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Abstract
Background: For parsimony analyses, the most common way to estimate confidence is by
resampling plans (nonparametric bootstrap, jackknife), and Bremer support (Decay indices). The
recent literature reveals that parameter settings that are quite commonly employed are not those
that are recommended by theoretical considerations and by previous empirical studies. The
optimal search strategy to be applied during resampling was previously addressed solely via
standard search strategies available in PAUP*. The question of a compromise between search
extensiveness and improved support accuracy for Bremer support received even less attention. A
set of experiments was conducted on different datasets to find an empirical cut-off point at which
increased search extensiveness does not significantly change Bremer support and jackknife or
bootstrap proportions any more.

Results: For the number of replicates needed for accurate estimates of support in resampling
plans, a diagram is provided that helps to address the question whether apparently different
support values really differ significantly. It is shown that the use of random addition cycles and
parsimony ratchet iterations during bootstrapping does not translate into higher support, nor does
any extension of the search extensiveness beyond the rather moderate effort of TBR (tree
bisection and reconnection branch swapping) plus saving one tree per replicate. Instead, in case of
very large matrices, saving more than one shortest tree per iteration and using a strict consensus
tree of these yields decreased support compared to saving only one tree. This can be interpreted
as a small risk of overestimating support but should be more than compensated by other factors
that counteract an enhanced type I error. With regard to Bremer support, a rule of thumb can be
derived stating that not much is gained relative to the surplus computational effort when searches
are extended beyond 20 ratchet iterations per constrained node, at least not for datasets that fall
within the size range found in the current literature.

Conclusion: In view of these results, calculating bootstrap or jackknife proportions with narrow
confidence intervals even for very large datasets can be achieved with less expense than often
thought. In particular, iterated bootstrap methods that aim at reducing statistical bias inherent to
these proportions are more feasible when the individual bootstrap searches require less time.
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Background
"Without some assessment of reliability, a phylogeny has
limited value" (Sanderson 1995: 299) – an examination
of the recent phylogenetic literature shows there is a gen-
eral agreement on this fact, and only few molecular phyl-
ogenetic studies of the past 15 years exist in which no
estimate of confidence is provided. In the context of cla-
distic (parsimony) analyses, two basic types are most
common: resampling plans (bootstrap, jackknife), and
those based on the length difference of trees (Bremer
support).

Bootstrap and jackknife in parsimony analyses
Bootstrap and jackknife are computer intensive statistical
methods for error estimation [1,2]. With regard to their
applicability in phylogenetics [3,4], elaborate discussions
exist in the literature [5-9]. The fact that fundamental sta-
tistical assumptions may not be met in the phylogenetic
context (such as independent, identically distributed vari-
ables) could not prevent the bootstrap from becoming the
most popular method for reliability assessment, in partic-
ular since many researchers consider bootstrap and jack-
knife merely as indications of relative support, not in a
hypothesis-testing framework. Felsenstein [10] provides
an easy-to-read but detailed description of resampling
plans in phylogenetics and addresses solutions to circum-
vent some of these more fundamental problems.

Aside from that, the majority of applied phylogenetic
studies hitherto do not provide a justification for using a
certain number of replicates or a particular search strategy
during each bootstrap (or jackknife) replicate. Unfortu-
nately, often the parameter settings that are employed are
not those that appear recommendable in view of the exist-
ing theoretical and empirical work that provides a guide-
line for the number of replicates [e.g., [11]] or search
strategies [12-14] to be used. Phylogenetic trees are tools
for understanding biological processes and gain more and
more importance far outside the field of pure phylogenet-
ics. Ideally, biological conclusions based on a given node
in the tree should take into account the level of confidence
one can have in the existence of the node. Therefore, it
appears necessary to more efficiently spread the existing
knowledge on the performance and interpretability of the
bootstrap and jackknife under different circumstances,
but also to address those questions that still remain open.

