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ABSTRACT

Background Severe Acute Respiratory Syndrome (SARS) was first reported in November 2002 in China, and spreads to about 30 countries over

the next few months. While the characteristics of epidemic transmission are individually assessed, there are also important implicit associations

between them.

Methods A novel methodological framework was developed to overcome barriers among separate epidemic statistics and identify distinctive

SARS features. Individual statistics were pair-wise linked in terms of their common features, and an integrative epidemic network was formulated.

Results The study of associations between important SARS characteristics considerably enhanced the mainstream epidemic analysis and improved

the understanding of the relationships between the observed epidemic determinants. The response of SARS transmission to various epidemic

control factors was simulated, target areas were detected, critical time and relevant factors were determined.

Conclusion It was shown that by properly accounting for links between different SARS statistics, a data-based analysis can efficiently reveal

systematic associations between epidemic determinants. The analysis can predict the temporal trend of the epidemic given its spatial pattern, to

estimate spatial exposure given temporal evolution, and to infer the driving forces of SARS transmission given the spatial exposure distribution.
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Introduction

Severe Acute respiratory Syndrome (SARS) is a viral respir-
atory illness caused by a coronavirus known as SARS-
associated coronavirus, SARS-CoV.1,2 According to the
World Health Organization (WHO), a total of 8098 people
worldwide became sick with SARS during the 2003 out-
break; of these, 774 people died. SARS quickly obtained the
status of the first pandemic of the twenty-first century.3,4 In
this work we focus on the SARS epidemic in the city of
Beijing (China) during the year 2003.

SARS usually spreads by person-to-person transmission.
The virus transmits most readily by respiratory droplets pro-
duced when an infected person coughs or sneezes. The
virus can also spread when a person touches a surface or

object contaminated with infectious droplets and then
touches his/her mouth, nose or eyes. In addition, it is poss-
ible that the SARS virus might spread more broadly through
the air (airborne spread) or by other ways that are not now
known.5 Naturally, composite space-time variations, disease
parameters and determinants (proximity to infected persons,
population density, number of doctors, etc.) are essential fea-
tures of the SARS epidemic.6 Understanding these features is
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critical for the scientific representation of the epidemic and
the efficient control of its transmission.

In general, the evolution of an epidemic is represented in
terms of some kind of a mechanistic model.7–14 However, in
the case of SARS (as well as in many other epidemic situ-
ations) only datasets of various kinds are available, whereas
little is known about the underlying disease mechanisms.
Mainstream statistics, time series, meta-analysis, randomized
control trials and spatial techniques have been used to detect
disease characteristics in a given dataset,15–18 but the substan-
tive relationships between the disease characteristics across
space-time often remain unknown. Similarly, the procedure
generating epidemiologic curves19 (i.e. curves showing the
day-to-day rate of SARS growth) does not account for import-
ant associations between epidemic characteristics and domi-
nant space-time disease patterns and dependencies. Despite
the aforementioned limitations of the mainstream approaches,
it is highly desirable to develop methods that can incorporate
the scattered and incomplete datasets generated by various
surveillance systems20–22 and by different programmatic and
sectoral actions23 in order to evaluate salient associations
between epidemic determinants and quantify consequential
space-time variations and patterns.

In view of similar considerations, the aim of the present
work is to develop a mathematically rigorous and scientifi-
cally meaningful SARS modelling framework that accounts
for the crucial epidemic associations mentioned above by
combining information about space, time, disease par-
ameters and epidemic determinants from diverse datasets.
The notation used in this paper is described in Appendix 1;
the reader should peruse it before proceeding.

Data and methods

SARS is a typical case of a communicable disease about
which a set of observed data has been obtained across space
and time, and its potential determinants are available in a
geographical information system (GIS) format. Below,
several tools are considered for exploring epidemic determi-
nants, spatial patterns and temporal processes on the basis of
the available datasets. Certain statistics pairs share common
elements that can be used to link these determinants, pat-
terns and processes, and to formulate informative associ-
ations between them.

In this study, it is assumed that the pair-wise linking of
the various SARS determinants is mathematically rep-
resented by a system of the general form f(R, C, F, Q, s, t) ¼
0, which is constructed mainly on the basis of the available
datasets. The underlying epidemic mechanisms (usually rep-
resented in terms of differential equations) are not

considered in this formulation, but they will be the topic of
forthcoming publications.

