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Abstract

Motivation: Functional genomics experiments generate genomewide signal profiles that are dense information
sources for annotating the regulatory elements. These profiles measure epigenetic activity at the nucleotide reso-
lution and they exhibit distinctive patterns as they fluctuate along the genome. Most notable of these patterns are
the valley patterns that are prevalently observed in assays such as ChIP Sequencing and bisulfite sequencing. The
genomic positions of valleys pinpoint locations of cis-regulatory elements such as enhancers and insulators.
Systematic identification of the valleys provides novel information for delineating the annotation of regulatory ele-
ments. Nevertheless, the valleys are not reported by majority of the analysis pipelines.

Results: We describe EpiSAFARI, a computational method for sensitive detection of valleys from diverse types of
epigenetic profiles. EpiSAFARI employs a novel smoothing method for decreasing noise in signal profiles and
accounts for technical factors such as sparse signals, mappability and nucleotide content. In performance compari-
sons, EpiSAFARI performs favorably in terms of accuracy. The histone modification valleys detected by EpiSAFARI
exhibit high conservation, transcription factor binding and they are enriched in nascent transcription. In addition, the
large clusters of histone valleys are found to be enriched at the promoters of the developmentally associated genes.
Differential histone valleys exhibit concordance with differential DNase signal at cell line specific valleys. DNA
methylation valleys exhibit elevated conservation and high transcription factor binding. Specifically, we observed
enriched binding of transcription factors associated with chromatin structure around methyl-valleys.

Availability and implementation: EpiSAFARI is publicly available at https://github.com/harmancilab/EpiSAFARI.

Contact: arif.o.harmanci@uth.tmc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing based functional genomics experiments (ENCODE
Project Consortium, 2012; Hasin et al., 2017; Sharing Epigenomes
Globally, 2018), such as chromatin immunoprecipitation sequenc-
ing (ChIP-Seq), are being widely used to study the regulatory proc-
esses underpinning phenotypic variation (Esteller, 2008; McVicker
et al., 2013), such as PheWAS (Denny et al., 2016), HAWAS (Sun
et al., 2016), and understanding epigenetic control of gene expres-
sion (Dong and Weng, 2013; Zhang and Reinberg, 2001). Most
commonly, the data from these assays are summarized into signal

profiles that represent epigenetic measurements at the signal nucleo-
tide resolution, e.g. the fold-change signal or the read coverage at
each nucleotide. Although the signal profiles can provide biological
insight for comprehensive discovery and annotation of functional
elements in the genome, most of the current analysis pipelines focus
mainly on the identification of broad regions with signal enrich-
ments, such as peaks (Harmanci et al., 2014; Rozowsky et al., 2009;
Thomas et al., 2017; Zhang et al., 2008). In particular, there is
much information that is encoded in the fluctuations of the signal
profiles along the genome. Most notable of these fluctuations are
the troughs, valleys, or canyons in the genomewide signal profiles.
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Troughs and valleys are generally used in the literature to refer to
the punctate regions where signal profile exhibits ‘V’ shaped pat-
terns such that a dip in the signal is observed between two summits
(Sethi et al., 2018). Previous studies have generally focused on punc-
tate valleys at the length scales of up to 5kbs. Canyons are generally
used in the context of DNA methylation to refer to broad regions
with depleted signals. The signal profile over canyons are similar to
a broad ‘U’ shaped pattern with large basins (Jeong et al., 2014; Xie
et al., 2013). A recent publication referred to these broad canyon
domains as ‘nadirs’ (Jeong et al., 2017). Canyons have large spec-
trum of lengths from punctate (several kilobases) to very broad
(upto megabases).

The valleys are commonly observed in the signal profiles gener-
ated from many epigenetic assays such as ChIP-Seq, DNA methyla-
tion (bisulfite sequencing) (Li et al., 2018; Xie et al., 2013), open
chromatin measurement [DNase sequencing (Madrigal and
Krajewski, 2012) and MNase-Seq] and replication timing sequenc-
ing (Audit et al., 2013; Dorschner et al., 2009). Among these, the
replication timing valleys show the largest length scales (tens of meg-
abases) and DNase valleys show the shortest length scales (At the
order of 20 base pairs). In this study we are focusing on punctate
valleys at the order of 100 base pairs to 5kbs. The main reason for
this is that recent literature shows that the valleys at this length scale
are enriched in cis-regulatory elements which can help enhance an-
notation of functional elements detected from functional genomics
signals.