The number of replicates
Hedges argued that at least 1825 replicates are needed if
one wants to attain ±1% accuracy for bootstrap propor-
tions of 95% or higher [11]. The underlying considera-
tions are based on the binomial distribution, which has
the favorable characteristic of a variance σ2 that equals
np(1-p). In the context of resampling plans, n is the
number of replicates and p is the bootstrap or jackknife

support value (bootstrap percentage or bootstrap p value)
expressed as a fraction of 1, i.e., the proportion of repli-
cates that yielded a tree containing a particular phyloge-
netic group. Therefore, the n needed to attain ±a accuracy
(as 95% confidence interval spanning ±1.96 σ) at a sup-
port level p can readily be calculated as

n = p (1-p)(1.95996.../ a)2.  (1)

Hedges (1992) based the determination of the confidence
interval upon an approximation of the binomial distribu-
tion by the normal distribution. However, when np ≤ 5
and n(1-p) ≤ 5 (roughly), much precision is gained when
standard errors are based on the binomial distribution.
This condition is easily fulfilled at high probabilities.
Here, the confidence intervals become asymmetric.

Let Y be the number of successes (replicates that yield a
given node) out of n trials (replicates), and p the success
probability of each trial. The lower endpoint of the (1 -
α)100%-confidence interval around the estimated p
(derived from observing m = pn successes) is given by the
pl such that

Similarly, the upper endpoint is defined by finding the pu
such that

Rather than odd numbers such as "1825", researchers cur-
rently use "500", "1000", etc. replicates, and the question
arises, what the confidence interval for a given p may be
when these number of replicates are used. This is easily
derived from Eq. (1) or (more precisely) from Eqs. (2)-
(3), and Fig. 1 graphs these intervals for support levels of
≥50 and common replicate numbers. With help of this
graph, the frequent issue whether two apparently different
support values really differ can relatively easily be
addressed visually. The decrease of BS/JS (bootstrap or
jackknife support) standard deviations with an increase of
the number of replicates (Fig. 1), which theoretically fol-
lows from the above equations, was confirmed in detailed
empirical studies on the topic using real datasets of Saxi-
fragaceae [12] and Orchidaceae [15].

Search extensiveness
From a theoretical point of view, the question of the opti-
mal number of bootstrap replicates is easier to solve than
that of the optimal heuristic search strategy to be applied
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during bootstrap replicates of cladistic analyses. Farris et
al. [4] initially argued that thorough swapping during rep-
licates is unnecessary. The whole point of using resam-
pling is "to avoid drawing poorly-supported conclusions"
[4: 117] and identifying those groups that are strongly
supported by the data. The most strongly supported
groups are certainly easily identified via bootstrapping or
jackknifing when no swapping is performed, but at the
expense of risking that some nodes are ignored that could
gain significant support (whatever one regards as signifi-
cant). 1 - s is conventionally interpreted as type I error (α)
in hypothesis tests where a group of taxa will be consid-
ered monophyletic if BS > s (H0: group is not mono-
phyletic, H1: group is monophyletic; α: probability of
rejecting H0 while it is true; [16]). Thus, BS/JS that is sys-
tematically too low at least does not entail an increased
danger of mistakenly inferring monophyly. It does, how-
ever, lead to rejecting monophyly incorrectly too often,
which is not desirable, either. Nonetheless, one of Farris &
al.'s main points was to contrast the speed of their jack-
knifing approach with the slower neighbor-joining boot-
strap and extensive heuristic parsimony searches to

identify MP trees (most parsimonious trees); branch
swapping during each replicate would have strongly low-
ered the performance contrast. Therefore, the first version
of Farris' jackknifing application, 'JAC', did not perform
branch swapping at all.

A number of studies provided practical evidence from real
datasets that the non-branch swapping approaches (as in
JAC or the "fast" option in PAUP*) yield significantly
lower support estimates than analyses performing some
kind of branch swapping [12-14,17,18]. Accordingly,
branch swapping was later added in the upgrade 'XAC'. In
line with Farris & al.'s basic assumptions, however, it was
concluded that swapping on more than 1 to 2 trees per
iteration does not change support significantly [15]. This
implied that the increased computational effort con-
nected with more extensive searches per replicate does not
necessarily translate into more accurate estimates. Note
that these examinations used the random addition search
strategy available in PAUP* [19], which is known to rela-
tively soon fail to find shortest trees as the number of ter-
minal sampled increases (Nixon, 1999). This is why

95% confidence intervals at jackknife and bootstrap frequencies between 50 and 100Figure 1
95% confidence intervals at jackknife and bootstrap frequencies between 50 and 100. 95% confidence intervals at 
jackknife and bootstrap frequencies between 50 and 100. For a detailed explanation see text.
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cladistic analyses of datasets approaching or exceeding
100 to 150 taxa (although strongly depending on the
dataset) usually make use of the parsimony ratchet [20] or
other fast cladistic algorithms, available through a
number of software tools [21-24].