Datasets

The first SARS case in Beijing was recorded on 1 March
2003. The city consists of 16 districts and 2 counties, with a
total population of 12.5 million people occupying an area of
17 800 km2. Information about SARS cases was available
daily from authorized reports, beginning on 20 April 2003
and continuing till the end of the epidemic on 24 June
2003. Since April 27, the data in each of the 18 Beijing dis-
tricts were obtained in GIS format. GIS data also provided
the residential locations of all 11 108 people who had been
in close contact with infected persons. This information was
collected by exhaustively tracing SARS cases from 20 April
2003 onwards and backwards. Other data that were con-
sidered relevant to the epidemic were also obtained, includ-
ing population counts in 246 census units, hospital
locations, number of doctors in each hospital and the topo-
graphy of the main traffic lines.

By way of a summary, the following datasets were system-
atically used in the present SARS study:

(i) New SARS cases, R(s, t), reported daily in all 18 dis-
tricts; s refers to the geographical district and t to the
day considered.

(ii) Epidemic-relevant determinants, F(s), i.e. population
(P), number of doctors (D), number of hospitals
(Hosp) and proximity to traffic (T) for each of the 18
districts.

(iii) Residential locations, H(s), of each one of the 11 108
individual close contacts to the infected persons.

Temporal evolution of infected cases

A SEIR (susceptible-exposed-infectious-recovered) model
was developed to represent SARS epidemic transmission in
a dynamic context. The model basically involves the follow-
ing successive stages of the individuals involved:

Susceptible! Exposed! Infectious! Recovered;

see Appendix 2. The SEIR model for the SARS epidemic is
based on the theoretical considerations discussed in
Hamer24 and Anderson.25 Similar dynamic models have
been used in early SARS studies by Lipsitch et al.3 and Riley
et al.,5 which concluded that the SARS coronavirus, if
uncontrolled, would infect the majority of people wherever
it was introduced. Epidemic parameters (as described in
Chowell et al.26), temporal process and total size can be
easily simulated using a time-dependent SEIR model and a
small amount of data.
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Spatial distribution of identified contacts

In general, the determination of spatial dependence contrib-
utes significantly to adequate risk exposure assessment.27–31

In the present study, the nearest-neighbour hierarchical clus-
tering (NHC) model (Appendix 3) was used to identify
spatial patterns of SARS distribution. Points were randomly
distributed in space and circled in a spatial cluster, if their
inter-distance was significantly smaller than the mean dis-
tance. Note that the primary spatial clusters may be further
clustered using the same algorithm.

Temporal changes in spatial clustering of cases

We measured the degree of global spatial data clustering
using Moran’s IM coefficient (Appendix 4). A positive value
of the coefficient meant that adjacent districts had similar
values, whereas a negative value indicated that adjacent dis-
tricts were dissimilar. A temporal measure of spatial cluster-
ing was obtained by calculating this coefficient on a daily
basis. This time series was then filtered using a discrete
wavelet transform implemented by the MatLab computer
library (http://www.mathworks.com/). In this way, the time
series was decomposed into low-frequency components
(reflecting the fundamental trend of a time series) and high-
frequency components (reflecting noise caused by random
factors).

Factors associated with dispersion of infection

The Black-White (BW) join-count test (Appendix 5) was
used to measure the extent to which districts of a disease
network shared the same infection pattern. We started with
an initial disease dispersal network, which consisted of con-
nections (or joints) between districts. Each day a district was
coded black (B) if a SARS case was reported on that day;
otherwise it was coded white (W). Every network joint con-
nected two B districts (BB), two W districts (WW), or a B
and a W district (BW). The observed number of BW joints
was compared with the expected number, and a standard
normal deviation (z-score) was used to test the significance.
High negative values of the statistics indicated clustering of
infected cases on the network, whereas high positive values
provided evidence of spacing. Seven networks were con-
sidered as follows:

N1. Local transmission: Two districts were considered con-
nected if they shared a common geographical boundary.

N2. Nearest district: Each district was connected to its
nearest neighbour as measured by the distance between
the centroids of the districts.

N3. Population size: Districts were ranked according to
population size, and consecutive districts in the corre-
sponding hierarchy were appropriately connected.

N4. Population density: The same as in N3, but ranked by
population density, instead.