The valleys are important information bearing regions within the
epigenetic signal profiles that can pinpoint the locations of cis-
regulatory elements such as enhancers and insulators. Thus, the val-
leys can potentially enable researchers to anatomize and enhance the
annotations of regulatory elements. The efficient and systematic
identification of valleys can substantially increase the utility of func-
tional genomics experiments. The information that are encoded in

the valleys are currently left under-utilized because they are not
reported explicitly by most of the analysis pipelines.

Here we present EpiSAFARI, which performs sensitive statistical
detection of punctate valleys from the fluctuations in the genome-
wide signal profiles. The core algorithm is based on spline smooth-
ing of the epigenetic signal profiles followed by valley detection
using the smoothed signal profile. EpiSAFARI can analyze sparse
signals such as DNA methylation signals that are non-zero only at
cytosine residues on the genome. EpiSAFARI integrates technical
factors such as sequence context and mappability. These factors can
impact the valleys by causing ‘non-biological valleys’ to manifest
(Benjamini and Speed, 2012; Harmanci et al., 2014). Overall,
EpiSAFARI performs favorably compared to other tools and can po-
tentially help elucidate functional information about regulatory
elements.

2 Materials and methods

2.1 EpiSAFARI algorithm
The input to EpiSAFARI is the signal profile or the mapped reads
(Fig. 1). First, EpiSAFARI smooths the signal profile. To smooth the
signal, EpiSAFARI divides genome into non-overlapping windows
of length lw base pairs and applies spline-based smoothing to the
raw signal profile in each window (Fig. 1, step 2, Supplementary
Fig. S1). Although other smoothing approaches have been proposed
(Harmanci et al., 2014; Knijnenburg et al., 2014), basis spline curves
are advantageous because they do not rely on a model, they are flex-
ible and they guarantee a continuous smoothed signal (Unser et al.,
1993).

The spline curves are defined by a set of ‘knots’ and the degree of
the polynomial (Supplementary Figs S1 and S2). The knots represent
the positions where the polynomials meet such that the derivative

Fig. 1. Illustration of the steps in EpiSAFARI algorithm. The input can be one of read coverage signal (bedGraph, wig, bigwig formatted) or mapped reads (sam formatted).

The read coverage signal profile, X, is smoothed using spline-based fitting in the second step. Smoothing computes the minimum least square fit of X using the spline basis func-

tions (B). The smoothed signal (S) is plotted with lightly colored original signal to illustrate the effect of smoothing. In third step, valleys are detected. Red and green dashed

lines indicate the minima (dip) and maxima locations (summits), respectively. A valley is defined as a dip surrounded by two summits. The blow-up illustrates the summit posi-

tions (i and j) and the dip of a valley (k) and the signal level at these locations denoted by si, sj and sk. Next, the valleys are filtered with respect to distance between dip-to-sum-

mit distance (lmin; lmax) and the ratio between signal level at the summits to the dip (fmin). The valleys that are removed are illustrated with grey shaded lines. In step 4, hill

score, mappability and nucleotide content are assigned. In this step, multi-mappability profile and genome sequence are used as input. In the final step, statistical significance

for the valleys are assigned. For each valley, the signal enrichment is estimated using binomial test for comparing the signal within lp base pair vicinity of the summits compared

to the signal around lp base vicinity of the dip. The output from EpiSAFARI are the smoothed signal profiles (bedGraph formatted) and the valleys (bed formatted)
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of the curves are continuous up to the selected degree of the spline func-
tions (Supplementary Fig. S1). While knot positions affect the accuracy
of spline-based smoothing, general knot selection is a complex and
open problem (Foley and Nielson, 1989). We compared 3 different
knot selection procedures using different knot numbers and observed
that uniform knot selection performs comparably in terms of accuracy
to the random knot selection, and derivative-based knot selection pro-
cedures (Supplementary Methods, Supplementary Fig. S3). Since
EpiSAFARI smooths signal with non-overlapping windows, the
smoothing is performed for each window separately. We observed that
uniform knot selection biases the detected valley dips periodically on
the windows. When derivative or random knot selection is used, this
bias is removed (Supplementary Fig. S3i–k). However, we observed
slight enrichment of valley dips at the ends of the windows. These
biases are removed when overlapping windows are used for spline
smoothing (Supplementary Fig. S3l). For this, EpiSAFARI slides the
windows with a stepping length that is smaller than window length.
This way, each position is covered by multiple windows.

