dysregulated PD-1/PD-L1 axis
within the Treg/Th17 imbalance in the clinical phase of
preeclampsia (47, 107).

In the case of RSA, decidual PD-L1 expression was
significantly reduced on both mRNA as well as on protein

FIGURE 3 | Summarizing the possible role of the PD-1/PD-L1, PD-L2 pathway during human pregnancy.
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TABLE 1 | Type of mouse models used in the experiments.

Type of mouse models used in the

experiments

References

NORMAL ALLOGENEIC PREGNANCY MATINGS

CBA/J × BALB/c (16, 17, 20–22, 69–71)

CBA/J × C57BL/6 (66, 67, 97, 99, 100)

BALB/c × C57BL/6 (95, 96, 101)

NORMAL SYNGENEIC PREGNANCY MATINGS

CBA/J × CBA/J (67, 96)

BALB/c × BALB/c (68)

C57BL/6 × C57BL/6 (1, 96, 101)

ABORTION-PRONE ALLOGENEIC MATING

CBA/J × DBA/2 (15–17, 20–23, 69, 70)

NON-PREGNANT MICE

BALB/c (18, 19, 73, 98)

C57BL/6 (18, 19, 74, 75, 98)

level compared to healthy first-trimester decidua, while PD-1
expression by decidual lymphocytes showed no difference (108).

TIM-3 /PD-1 Co-expression
Effector cells of the immune system can be characterized by
co-expression of different co-inhibitory molecules (109). In
human pregnancy, TIM-3+PD-1+ CD8+ T cells preferentially
accumulate in the decidua (71). Upregulation of both TIM-3 and
PD-1 by decidual CD8+ T cells might be induced by embryonic
trophoblast in an HLA-C dependent manner (71). These double
positive cells display higher proliferative activity and produce
more Th2 type cytokines than their TIM-3/PD-1 double negative
CD8+ counterparts (71). Blocking both co-receptors increased
cytotoxicity and decreased Th2 type cytokine production of
TIM-3+PD-1+ CD8+ T cells suggesting a protective, anti-
inflammatory role of TIM-3 and PD-1 co-expressing decidual
CD8+ T lymphocytes at the MFI (71). This hypothesis is
strengthened by further observations both in human as well as
in mice. In murine pregnancy systemic blockade of both TIM-
3 and PD-1 in vivo resulted in further reduction of fetal growth
and litter size when compared to the blockade of either TIM-3 or
PD-1 alone (71). In line with these findings, in patients with RSA,
dual expression of TIM-3 and PD-1 by decidual CD8+ T cells
was found to be significantly reduced and to be less proliferative
in contrast to a healthy pregnancy (71).

SUMMARY

Immune checkpoint molecules have a major impact on cellular
immunity by limiting inflammatory immune response and
thereby maintaining physiologic tissue conditions. From this
point of view, maternal-fetal immunotolerance represents a
real immunological challenge for the immune system of the
mother where accurate, tight, and dynamic immune control is
required for healthy pregnancy proceeding from the time of
implantation on.

As presented in this review in detail, the possible role
of immune checkpoint molecules in the establishment of

maternal-fetal immunotolerance has been extensively studied. In
the case of CTLA-4, TIM-3, and PD-1, the participation and
possible role of these molecules in maternal immune response
have been confirmed by different approaches, e.g., animal and
human experiments, in vitro and in vivo studies. Table 1 shows
the different mice strains used in animal experiments. However,
data are sometimes conflicting and not comprehensive, which
may be due to experimental setting differences, small sample
size, and the highly complex and multilevel characteristics of
immune cell activation. When considering the involvement of
co-activatory molecules in maternofetal immune interactions,
the co-signaling network is far more complicated (110).

Although there are no current clinical trials aiming at
immune checkpoint molecules and interactions in pregnancy
complications, some results of the studies discussed in this paper
indicate the possible role of TIM-3 cell surface expression rate
and serum levels of the soluble ligands PD-L1 and galectin-9 as
potential biomarkers for screening during pregnancy (57, 76, 78).

Immune checkpoint inhibitors targeting the PD-1/PD-L1 and
CTLA-4 pathways are revolutionary therapeutics in advanced
malignancies and could be used in the treatment of chronic viral
infections (HIV, HCV) as well in the future. Because of lacking
a (68) adequate and well-controlled studies and based on the
findings in mouse models, where blockade of the PD-1/PD-L1
pathway resulted in the adverse effect on pregnancy, checkpoint
inhibitors are relatively contraindicated for the treatment of
metastatic cancer in pregnant women requiring an individualized
decision in each case (22, 97, 100, 111, 112).

Although intensive research and a large amount of
information regarding the involvement of immune checkpoint
molecules in reproductive immunology, the puzzle is not
complete. Our current knowledge is quite deficient since there are
several other immune checkpoint molecules described recently:
Lymphocyte-activated gene-3 (LAG-3), T cell immunoreceptor
with Ig and ITIM domains (TIGIT), B and T lymphocytes
attenuator (BTLA), V-domain Ig suppressor of T cell activation
(VISTA) are novel members of immune checkpoint molecules
with proven immune regulatory activity (113). Until today,
studies regarding this new generation of negative checkpoint
regulators in the field of reproductive immunology are missing
and urgently needed.
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