N5. Number of doctors: The same as in N3, but ranked by
number of doctors in the district.

N6. Number of hospitals: The same as for N3, but ranked
by number of hospitals in the district.

N7. Urban-rural: Eight districts were designated urban and
the rest rural; a rural-urban pair was considered con-
nected if (i) the districts shared a boundary, or (ii) the
urban district could be reached from the rural district by
passing through just one other rural district, or (iii) the
rural district could be reached from the urban district by
passing through just one other urban district.

For each network, the BW join-count statistics was calcu-
lated for each day, and statistics changes were plotted over
time.

Combining space, time, parameters and factors of

epidemic transmission

The above separate SARS statistics were combined by
means of pair-wise linking of common items to form a
network connecting (Table 1):

† –The time series of infectives R(t) and epidemic par-
ameters Q(t); time t is here the common item.

† –The spatial pattern of risk exposure C(s) and the city
traffic loop T(s); space s is the common item.

† –The time process of spatial clusters C(t) and the trans-
mission determinants F(t), including spatial proximity
T(t); a link is established by the consistency between the
spatial patterns of C and T.

Careful considerations of the combinations described in
Table 1 play a central role in the evaluation of determinant
associations in a space-time context.

Table 1 Common items of different statistics

Common item R(t) and Q(t) C(s) � T(s) C(t) F(t): T, P, D, . . .

R(t) and Q(t) T t

C(s) � T(s) C T

C(t) t C t

F(t): T, P, D, . . . t T T

Note: ‘C � T’ denotes that C and T are associated (connected).
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Results

The statistics described above were applied to the datasets,
in which case a systematic connection between the separate
statistics was established and described below.

Separate statistics

The time process of SARS transmission, R(t), and the trans-
mission rate in Q(t) were simulated using the SEIR model.
The risk of spatial exposure to the epidemic, C(s), was dis-
closed by mapping data on the residences of the 11 108
identified contacts of the Beijing SARS cases using the
NHC model.32 The first-order clusters indicated spatial clus-
tering of high-risk susceptibles, whereas second-order clus-
ters indicated regions with a high concentration of primary
clusters. The C(s) exhibited a strong visual association with
traffic infrastructure, T(s) (Fig. 1).

Temporal changes in the spatial clustering of cases, C(t),
were determined by the time-variation of Moran’s IM coeffi-
cient. The IM-curve was then filtered using a discrete wavelet
transform implemented by MatLab (with Daubechies db3 as

mother wave and four decomposition levels). In this way,
the curve was decomposed into a low-frequency component
(a4) and high-frequency components (d1, d2, d3, d4) (Fig. 2).
Daily data on new SARS cases were grouped according to
the district of residence. The time-variation of a4 indicated
that SARS cases in Beijing became increasingly clustered

Fig. 1 Identified contacts (11 108) of Beijing SARS cases and their spatial

patterns (modified from Wang et al., 2006).

Fig. 2 Wavelet decomposition of the time series of Moran’s coefficient IM of spatial clustering (ai and di, i ¼ 1, . . ., 4, correspond to low and high

frequency signals respectively; grey figures were further decomposed in the arrows’ directions).
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towards the end of April, 2003, followed by a decrease in
clustering during 1–8 May 2003. After 9 May 2003, the
time-variation of a4 and d4 indicated that spatial clustering
was sharply declining.

Seven suspect determinants of the space-time SARS
transmission, jointly denoted by F(t), were investigated by
means of the BW join-count test.33 The spatial proximity
factor is denoted by T(t). Accordingly, Fig. 3 displays the
determinants associated with SARS transmission dynamics.

Systematic analysis

The findings obtained on the basis of the different statistics
of R(t), C(t), C(s) and F(t) above were pair-wise combined

by means of their common elements and the corresponding
network was formed as shown in Fig. 4. Logical inferences
concerning the SARS epidemic evolution based on the con-
nected network of Fig. 4 are discussed.
In the following inference analysis, the symbol ‘A&B’

means A and B; ‘A � B’ denotes that the entities A and B
are connected; the ‘A � m � B’ means that A is linked to B
via m; and the ‘A!B’ denotes that B is inferred from A.