The degree of the splines represents the degree of the polynomials
that make up the basis curves. By default, EpiSAFARI uses splines of
degree 5 with 7 knots. We observed that increasing (or decreasing) the
spline degree or knot numbers may decrease valley detection accuracy
because they may cause underfitting or overfitting in the smoothing
process (See Supplementary Methods). The spline degree and knot
number parameters tune the complexity of smoothing and they can be
changed by the user. After basis function generation, a linear minimum
square error fit of the signal to the spline basis functions is computed.

c� ¼ argmincf X� Bcj j2g (1)

S ¼ Bc� (2)

where X represents the vector that contains the original signal profile in
the current window, B denotes the set of spline basis functions and c�

denotes the error minimizing weights. In order to decrease computational
complexity, X is formed by using the signal levels at points of interest in
each window. The points of interest are selected as the positions where
signal changes value. For sparse signals (e.g. WGBS-based DNA methyla-
tion), the points of interest are chosen such that only locations with non-
zero signal values are selected. As the smoothing does not make any
assumptions on the underlying signal, EpiSAFARI is applicable for ana-
lysis of the signal profiles generated diverse set of assays including
microarray-based assays (Schumacher et al., 2006). The window length
parameter, lw, determines the number of points of interest and can im-
pact accuracy (Supplementary Methods, Supplementary Fig. S4a–c).

After smoothing, EpiSAFARI evaluates the maximum error
among the points of interest. If the maximum error is higher than an
anticipated error, EpiSAFARI increases the knot number and the
spline degrees and re-iterates signal smoothing with the updated
parameters. After all the windows on a chromosome are processed,
they are concatenated to form the final smoothed profile. To ensure
continuity of the signal, EpiSAFARI filters the concatenated signal
profile using a median filter (of length lpost base pairs) that can be
changed by the user. By default, EpiSAFARI sets lpost equal to 50
(Supplementary Methods, Supplementary Fig. S4g).

2.2 Valley detection
After smoothing the signal profile, next step is detection of the local
extrema, i.e. local minima and maxima. The local extrema are iden-
tified as the genomic coordinates where derivative changes sign:

l ¼ if jd i� 1ð Þ < 0; d ið Þ > 0g (3)

M ¼ if jd i� 1ð Þ > 0; d ið Þ < 0g (4)

d ið Þ ¼ si � si�1 (5)

where si denotes the smoothed signal value at ith genomic position.
In (3) ad (4), l and M denotes the set of minima and maxima coordi-
nates, respectively.

The valleys are defined by a local minimum (i.e. dip) and two
nearby maxima (i.e. summits) located upstream and downstream
the dip (Fig. 1, step 3). The candidate valleys satisfy following
constraints:

V ¼ i; j; kð Þ
�����

i < k < j; i; jf g �M; k 2 l;

max j� kj j; i� kj j
� �

< lmax;

min j� kj j; i� kj j
� �

> lmin;

min
si

sk
;
sj

sk

� �
> fmin

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(6)

where V denotes the set of valleys, which are triplets of genomic
positions i; j;kð Þ. i and j denote the summit coordinates and k
denotes the position of valley’s dip between i and j such that max-
imum (minimum) distance from i and j to k are bounded by lmax

(lmin) parameter. This ensures that the summits are not very far from
(or near to) the dip. In addition, the ratio of the signal levels at both
summits to the dip are bounded below by fmin to ensure that there is
difference between the signal levels at summits and signal at the dip.
We set fmin ¼ 1:2 for sensitive detection of valleys in the experiments
(Supplementary Methods, Supplementary Fig. S4f).

2.3 Assignment of hill scores
For each valley, EpiSAFARI computes a quality score for the two ‘hills’
on each valley (Fig. 1). A hill is the genomic region between the dip
and the (left or right) summits. A good hill shows a monotonic increase
between the dip and the summits (Supplementary Fig. S5a). To meas-
ure this, EpiSAFARI computes the fraction of positions in the left and
right hill where the signal is increasing (i.e. going up-hill) while moving
away from the dip to the summit. Hill score is computed as

h i; j; kð Þ ¼ min

P
i<a<k d d að Þ < 0

� �
k� i

;

P
k<a<j d d að Þ > 0

� �
j� k

 !
(7)

where h i; j; kð Þ denotes the hill score and d d að Þ < 0
� �

is an indicator
function:

d d að Þ < 0
� �

¼ 1; if d að Þ < 0
0; otherwise

�
(8)

For a good valley, the hill score is close to 1.0, indicating that
both hills to the left and right of the dip exhibit a monotonically
increasing signal while moving away from the dip. If there are any
segments with a down-hill trend, the hill score decreases (Step 4 in
Fig. 1). Using a high hill score cutoff increases the topological qual-
ity of valleys but may adversely impact sensitivity of the valley detec-
tion (Supplementary Methods). On the other hand, decreasing the
cutoff causes the reported valleys to overlap with each other
(Supplementary Fig. S5b). We observed that the valleys with high
qualities are separated in the distribution of the hill scores at the
very high end of the distribution (Supplementary Methods,
Supplementary Figs S5e–g and S6). We therefore use high hill score
cutoff (0.90) to report only the valleys with high topological quality.