These results raise the question in how far bootstrap per-
centages are affected by trees found in each bootstrap rep-
licate being far from most parsimonious. The above-cited
increase in search exhaustiveness, namely moving from
non-branch swapping via NNI and SPR to TBR, yielded a
considerable increase in support [12,18]. Swapping on
more trees (via RAS) apparently did not increase, but
sometimes even lessened the average support [15]. These
investigations, however, were conducted on datasets for
which it was quite likely that shortest trees could be
encountered without much search effort per iteration
because size and homoplasy still allowed that shortest
trees could be found with intermediate effort without
algorithms designed for particularly large datasets.

If the standard error of the BS/JS value itself is neglected
(e.g., assuming bootstrap/jackknife searches with an infi-
nite number of replicates and a confidence interval for
each BS/JS frequency approaching zero width), a dataset-
dependent graph can be imagined in which the bootstrap
is a function of the exhaustiveness of the search. If we fur-
ther ignore for a moment the effect of how many trees per
replicate are actually used in the majority rule consensus
[14], and whether tree weighting is employed for these,
this graph will asymptotically approach a "BS/JS level of
saturation" at which further increase in exhaustiveness
does not increase BS/JS. As a rough guideline we expect
that the more taxa, the later this level of saturation will be
reached. Certainly other factors such as homoplasy and
phylogenetic signal inherent to characters play a signifi-
cant role, but the mere fact that the number of possible
tree topologies soon reaches astronomical dimensions
[25] provides the most severe limitations to search algo-
rithms. Somehow a point has now to be chosen at which
one decides that the increase in support is not worth the
additional search effort. A statistic could be chosen that
describes the support level for each discrete level of
exhaustiveness and subjected to hierarchical significance
tests.

Without the unrealistic assumption of an infinitely nar-
row confidence interval around each support level, things
become more complicated. The size of the (let's say 95%)
confidence interval depends on the support level one
looks at, less dramatically so when the number of repli-
cates becomes very large (Fig. 1). Thus, to a considerable
extend, drawing conclusions on the relative merits of cer-
tain search strategies has to take into account the support
levels of interest. Commonly, these will fall in the interval

[80;100], but less likely only in the standard interval
[95;100] due to the frequently cited conservativeness of
the nonparametric bootstrap [14,16,26,27].

The relationship between the number of trees per replicate
fed into the consensus calculation and the BS/JS is still less
straightforward. The more conservative approach of using
strict consensus trees of each replicate for the final consen-
sus tree [e.g., [28]], referred to as "strict-consensus
approach" (SC) by Davis et al. [29], can be expected to
always result in equal or lower support than the standard
approach in PAUP*, for which the term "frequency-
within-replicates approach" (FWR) has been coined
[29,30]. The latter employs tree weights that maintain
information on nodes that other trees found in the same
replicate lack. This theoretical expectation was empirically
corroborated very recently using a 218-terminal dataset
[29]. The SC approach [28] may more closely reflect the
use of the bootstrap outside the field of phylogenetics, but
is only rarely pursued in published analyses [e.g., [31-
33]]. Restricting the discussion to the tree-weighting
approach in PAUP*, it is hard to predict whether addi-
tional trees saved per replicate will decrease resolution of
the final majority rule consensus, because these addi-
tional trees are usually also swapped upon and thus
enhance the probability of finding trees closer to the opti-
mal score of the current replicate. The latter effect is coun-
ter to the first, and which effect will be stronger depends
on a whole array of parameters, probably above all on the
sampling size and thoroughness of the search. Using a
173 taxa data set with 1180 parsimony informative char-
acters, Freudenstein et al. found that beyond 2 trees, sav-
ing more trees considerably decreases overall support, if
these trees are from the same RAS (random addition
search) iteration and not obtained via additional RAS rep-
lications [15: 151]. The authors, however, did not test the
effect of increasing search extensiveness beyond 2 RAS
replicates per jackknife replicate.