Evolution of spatial clusters

Inference concerning the evolution of spatial SARS clusters
was based on the rule

CðsÞ&TðsÞFig: 1 � T � TðtÞFig: 3 ! Cðs;TðtÞÞ: ð1Þ

Fig. 3 Relationships between incidence of new SARS cases and spatial spread factors. Each panel tests one suspect determinant (N1, . . ., N7); dots are BW

scores in each date; solid line is simple regression of the BW zigzag; horizontal dashed line denotes a significant threshold (modified from Meng et al., 2005).
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Figure 1 illustrates that the larger spatial clusters C(s)
were controlled by the urban traffic loops T(s), i.e. a proxy
of the macro spatial proximity, T(t), the influence of which
to the epidemic is detectable and changes with time (Fig. 3b
and c). The smaller spatial clusters in Fig. 1 are randomly
distributed over space, which is consistent with the spatial
distributions of the population P and the number of doctors
D, the two factors playing a significant role in the epidemic
decline period (Fig. 3d–f ). We concluded that the larger
spatial clusters were dominant during the peak epidemic
period and the smaller ones became more active during the
decline period.

A similar conclusion was drawn by means of the infer-
ence rule

CðsÞ&TðsÞFig: 1 � C � CðtÞFig: 2 ! Cðs; tÞ: ð2Þ

In other words, Fig. 1 clearly shows that there are spatial
clusters at two C(s) scales, whereas Fig. 2 depicts the time
series of the spatial clustering of the two scales. The large
cluster (lower frequency part, left curve in Fig. 2) grew until
30 April 2003, and diffused into smaller clusters thereafter

(as shown in the right part of Fig. 2), when there was a
slight increase in the building up of higher-frequency com-
ponents (or, equivalently, of smaller spatial clusters). Both
the larger and the smaller clusters lost their strength after 8
May 2003 (Fig. 2).

Driving forces of the temporal process

Inference concerning the driving forces of the temporal
process was based on the rule

RðtÞ&QðtÞ � t � FðtÞFig: 3 ! RðFðtÞÞ: ð3Þ

The rapid decline of the daily new cases R(t) and the
infective rate in Q(t) after 30 April 2003 (Fig. 3a) were pre-
dominantly driven by the spatial proximity T(t) (Fig. 3b and
c); and intermittently accompanied by the interaction
between (infected) doctors D and the urban population
density P (Fig. 3e and f ). This trend was interrupted (see
the diamond line in Fig. 3a) by a significant transmission
between rural and urban areas on 15–18 May 2003
(Fig. 3h).

Fig. 4 Network of systematic connections between different statistics.
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Driving forces of spatial clustering

Inference about the driving forces of spatial clustering was
based on the rule

CðtÞFig: 2 � t � FðtÞFig: 3 ! Cðt ;FðtÞÞ: ð4Þ

In other words, the larger spatial clusters C(t) (associated
with the a4 component in Fig. 2) had a consistent trend and
were controlled by spatial proximity T(t) (Fig. 3b and c),
whereas the smaller clusters C(t) (d4 component in Fig. 2)
were still building up, driven by significant P (population
density) and D (number of doctors) during the specified
time period (Fig. 3e and f ).

Spatial clustering and intervention

Inference concerning spatial clustering and intervention was
based on the rule

CðtÞFig: 2 � t � RðtÞ;QðtÞ ! ðC ;R;QÞðtÞ: ð5Þ

That is, the larger spatial clusters represented by the a4
component of C(t) in Fig. 2 dominated the trend throughout
the entire epidemic period, whereas the smaller clusters
reflected in the d4 component of C(t) became more active
during the decline period. The spatial and temporal patterns
of transmission were controlled dynamically by intervention
measures, as reflected in the epidemic parameters Q(t)
(Fig. 3a).32 E.g. the ‘(C, R, Q)(t)’ denotes that the triple
within the bracket change with time.

In addition to the above direct pair-wise relationship
between the variables of the SARS epidemic system, some
composite inferences can be also drawn. A few examples
follow. The

C ½s;TðtÞ�Eq:ð1Þ � t&C � C ½t ;FðtÞ�Eq:ð3Þ
! C ½s; t ;FðtÞ� ð6Þ

demonstrates the spatiotemporal (s, t) dynamics of the
observed spatial clusters (C) and the corresponding determi-
nants F(t) on a daily basis. The