The mappability of valleys is very important to distinguish
valleys caused by low mappability versus the real valleys caused by
biological signal fluctuation. For this, EpiSAFARI uses the precom-
puted multi-mappability signal (Harmanci et al., 2014) profile. For
each valley, EpiSAFARI computes the average and the maximum of
the multi-mappability signal. In general, high multi-mappability cor-
responds to a low mappable region and these regions are filtered out
in the downstream analysis.

2.4 Assignment of statistical significance
The next step is assignment of statistical significance to the detected
valleys (Fig. 1). By statistical significance, we refer to how significant
the depletion of the signal at the dip is compared to the signal levels
at the summits. Thus, valleys with low P-value correspond to deep
valleys. The assigned P-values are used to sort the valleys while per-
forming enrichment analysis.
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For a valley at ði; j;kÞ, EpiSAFARI first computes the signal
around the vicinity of the dip and the summits using

Si ¼
X

i�lp
2<a<iþlp

2

sa (9)

Sj ¼
X

j�lp
2<a<jþlp

2

sa (10)

Sk ¼
X

k�lp
2<a<kþlp

2

sa (11)

where Si, Sj, Sk denote the average signal in the lp base pair (100
base pairs by default) vicinity of the summits i, j and the dip k
(Supplementary Fig. S7). Next, EpiSAFARI computes the binomial
P-value of enrichment of signal around summits compared to the
dip:

bin Si; Skð Þ ¼
XSk

a¼0

Sk þ Si

a

� �
� 1

2

� �SkþSi

(12)

bin Sj; Sk

� �
¼
XSk

a¼0

Sk þ Sj

a

� �
� 1

2

� �SkþSj

(13)

where
Sk þ Si

a

� �
number of combinations for selecting a items

within Sk þ Si items:

Sk þ Si

a

� �
¼ Sk þ Sið Þ!

Sk þ Si � að Þ! � a!
(14)

In order to assign the final P-value to the valley, we combine the
P-values that are assigned to enrichment of the signal at the two
summits. This process corresponds to combining the null models
that are used to assign the two P-values for the observed summit-to-
dip signal enrichment. We first use intersection of the null models as
the joint null model (Supplementary Fig. S7a). Assuming that the
left and right hills are independent, this corresponds to the direct
multiplication of the P-values:

log p� value\ i; j; kð Þð Þ ¼ log bin Sj; Sk

� �� �
þ log bin Sj; Sk

� �� �
:

(15)

P� value\ denotes the P-value computed by intersection-based
combination of the P-values assigned to observed summit-to-dip sig-
nal enrichment (Supplementary Methods, Supplementary Figs S7
and S8).

After the P-values are assigned, the false discovery rate at which
each valley would be deemed significant is estimated using
Benjamini-Hochberg procedure (Benjamini, 2010).

The valleys that EpiSAFARI detected may overlap with each
other although we generally observed that the overlap between
detected valleys tends to be very small. To ensure that a non-
redundant set of minima are reported, EpiSAFARI filters out the val-
leys whose dips are close to each other by selecting the most signifi-
cant valley (i.e. lowest P-value) around local minima positions.
Finally, EpiSAFARI annotates valleys with respect to genes and tran-
scription factor binding peaks. We created a GFF file from the tran-
scription factor binding peak regions from ENCODE project
(ENCODE Project Consortium, 2012), which contains the tran-
scription factor peaks that are identified by 690 ChIP-Seq experi-
ments performed on cell lines and uniformly processed by the
ENCODE Project. The smoothed signal profiles can be used for vis-
ualizing the signal (Supplementary Fig. S2).

An important factor about detecting valleys is the required
sequencing depth. For analyzing the required read depth, we used a
high depth H3K4me3 ChIP-Sequencing data from NA12878 sample
(Kasowski et al., 2013) and identified valleys. We next computed
the increase in the number of valleys with increasing read depth and

the increase in the fraction of identified functional elements
(Supplementary Fig. S4i and j). We found that beyond 35-40 million
reads, the valley detection does not provide substantial additional
information.