Jackknifing versus bootstrapping
Principally, all considerations below apply equally to the
bootstrap and jackknife. Farris et al. argue that, in order to
directly compare jackknife frequencies with bootstrap fre-
quencies, the probability that a character appears in the
resampled matrix has to be set to 1-1/e [4] (along with
other requirements). This was recently emphasized again
by Freudenstein et al. [15]. Felsenstein disagrees with that
view, demonstrating that at least sometimes a 50%-dele-
tion-jackknife more closely reflects bootstrap proportions
[10]. In any case, when comparing the behavior of boot-
strap and jackknife, differences in the support levels are
Page 4 of 10
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also a function of the probability that a character appears

in the resampled matrix and, thus, the amount of data
used for tree inference in the pseudoreplicates.

The Bremer support
The Bremer support [BrS, [34-36]], a synonym of "decay
index" [37], "length difference" [38], or "support index"
[SI, [39,40]], is a completely different measure of branch
support and has been addressed in detail recently [41,42].
For intermediate to large datasets, the calculation of BrS
can be problematic, because support values can turn out
to be severe overestimations of support [35] unless rela-
tively thorough search strategies are invoked to assess sup-
port of each branch. It has been demonstrated that using
the parsimony ratchet during Bremer support analysis is
highly advantageous in such cases [43]. However, the
data-dependent optimal compromise between ratchet
search time and improved support accuracy has not been
addressed so far and therefore will be briefly dealt with
below.

Results and discussion
Bootstrapping and jackknifing
Empirical studies on four different molecular datasets (see
Methods) of 86, 89, 385, and 567 taxa, respectively,
yielded the following results. Using 10 or 20 parsimony
ratchet cycles per jackknife replicate instead of one simple
addition search with one saved tree yielded no enhanced
support for the 86 and 89 taxa datasets (sign test: p <
0.05). This confirms conclusions from RAS searches on
data sets of similar dimension [100 taxa, ref. [13]] or twice
as big [173 taxa, ref. [15]]. For the considerably larger 385
and 567 taxa datasets, 10 ratchet cycles could not enhance
support significantly, either (sign test: p < 0.05). Moreo-
ver, the effect of saving more than one shortest tree per
jackknife iteration and using a strict consensus tree of
these for the final jackknife consensus tree became obvi-
ous. This is detailed in Table 1 for the 567 taxa tree: com-
puting a strict consensus of the n shortest trees found

during 10 ratchet iterations (0 <n < 11) provides less sup-
port than saving only one out of these shortest trees (p <<
0.05). The same effect was previously observed in a 173
taxa dataset [15] when 20 trees were saved (in one RAS
cycle per jackknife replicate, applying tree weights rather
than using consensus trees): support decreased compared
to the outcome of the same analysis saving only one tree
(32 clades received at least 4% lower support; the others
remained the same. This amounts to a highly significant
effect given the number of replicates used by the authors).
Consequently, for larger data matrices, reduced search
effort (but not as much reduced as using no or less effi-
cient branch swapping) yields rather slightly overesti-
mated support compared to the support found with
higher effort. While it has been shown that not applying
TBR can severely underestimate support [12,15], using
still more thorough search approaches (e.g., several RAS
or ratchet cycles, saving several trees) does not signifi-
cantly raise or even lowers support.

In all, extending the search extensiveness beyond the
rather moderate effort of TBR and saving one tree per rep-
licate does not translate into significantly increased sup-
port. Compared to Bremer support, theoretical
considerations show that there is a lower risk of signifi-
cantly overestimating support by using less thorough
searches (enhanced type I error of accepting a clade that in
fact is not there). The lack of inflated estimates caused by
less extensive searches was corroborated using real data-
sets [12] and simulation studies [13]. These studies, how-
ever, compared searches without branch swapping or less
effective swapping with searches that include TBR, while
not addressing the factor of the number of trees saved and
used in the bootstrap/jackknife consensus. The investiga-
tion of Freudenstein et al. [15] with 20 saved trees already
indicated that support might well drop with more con-
flicting topologies taken into account per jackknife repli-
cate. In their experiment, however, the option of saving

Table 1: Contrasting jackknife support at nodes of the 3-gene jackknife tree for three different search approaches. Contrasting 
jackknife support (from 500 replicates) at 429 resolved nodes of the 3-gene jackknife-50%-majority-rule-consensus tree (567 terminals) 
for three different search approaches per jackknife replicate. (1) one heuristic search saving one tree and using simple addition 
("simple"); (2) 10 parsimony ratchet iterations, starting from a tree found with simple addition, using the first shortest tree only found 
within the 10 iterations for consensus tree calculation ("10sv1"); (3) as before, using a strict consensus of all shortest trees found within 
the 10 ratchet iterations per jackknife replication ("10svAll").