Cðs; t ;FðtÞÞEq:ð5Þ � t � RðtÞ & QðtÞ ! Rðt ;C; FÞ ð7Þ

represents the fact that the observed time series of the
infected cases R(t) was driven by the spatial clustering vari-
able C(t) and the epidemic determinants F(t). The role of
the traffic T in F was to control the larger C0(s) [see Eq. (2)]
and C(t) [Eq. (4)]. The P and D in F control the smaller
C(s) [Eq. (2)] and C(t) [Eq. (4)]. The role of C(s, t) is to
control the R(t) [Eq. (5)]. The larger C(s) occurred during
the peak R(t)-values and the smaller C(s) occurred during
the decline phase of the epidemic, see Eqs. (2) and (5) or
Eqs. (2) and (3). Accordingly, the peak and decline times of

the epidemic spread were the two best times to efficiently
conduct travel-related control at the ring roads T and the
doctor (D)- and population (P)- related measures in the
community, given a limited budget for epidemic control.

Discussion

Main finding of this study

The present work proposed a methodological framework to
determine the main features of SARS transmission during
the Beijing epidemic of 2003 using various datasets and
space-time statistics techniques. Epidemic determinants and
the relevant statistics are pair-wise linked in a space-time
context, which means that the study of determinant associ-
ations can considerably enhance the mainstream epidemic
analysis and improve the understanding of previously unde-
tected relationships within the epidemic system.
Several interesting findings were obtained. Spatial neigh-

bourhood is a major component of epidemic spread model-
ling, whereas coupling spatial transmission with population
density and healthcare workers was sporadically significant.
Changes in the spatial spread of SARS over time indicated
which intervention measures are likely to be most effective
at different phases of the outbreak. When the epidemic is
growing via diffused infection, efficient intervention
measures include isolating cases and reducing inter-regional
movement. When cases of the disease appear in clusters,
resources should be directed towards curbing transmission
within localities that have a high incidence of infection. Our
results suggested that improving control measures at the
local level would have been the most efficient approach,
before the end of April, 2003. Local intervention strategies
include quarantine of family members. Once these measures
take effect, transmission is reduced substantially and
becomes dominated by more remote contacts. The evidence
that diffusion of infections drove the declining stage of the
outbreak may indicate that the measures were successfully
controlling local transmission.
Temporal variables (e.g. number of infectives, season and

weather), spatial variables (e.g. risk exposure, surveillance
network, travel warnings and isolation) and other factors (e.g.
immunity, population, doctors, hospitals and transportation)
are mapped on the SARS epidemic system. This allows trans-
ferring operations from a less detectable or operable domain
to a domain with features that improve determinant identifi-
cation, generate accurate predictions and sound inferences,
and contribute to strategies aiming at controlling disease
spread. E.g. the free travel or isolation over regions (space)
lead to an increase or decrease of the total number of
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infectives (time); and the seasonal temperature change (time)
alters the spatial pattern of risk exposure (space).

More than one statistics have to be calculated in epi-
demic data analysis, so more resources are needed to
improve the accuracy of such calculations. Fortunately, there
is a plethora of computer software and open source codes
that are easily accessible on the Internet and greatly facili-
tate data analysis computations. In this study, the datasets
are managed by the GIS software ARCGIS (http://www.
esri.com/software/arcgis/). The hierarchical clustering is
implemented by the Crimestat software (http://www.icpsr.
umich.edu/CRIMESTAT/). Moran’s coefficient IM is calcu-
lated using the GeoDA software (http://www.geoda.uiuc.
edu/). Wavelet decomposition and SSEIR are computed
using Matlab (http://www.icpsr.umich.edu/CRIMESTAT/),
and the BW test is performed using software compiled by
the authors. Primary training on GIS and spatial statistics
are needed in order to operate the above software.

What is already known on this topic

Several epidemiologic assessments of the SARS-CoV have
concluded that this coronavirus is sufficiently transmissible
to cause a very large epidemic, but not so contagious as to
be uncontrollable with good, basic public health measures.3,5

It is a common modelling practice to use a single or several
separate data statistics to investigate individual epidemic
properties and determinants,6 and to quantify policies
addressing problems caused by the disease.34 Among other
things, the spatial pattern, time process and driving forces
of an epidemic can be explored by hierarchical clustering,
SSEIR, and BW, respectively. Also, epidemiologic curves
have been generated that display the day-to-day rate of
SARS growth19 but without accounting for the ‘spatial
pattern-time process-driving forces’ associations of the epi-
demic. Only a limited number of studies have attempted
to partially represent and evaluate determinant associations
and links between separate statistics under conditions of
uncertainty.