3 Results

3.1 Performance benchmarking
We first focused on comparing the valleys detected by EpiSAFARI
with the existing tools. While several studies have focused on ana-
lysis of valleys in different contexts, we found that PARE (Pundhir
et al., 2016) is available with implementation that can be used for
comparison. In the comparison, we used the H3K4me3 histone
modification ChIP-Seq data for NA12878 individual from the
ENCODE Project (ENCODE Project Consortium, 2012). In general,
H3K4me3 modification marks the promoters of the active genes.
We have focused specifically on this modification because firstly it is
a well-characterized mark and secondly PARE algorithm is tuned
for analysis of this mark so that we are fair in comparison of the
tools. We downloaded the two replicates that are available and
pooled the reads from the replicates. PARE algorithm is run with de-
fault settings except that we extended the search space to 2000 base
pairs (-v option) and we relaxed the FDR cutoff to 0.1 (-t option).
For EpiSAFARI, we set the FDR cutoff to 0.05, filtered out the val-
leys with hill scores lower than 0.90. In general, we observed that
EpiSAFARI identifies many more valleys compared to PARE. To
make the comparison fair, we sorted the EpiSAFARI valleys with re-
spect to increasing FDR (i.e. more significant first) and we sorted
the PARE valleys with respect to decreasing score (i.e. higher score
first) assigned by the algorithm. We then focused on the top 2000
valleys.

Currently, ChIP-Seq datasets are analyzed primarily in terms of
peaks. To include the peaks in the comparison, we identified the
peaks for the H3K4me3 data using MUSIC (Harmanci et al., 2014)
and extracted the 200 base pair vicinity of the summits and used the
summit regions in comparison with the valleys. Since we do not
have a set of valleys that can directly serve as ground truth, we used
different hypotheses to evaluate whether the identified valleys are
biologically meaningful and used these to assess performance of
methods.

We first focused on comparison of transcription factor binding
activity around the valleys. We hypothesized that the real valleys
must be enriched in transcription factor binding. ENCODE project
supplies a large number of ChIP-Seq experiments and uniformly
processed peak calls for many transcription factors for NA12878
sample. We pooled the available peaks calls from the 90 ChIP-Seq
experiments for NA12878 sample. We then evaluated the fraction
of top valleys that overlap with a transcription factor peak. In order
to correct for the valley lengths reported by the methods, we used
the valleys that are reported by PARE as they are and we used only
the 200 base pair vicinity of the valley dips (i.e. dip location 6 100
base pairs) reported by EpiSAFARI. Figure 2a shows the fraction of
top valleys (and summits) that overlap with a transcription factor
peak while the number of top peaks is increased (x-axis). We
observed that more than 90% of the top EpiSAFARI valleys that we
evaluated overlap with a peak. The fraction of overlap decreases
slowly as we increase the number of top valleys. PARE valleys, in
contrast, show a fairly low overlap with a transcription factor peak
(starting at 50%) and the overlap fraction increases as the number
of top valleys is increased. Around 90% of the peak summits contain
a transcription factor binding. This result indicates that the valleys
(and the scores) detected by EpiSAFARI represent a better represen-
tative set of transcription factor activity compared to the other
methods.

Another hypothesis about the valleys is that they are enriched in
terms of open chromatin. To measure this, we downloaded the
peaks of the DNase-1 hypersensitive site sequencing (DNase-Seq)
data from the ENCODE project for NA12878 sample. These peaks
represent the experimentally detected locations of genomic positions
for accessible DNA. Similar to the previous comparison, we
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overlapped the top valleys detected by EpiSAFARI and PARE with
the DNase peaks. Figure 2b shows the fraction of top valleys that
overlap with a DNase peak. Similar to previous analysis, we used
the 200 bp vicinity of the valley dip for EpiSAFARI valleys for this
comparison. We observed that EpiSAFARI valleys show a much
higher overlap fraction to the DNase peaks compared to PARE and
peak summits. In addition, PARE valleys also show an increasing
overlap fraction with decreasing score while EpiSAFARI valleys
show a slowly decreasing overlap fraction with decreasing signifi-
cance. This result indicates that EpiSAFARI valleys are better repre-
sentatives of the accessible DNA positions compared to the valleys
detected by PARE. The peak summits exhibit around 50% overlap
with the DNase peaks.