Compared search 
strategy

Sign test, % first <
second

Sign test, p Wilcoxon test, T Wilcoxon test, p Higher support in...

Simple vs. 10sv1 54.9 0.173 10685.5 0.311 ---
Simple vs. 10svAll 42.3 0.038 7442.5 0.005 Simple
10sv1 vs. 10svAll 6.9 0.000 1107 0.000 10sv1
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(and swapping on) 20 trees also enhanced the likelihood
of finding still shorter trees per replicate. In the present
study, the pure effect of ignoring all but one of the topol-
ogies with the best score per jackknife replicate becomes
evident: support is significantly higher than in a jackknife
consensus tree based on all shortest trees found. Thus, for
very large trees, there appears to be a small risk of overes-
timating support. However, this risk probably cannot be
judged problematic, in particular not in view of the gen-
eral conservativeness of nonparametric jackknife and
bootstrap estimates in phylogenies [14,16,26,27], which
in general should more than counterbalance this slight
effect; at least it does so for the dataset analyzed here. As a
response to this general conservativeness, α-levels have
been raised far above the common 1% – 10% in empirical
phylogenetic studies, leading to the acceptance of the
presence of nodes with <<90% BS, or at least to referring
to such nodes as "highly supported" [e.g., [44]]. One
could easily recommend reducing this small risk of over-
estimating support by representing each bootstrap repli-
cate by a consensus tree derived from multiple searches,
but this probably suffers from a too high cost-benefit ratio
to be practical in most analyses: 10 ratchet iterations
require roughly a 20-fold search time compared to a sim-
ple search.

On the other hand, even for large trees, there appears to
be no severe risk to underestimate support, as long as one
simple-addition tree is swapped using TBR. In contrast,
using random addition or random trees as starting trees
during each replicate leads to highly significantly underes-
timated support (tested for the 385 taxa dataset; sign test:
p << 0.05).

Note that the above considerations aim at contrasting
search strategies and do not extend to fundamental statis-
tical bias existing in bootstrap and jackknife proportions
[5,6,45,46] that may deteriorate with increased taxon
sampling [14] but improves with increased character sam-
pling. For datasets with many taxa, computational limita-
tions of search strategies become confounded with this
bias. Therefore, Sanderson and Wojciechowski [14] could
not preclude that part of the decline in BS they observed
when increasing sampling size (≤140 taxa) was due to the
failure of the simple addition search (saving one tree) to
find shortest trees. In view of the results presented here,
this effect was probably negligible compared to the statis-
tical bias from random homoplasy distributed among
taxa [explanation 3 in 14]. To reduce this bias and achieve
more accurate confidence limits, much more computer-
intensive, iterated bootstrap methods have to be taken
[e.g., [5,45-47]], frequently thought to be too time-con-
suming to be practical for large amounts of data. Sander-
son and Wojciechowski argue that relying on search
algorithms with only little branch swapping may circum-

vent this computational limitation, allowing multiple
rounds of bootstrapping by saving time during each indi-
vidual bootstrap [14: 684]. The outcome, they say, may
still be somewhat too conservative because of the failure
of these algorithms to find MP trees, but would still be
more indicative of true support than conventional BS/JS.
In light of the performance of varyingly extensive search
strategies on datasets even larger than that in ref. [14], it
appears that iterated bootstrap methods are not as
impractical as previously thought and should more fre-
quently be considered.

Finally, as shown in Fig. 1, the higher the number of rep-
licates, the lower the error margin for the BS/JS support.
To evaluate differences in support for a particular clade,
confidence intervals have to be kept in mind to arrive at a
statement on the significance of differences. The number
of replicates needed to narrow down the confidence inter-
vals to a desired level is a function of the BS/JS. If, for
example, one restricts conclusions from a tree topology to
nodes >90 and is happy with knowing (at a 5% risk) that
a "91" cannot equally likely be a "89" (±1%), more repli-
cates than 3458 are not needed.