What this study adds

The present work is the first systematic effort to represent
the aforementioned associations and links in a rigorous
manner and to assess their considerable role in understand-
ing the various aspects of epidemic distribution across
space-time. Advanced mathematical modelling of an epi-
demic could potentially unveil the relationships between
various determinants, but this modelling is often impossible
due to the unavailability of the necessary scientific knowl-
edge, including a lack of understanding of the fundamental

disease mechanisms.35,36 Nevertheless, the present study
shows that using the available datasets an informative mod-
elling approach can be developed that is based on the pair-
wise linking of epidemic determinants and the formulation
of a network that systematically connects the relevant stat-
istics. In addition, unlike earlier SARS modelling studies,5

the present approach accounts in an efficient manner for
the spatial variation of the data available. This approach is
particularly useful when the disease mechanisms are not
clear and the corresponding mathematical model is difficult
to develop for reasons mentioned above. Moreover, the
approach can be successfully implemented to simulate the
response of SARS transmission to various epidemic control
factors, identify target areas and determine the critical time
and relevant factors. Given the response by individuals,
institutions and governments to a new and dangerous
disease, the findings of the present study can be useful in
the implementation of efficient epidemic intervention strat-
egies and effective population protection policies.

Limitations of this study

The present modelling approach is concerned mainly with
statistical associations rather than causal laws. The latter are
available primarily in cases in which the fundamental disease
mechanisms (molecular biology, etc.) are well understood.
In this sense, SARS modelling could benefit from future
developments in basic scientific research in disease etiology
and mathematical theories of epidemic propagation, as well
as from sophisticated surveillance capabilities and meta-
analysis. Furthermore, the present SARS modelling could be
improved by considering epidemic variation and dependence
in a composite space-time continuum under conditions of
multi-sourced uncertainty. This may involve a combination
of random field theories with temporal GIS techniques.

Future applications

By means of the novel methodological framework con-
sidered in the present work, future epidemic studies may not
only benefit from ‘meta data analysis’ but also from ‘meta
model analysis’. A wide variety of inter-disciplinary datasets
that are relevant to the epidemic spread can be integrated by
means of this framework. The statistics functions and spatial
analysis techniques described above can be readily applied to
the study of epidemics other than SARS. Furthermore, the
methodological framework is not limited to the statistical
tools and datasets considered in this paper, but is more
general and flexible, in the sense that it may include
additional information sources, statistics functions and
models; and it can allow the performance of other types of
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logical inferences, thus generating new findings and con-
clusions concerning the epidemic under investigation. By
generalizing the current approach within the context of
random field theories with temporal GIS techniques, one
may consider additional issues related to the next generation
of (stochastic) SARS models allowing for space-time vari-
ations, multi-sourced uncertainty, seasonality and varying
transmission modes, the case of SARS virus long-time per-
sistence, and examining the case of global eradication rather
than local control in terms of early epidemic detection
measures.
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Appendix 1: notation

s spatial location.
t time period.
R(s, t) daily (t) reported new cases of SARS in each of

the 18 districts (s) of the city of Beijing
(China).

Q(t) epidemic parameters.
H(s) residential locations of all 11 108 people who

had been in close contact with infected
persons.

F(s) determinants of SARS.
P population counts in 246 census units.
Hosp location of hospitals.
D number of doctors in a hospital.
C(s), C(t)
and C

spatial pattern of risk exposure, temporal
change in spatial clustering of cases, and spatial
pattern in general, respectively.

T(s), T(t)
and T

main traffic lines with spatial location, traffic
factor of SARS transmission in time, and
traffic in general, respectively.

(C, R, Q)(t) triplet of entities within the bracket change
with time.

A&B entities A and B.
A � B entities A and B are connected.
A � m � B A is linked to B via m.
A!B B is inferred from A.

Appendix 2: the SEIR model

On the basis of the discussion in Kermack and
McKendrick7 and Anderson,25 the following SEIR model
has been proposed.