We hypothesized that the top valleys of the H3K4me3 modifica-
tion must be enriched in the active gene promoters. To identify the
active gene promoters, we used the transcript expression quantifica-
tions from the ENCODE project for NA12878. We first identified
the transcripts whose reported expression levels in terms of reads
per kilobase per million mapped reads (RPKM) are higher than
0.05. We next extracted the 1000 base pair vicinity of the transcrip-
tion start site of each transcript. These constitute the set of active
promoters. We then overlapped the valleys with the active pro-
moters and computed the fraction of top valleys that overlap with
active promoters. Figure 2c shows the overlap fraction of top valleys
with active promoters. EpiSAFARI shows a fairly high overlap
(higher than 90%) at the top valleys and decreases as the number of
top valleys decrease. For the top 2000 valleys, the overlap is always

higher than 80%. The top valleys identified by PARE show 50%
overlap with active promoters and the overlap increases as the num-
ber of top valleys is increased. The peak summits show around 90%
overlap with the active promoter regions. This result shows that
EpiSAFARI valleys capture the active promoter information better
than PARE while detecting valleys. In comparison to peak summits,
EpiSAFARI valleys exhibit higher accuracy for top 2000 valleys. We
also compared the reproducibility of the valleys (and summits) iden-
tified by the methods. For this, we randomly divided the reads for
NA12878 H3K4me3 to generate 2 replicates. We identified the val-
leys using EpiSAFARI and PARE and the peaks using MUSIC. We fi-
nally compared the replicates and computed the average consistency
among identified valleys and summits. Figure 4d shows the replicate
overlap for the top valleys and peak summits. All the methods show
low replicate consistency for the top elements and consistency
increases up to 50% as top element number is increased. In compari-
son, EpiSAFARI valleys (and peak summits) exhibit higher replicate
consistency compared to PARE valleys. We also compared the run
time and main memory requirements of EpiSAFARI and PARE
(Fig. 2e and f). We found that PARE uses less memory than
EpiSAFARI and EpiSAFARI has lower run time requirements.

3.2 Histone valleys are enriched in functional activity
We next computed the average conservation on the valleys identified
by EpiSAFARI. To measure the conservation around the valleys, we
aggregated the PhyloP conservation score (Kuhn et al., 2013) around
the 20 000 base pair vicinity of the reported dips of the valleys
(Fig. 3a). There is a substantial increase in the average conservation
signal around the valley dip and conservation decreases with
increasing distance to the dip. We also found that the valleys that do
not overlap with H3K4me3 peaks (or with promoters) show
increased conservation compared to random regions (Fig. 3a). These
valleys potentially represent the novel elements that EpiSAFARI
identified that could have been missed by peak callers.

We also hypothesized that the valleys as detected by EpiSAFARI
may contain cis-regulatory elements such as promoters and
enhancers (Supplementary Fig. S9). One line of evidence for exist-
ence of these elements is the nascent transcription at the valleys. To
study this, we used the global run-on sequencing (GRO-Seq) data
for NA12878 sample (See Data Availability). GRO-Seq data repre-
sent the genome-wide measurement of nascent transcription, i.e.
RNA that has just been transcribed (or being transcribed) at each lo-
cation in the genome (Core et al., 2008). We observed that there is
an increased GRO-Seq signal on both positive and negative strands
around the dip of the valley (Supplementary Fig. S10a and b).

An important observation about the valleys is that valleys may
show asymmetry with respect to the signal levels at the left and right
summit positions and this relates to transcriptional activity
(Kundaje et al., 2012). In order to study the relation between valley
shape asymmetry and transcriptional activity around the valleys, we
divided the valleys into two groups. First group, we call left-to-right
valleys (Bottom illustration in Fig. 3b), have higher signal on the left
summit compared to right summit. Second group, right-to-left val-
leys, (Bottom illustration in Fig. 3c) contains higher signal on the
right summit compared to the left summit. Figure 3b and c shows
the average GRO-Seq signal around the 20 000 base pairs vicinity of
the valley dips for left-to-right and right-to-left valleys, respectively.
For left-to-right valleys, there is a sharp peak on the negative strand
signal to the left of the dip position. The positive signal, while still
high, does not show a corresponding sharp peak. In other words,
left-to-right valleys are enriched in terms of negatively oriented nas-
cent transcription. Similar pattern is seen for the right-to-left valleys
(Fig. 3c) albeit on the positive strand. Overall, these results provide
supporting evidence that the valleys detected by EpiSAFARI contain
genomic elements of potential functional role. Furthermore, the val-
leys’ asymmetry can delineate the directionality of transcriptional
activity around them.