Bremer support
Fig. 2 shows how the Bremer support develops at the 25
randomly selected nodes with increasing search extensive-
ness. Values obtained by a simple search with TBR branch
swapping (saving 1 tree) are compared with those
obtained with 1 – 50 parsimony ratchet iterations. Vertical
lines mark the average number of iterations at which 90%
of the final support difference (observed after 50 itera-
tions) are exceeded first. In the smallest dataset (86 taxa)
this is the case at the 12th ratchet iteration. For the slightly
larger 89 taxa dataset, less iterations are needed until sup-
port values become comparably saturated. This dataset,
however, displays much less homoplasy than the first
and, thus, is easier searchable. Consequently, less effort is
needed here to arrive at a similar result. The 385 taxa data-
set is comparable to the 89 taxa set in terms of homoplasy
but is much larger. Unsurprisingly, the Bremer support
settles later here. The same reasoning applies to the larg-
est, 567 taxa dataset, for which the 90%-level is reached
only after 17 iterations. In view of the range of different
taxon and character sampling covered by these four anal-
yses, saturation appears to happen at quite similar times.
Obviously, the 90%-level is an arbitrary measure, and one
might want to extend analyses until an average 95% of the
final Bremer support differences are reached. This, how-
ever, would not change much the relative times at which
that is achieved. As a rule of thumb it appears that not
much is gained relative to the additional effort when
searches are extended beyond 20 iterations, at least not for
datasets that fall within the size range observable in cur-
rent publications. For datasets with a still smaller taxon
Page 6 of 10
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Differences in Bremer support for 25 randomly selected nodesFigure 2
Differences in Bremer support for 25 randomly selected nodes. Differences in Bremer support for 25 randomly 
selected nodes (x-axis), comparing values obtained by a simple search (saving 1 tree) with those obtained with subsequent par-
simony ratchet iterations (y-axis). Vertical lines mark the average number of iterations at which 90% of the final support differ-
ence (observed after 50 iterations) are exceeded first.
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sampling and still less homoplasy, for which using the
ratchet principally does not save time, a single simple
addition search (saving a limited number of trees) may
already yield Bremer support values close enough to the
"true" values (found, e.g, by branch-and-bound searches).
As soon as the size and structure of a dataset entails that
shortest trees are principally only encountered when at
least a random addition search is performed, using the
ratchet and the 90%-levels found here as a guideline
seems a reasonable strategy.

Conclusion
One consequence of the above findings is that calculating
bootstrap- or jackknife proportions with narrow confi-
dence intervals can be achieved with less expense than
often thought, even for very large datasets. In turn, this
means that iterated bootstrap methods that aim at reduc-
ing statistical bias inherent to bootstrap proportions are
more feasible, since the individual bootstrap searches may
be performed using less time-intensive heuristic searches
during each replicate.

As a further consequence of these reflections, finding
bootstrap or jackknife proportions with reasonable confi-
dence can be achieved with much less costs than trying to
find the correct Bremer support for large datasets. Boot-
strap or jackknife values saturate immediately after one
simple addition search, while finding satisfyingly accurate
Bremer support may require 20 or more iterations, much
depending on what one subjectively accepts as "satisfy-
ingly accurate" (90% of the maximum difference that
could be achieved with exhaustive searches ?). If we take
the 385 taxa dataset as an example, bootstrap support
with 1% accurateness at ≥95% could be gained by 1825
simple searches (with TBR), while Bremer support would
require N*(1+13*2) such searches, where N is the
number of nodes to test (typically far less than the theo-
retically possible number of internal nodes). If we approx-
imate that TBR swapping on one tree takes roughly
equally long irrespective of the particular resampled
matrix or the particular constraints in effect at a given
node, calculating Bremer support for the 339 nodes
resolved in the strict consensus [48] takes five times longer
than bootstrapping or jackknifing (6.5 times if 95% of the
final support difference are to be achieved, which on aver-
age happens at the 17th iteration for that dataset).