S �!‘ðtÞ E �!g I �!a R
d
dt EðtÞ ¼ ‘ðtÞSðtÞ � g EðtÞ
d
dt IðtÞ ¼ gEðtÞ � a IðtÞ
‘ðtÞ ¼ b þ cð1þ edðt�eÞÞ�1
d
dt RðtÞ ¼ aIðtÞ

9>>>>=
>>>>;

ð8Þ

where E(t), I(t) and R(t) are the number of exposed, infec-
tious and removed individuals at time t, ‘(t ) average number
of contacts per infectious person (depends on time t
because the control effort changes with t ), G the rate at
which exposed (latent) individuals become infectious. A the
rate at which infectious individuals are removed (recover or
are isolated), R0 ¼‘(0)/a � (b þ c)/a the basic reproduction
number for this model, R0 � b/a approximated eventual
reproduction number, 1/g average incubation period, 1/g
average infection period and a ¼ 0.252, b ¼ 0.008, c ¼
0.588, d ¼ 0.368, e ¼ 54 and g ¼ 0.200.

Appendix 3: nearest-neighbour
hierarchical clustering

Our datasets included the geographical locations of the resi-
dences of the 11 108 identified contacts. In the absence of
clustering, the mean distance of an identified contact from
its nearest neighbour and the standard error of this mean
are given by, respectively,

mðdÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
A=N

p
sðdÞ ¼ 0:26136

ffiffiffiffi
A
p

=N

)
; ð9Þ

where A is the area of the region and N is the number of
identified contacts in that region. We used the CrimeStat
software package,37 which defines a threshold distance

L ¼ m� 1:645s; ð10Þ

and identifies all points having neighbours within this
threshold. The software selects first-order clusters
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sequentially, beginning with the point having the largest
number of neighbours. The second-order clusters were
obtained by calculating the centre of each first-order cluster,
and then repeating the above procedure on these centre
points. The first-order clusters included at least eight points
and the second-order clusters included at least four points.

Appendix 4: Moran’s I coefficient

To avoid confusion with Panel 1, we denoted Moran’s I
coefficient35 as

IMðtÞ ¼
N
PN

i¼1
PN

j¼1 Wij ½xiðtÞ � �xðtÞ�½xjðtÞ � �xðtÞ�
ð
PN

i¼1
PN

j¼1 WijÞ
PN

i¼1½xiðtÞ � �xðtÞ�2
;

ð11Þ

where

xi(t) ¼ number of new SARS cases observed in district i
on day t,

x̄(t) ¼ mean number of new SARS cases per district on
day t,

Wij ¼
1 if i j are adjacent districts
0 if i j are not adjacent districts or i ¼ j ;

�

N ¼ number of districts.

Appendix 5: BW join-count statistic

We started with the proposed disease dispersal network,
which consisted of connections (or ‘joins’) between districts.
Each day a district was coded black (B) if it reported a
SARS case on that day; otherwise it was coded white (W).
Every joint in the network linked two B districts (BB), two
W districts (WW) or a B and a W district (BW). The
observed number of BW joins was compared with the
expected number, and a standard normal deviation (z-
scores) was used to test the significance.39,40 High negative
values of the statistics indicated evidence of clustering of
cases on the network and high positive values indicated evi-
dence of spacing. The statistics are as follows:

zðBWÞ ¼ NBW � EðNBWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNBWÞ

p ; ð12Þ

NBW ¼
1

2

XN
i¼1

XN
j¼1

wijðxi � xjÞ2; ð13Þ

EðNBWÞ ¼
1

2
½S0 NB NW=NðN � 1Þ�; ð14Þ

VarðNBWÞ ¼
1

4

2S1NBNW

NðN � 1Þ þ
ðS2 � 2S1ÞNBNW ðN � 2Þ

NðN � 1ÞðN � 2Þ

�

þ 4ðS20 þ S1 � S2ÞNB � ðNB � 1ÞNW ðNW � 1Þ
NðN � 1ÞðN � 2ÞðN � 3Þ

�

� EðNBWÞ2

ð15Þ
S0 ¼

PN
i¼1
PN

j¼1 wij

S1 ¼ 1
2

PN
i¼1
PN

j¼1ðwij þ wjiÞ2

S2 ¼
PN

i¼1ðwi: þ w:iÞ2

9>=
>;; ð16Þ

NBW number of BW joins,

xi ¼
1 if district i is black
0 if district i is white;

�

wij ¼ 1 if district i are connected
0 otherwise;

�

wi. average of wij over the second subscript,
N total number of districts,
NB, NW numbers of BB and WW joins, respectively.
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