An important downstream analysis is comparison of valleys
from two samples. We studied the ‘differential valley detection’ to
identify the valleys that are specific to samples under different condi-
tions (Supplementary Fig. S13a). To compare the valleys from two

Fig. 2. Comparisons. Comparison of the top H3K4me3 valleys in NA12878 sample

as detected by EpiSAFARI (blue), by PARE (red) and peak summit regions detected

by MUSIC (green). (a) The fraction of top valleys and summits that overlap with a

transcription factor peak. X-axis shows the number of top valleys (summits) and y-

axis shows the fraction of valleys that overlap with a transcription factor peak. (b)

The fraction of top valleys that overlap with a DNase peak. (c) The fraction of top

valleys (summits) that overlap with an active promoter. (d) Overlap fraction of the

of valleys detected from the two replicates of GM12878 H3K4me3 dataset. (e) The

memory requirements of EpiSAFARI and PARE with increasing read depth. X-axis

shows the total number of reads and y-axis shows the required maximum main

memory in gigabytes. (f) The time requirements of EpiSAFARI and PARE. X-axis

shows the total number of reads and y-axis shows the required wall time in seconds
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samples (e.g. cell lines with different treatments) and to identify val-
leys specific to first sample, we first pool the valleys identified in the
two samples. We next compute the difference profile by subtracting
the signal profile for second sample from that of the first sample.
This profile quantifies enrichment of signal at the valleys when sam-
ple 1 is compared to sample 2. Finally, we compute the significance
of each of the pooled valleys using the difference profile
(Supplementary Material). We compared the valleys from NA12878
and K562 cell lines, and identified the NA12878 and K562 specific
valleys. To characterize the sample specific valleys, we analyzed the
DNase signal from both cell lines and computed the fold-change at
the cell line specific valleys. This analysis revealed that cell line spe-
cific valleys show significantly increased DNase signal
(Supplementary Fig. S13b and c) compared to all valleys.

3.3 Methyl-valleys are enriched in chromatin structure

associated transcription factor binding
As another application of EpiSAFARI, we next focused on analysis
of the valleys in the DNA methylation signal of H1 embryonic stem
cell line (H1hESC) measured by the whole genome bisulfite sequenc-
ing (WGBS) data from Roadmap Epigenome Project. The valleys in
DNA methylation signals have been shown to contribute to import-
ant biological phenomena (Jeong et al., 2014; Li et al., 2018). We
first downloaded the processed the WGBS signal profile from
Roadmap Epigenome Project (Romanoski et al., 2015). This signal
profile measures the fraction of methylated versus non-methylated
cytosine residues at the CpG di-nucleotides. We identified valleys in
DNA methylation signal, i.e. methyl-valleys, using sparse mode of
EpiSAFARI. In valley detection, we set lmin ¼ 0, lmax ¼ 2 000 and
excluded the valleys that contain less than 20 CpG di-nucleotides as
these may correspond to valleys with very sparse signals. While
smoothing DNA methylation signals, lw ¼ 5000 is used
(Supplementary Methods, Supplementary Fig. S4k–n).

The methyl-valleys generally show elevated conservation
(Fig. 4a) compared to their surroundings. We overlapped the valleys
with the transcription factor ChIP-Seq peaks for H1hESC cell line.
The top methyl-valleys (including valleys that do not overlap pro-
moters) are highly enriched in terms of transcription factor binding
peaks (Fig. 4b). We next identified the fraction of transcription fac-
tors whose peaks overlap with the top 1000 valleys (Supplementary
Fig. S11). Large fraction of methyl-valleys overlaps with transcrip-
tion factors such as CTCF (60%), Rad21 (50%) and Znf143 (50%),
which are known regulators of three-dimensional chromatin struc-
ture (Fig. 4c). A similar result has been reported in another study
(Lin et al., 2017) where the authors show that chromatin structure
associated transcription factors are enriched in undermethylated
regions. We also used EpiSAFARI to detect the methyl-valleys for
NA12878 cell line using a publicly available dataset (See Data
Availability). While we did observe that the top methyl-valleys are
enriched in transcription factor binding (Supplementary Fig. S12a),
we did not observe the enrichment of the chromatin structure associ-
ated transcription factors (Supplementary Fig. 12b). These results
provide evidence that the stratification of the transcription factor
binding on the valleys can provide biological insight in epigenetic
data analysis.

3.4 Supervalleys are enriched at promoters of

developmental genes in embryonic stem cell line
It was previously shown that the broad domains of histone modifi-
cation enrichments may represent super-enhancer regions (Pott and
Lieb, 2015), which are associated with important biological phe-
nomena such as cancer initiation. In addition, several studies
showed that the broad H3K4me3 peaks are enriched around genes
with certain biological roles (Benayoun et al., 2014; Dincer et al.,
2015). We overlapped the H3K4me3 valleys for H1hESC cell line
with the promoters and we identified the top 500 genes whose pro-
moters overlap with highest number of valleys (Fig. 5a), which we
refer to as supervalleys. Interestingly, these genes are significantly
related to development, differentiation and DNA binding (Fig. 5b).
Consequently, the clustering of the valleys with respect to proximity

Fig. 3. Conservation and Transcription around Histone Valleys. (a) Average conser-

vation within 20 000 base pairs of the valley dips. X-axis shows the distance from

the dip and y-axis shows the average PhyloP conservation score. The conservation

around all valleys (blue), valleys that do not overlap with any H3K4me3 peaks

(red), valleys that do not overlap with neither promoters nor peaks (cyan) and

randomized regions (green) are shown. (b) The aggregation of GRO-Seq signal

within 20 000 base pairs of left-to-right valleys (blue) and random regions (green).