The relative speed of both methods strongly varies with
the accurateness aimed at, but even calculating 19592
jackknife iterations needed for 0.5% accurateness at nodes
with ≥85% (meaning that the size of the confidence inter-
val matches the precision at which BS/JS proportions usu-
ally are reported) is faster than obtaining Bremer support
with the precision outlined above, which may only be the
case beyond an equivalent of 339*(1+(50*2)) = 34239

such jackknife iterations. The relatively higher perform-
ance of jackknifing and bootstrapping further increases
with the taxon sampling size. Strictly speaking, a compar-
ison of the speed at which both support types are comput-
able makes not much sense, due to the fundamental
differences of both. On the other hand, along with consid-
erations on the interpretability of Bremer support com-
pared to the bootstrap and jackknife [41], such practical
considerations may assist in choosing which support type
to report when the time available for analyses is limited.

Methods
Four different datasets were chosen that differed not only
in the number of taxa sampled but also in the kind of
DNA sequence data used (e.g., absolute number of
informative characters, overall sequence divergence, over-
all support levels and levels of homoplasy). Two are com-
paratively large: a three-gene dataset [44], containing
DNA sequences of 18S rDNA, rbcL, and atpB (4592 char-
acters, 2153 parsimony informative) for 567 angiosperm
taxa, and a matK dataset [48] for 385 angiosperm taxa
(1749 chars, 1075 parsimony informative). Two are of
intermediate size: one, using the trnK intron [49], pro-
vides high overall support (89 taxa, 3538 characters, 1441
parsimony informative), the other [50] less so (trnL-F and
rps4, 86 taxa, 1204 characters, 286 parsimony
informative).

Bootstrap and jackknife
The fast search approach (no branch swapping) has been
frequently shown to yield considerably lower support val-
ues [12-15]. The same applies to less thorough branch
swapping algorithms such as NNI (as opposed to TBR;
[12,15]. Also, RAS has no beneficial effects on BS/JS as
compared to the simple addition sequence – a conclusion
based on a 173 taxa set [15]. For still larger datasets, RAS
has been frequently shown to be inferior to other strate-
gies such as the parsimony ratchet. In consequence, an
extensive testing of the effect of RAS on the datasets ana-
lyzed here appeared not warranted. Therefore, the effect of
using a limited number of ratchet iterations per jackknife
resampling replicate was assessed with help of the
author's short C++ program PRAT [24] in conjunction
with PAUP* [19].

Since too few replications would hamper contrasting the
strategies due to rather wide confidence intervals around
the JS values, and since a series of repeated ratchet analy-
ses soon becomes quite time consuming, 500 replicates
served as a compromise between variance and computa-
tion times. Since the sign test used (see below) ignores the
magnitude of differences and since stochastic deviations
from the expected BS/JS equally likely are positive or neg-
ative, the accurateness achieved with 500 replications
should be sufficient in view of the high number of nodes
Page 8 of 10
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contrasted. Note, however, that knowing the BS or JS of a
particular clade with relatively high confidence would
require more iterations for values ≥90% (Fig. 1). For the
two largest datasets, the ratchet found much shorter trees
within the first 10–20 ratchet iterations than simple
searches or RAS in PAUP* (in line with common
observations; see also Table 1 in [43]). Thus, in terms of
the proximity to the putatively minimal tree score, the
contrast between TBR on one shortest tree and 20 ratchet
iterations is higher than that between 20 ratchet iterations
and any number of additional iterations. Therefore, it was
first tested whether searches of 10 and 20 ratchet itera-
tions per BS/JS replicate make a difference prior to using
more iterations.

To compare jackknife values on two trees, the JS values of
all nodes resolved in one tree were compared to the corre-
sponding JS values of the other tree using (a) a sign test
and (b) a Wilcoxon test. The first excludes the magnitude
of the difference between a pair and only takes pairs with
differing values into consideration. The second was used
to crosscheck the outcome of the sign test by incorporat-
ing information on the magnitude of divergent pairs and
retaining information on how many pairs actually consist
of equal values. Both tests fully agreed on rejecting or
accepting an overall equality of JS (see Table 1).

Bremer support
For each of the four datasets, 25 nodes of the strict consen-
sus tree were randomly chosen (using JAVA's Random
class) and subjected to a simple heuristic search in
PAUP*, saving only one tree, followed by a parsimony
ratchet analysis of 50 iterations (25% characters with dou-
ble weight, saving one tree). Thus, unlike in the jackknife
analyses, not all resolved nodes were monitored due to
the considerable search time needed per node. All analy-
ses were performed with PRAP [43] in combination with
PAUP*. Monitoring and evaluating the change of support
over time was achieved with additional small JAVA classes
written for this study.
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