The bottom illustration points out the fact that left summit is taller than right sum-

mit. (c) The aggregation of GRO-Seq signal within 20 000 base pairs of right-to-left

valleys where right summits are taller than left summits
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in genomic coordinates may be an indicator of elements with im-
portant biological functions. When we performed the supervalley
analysis using H3K4me3 valleys of NA12878 cell line, we did not
find any significant functional category.

4. Discussion

We presented EpiSAFARI as a new method for detecting the valleys in
epigenetic signal profiles. One of the main challenges related to the
valley-centric analysis of epigenetic data is concretizing the definition
‘valley calling’ process. EpiSAFARI treats the valleys to be dips in the sig-
nal that are between two summits but this definition could potentially

be revised to ensure that the valleys represent the functionally most
meaningful regions. Another limitation that we have faced is defining
quality metrics for the detected valleys. The hill score aims to measure
the valley quality but we observed that it may be affected to a certain ex-
tent by the signal smoothing parameters. More robust measures of valley
quality can elucidate the valley quality. Another challenge is defining
statistical models for valley calling. Although we evaluated several statis-
tical models that evaluate the significance of the valleys, the definition of
statistical significance of valleys should be studied in more detail.

Several previous methods have utilized valleys in different con-
texts. These methods rely on smoothing of signal using kernel-based
approaches [such as Gaussian (Knijnenburg et al., 2014) and wave-
let filtering (Audit et al., 2013)] or modeling of the read clusters

Fig. 4. Conservation and Transcription around Histone Valleys. (a) Characterization of the methyl-valleys. (a) Conservation around the 20 000 base pair vicinity of the dips of

methyl-valleys as reported by EpiSAFARI. All valleys (blue), valleys that do not overlap with promoters (red) and random regions (green) are shown. (b) The fraction of the

top methyl-valleys that overlap with a H1hESC transcription factor binding peaks. X-axis shows the top number of valleys and y-axis shows the fraction of valleys that overlap

with at least one transcription factor peak. (c) Heatmap of the transcription factor binding on the top 1000 methyl-valleys. Each row is a methyl-valley and each column is a

transcription factor. Within a row, white color indicates an overlap with the valley corresponding to the row and the peaks of the transcription factor that is corresponding to

the column. Red indicates no overlap between the transcription factor’s peaks and the valley. The rows and columns are sorted by hierarchical clustering
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(such as PARE). In comparison, EpiSAFARI is advantageous to these
methods for two reasons. Firstly, EpiSAFARI incorporates mapp-
ability and nucleotide content in filtering of the detected valleys. As
we have demonstrated, these factors may create false positive val-
leys. Secondly, the kernel smoothing-based methods may fail to
smooth sparse signals (such as DNA methylation) because smooth-
ing of sparse signals will introduce many false positive valleys. On
the other hand, EpiSAFARI computes an interpolation of the sparse
signal to efficiently build a continuous smoothing of the sparse sig-
nals. Thus, the spline-based modeling of EpiSAFARI separates it
from previous methods for modeling of both continuous and sparse
signal profiles. EpiSAFARI utilizes a parametric spline-based strat-
egy to smooth the signal before detection of the valleys. We studied
extensively the impact of the parameters on valley detection accur-
acy. While knot selection may slightly bias results, these can be miti-
gated by using overlapping windows.
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Fig. 5. Functional enrichment of the genes whose promoters overlap with supervalleys.

(a) Illustration of a simple valley and a H3K4me3 supervalley. The simple valley con-

sists of a double-peak pattern with a valley in it. The supervalleys contain many con-

secutive valleys that are clustered within a small genomic distance. Block diagram

below illustrates the detection of supervalleys on promoters. The valleys are assigned to

gene promoters such that a promoter is defined as the 20 kb vicinity of the transcription

start site (TSS). The genes whose promoters overlap with the largest number of valleys

are identified. The top 500 genes are used in gene ontology enrichment. (b) The most

significant 10 GO terms (x-axis) that are detected from ontology enrichment as sorted

with respect to enrichment false discovery rate (y-axis)
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