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Introduction
The perturbation of genetic regulatory networks (GRNs) is 
usually tied to oncogenesis because multiple genetic mutations 
and pathway breaches are commonly implicated in the growth 
and development of cancer. Therefore, an important step 
toward an effective cancer therapy is to understand the effects 
of drugs on GRNs. Many cancer treatments employ combina-
tion therapies in which 2 or more drugs are administered in 
targeting the cancer cells and those drugs function in a syner-
gistic manner to disrupt specific phases of the cell reproduction 
cycles.1 Such combinatorial targeted therapies have been 
touted as the standard of care in preventing genetic mutation 
and drug-related resistance.

Toxicity is a major concern when drug combinations are 
taken simultaneously at the maximum tolerated dosage 
(MTD)2 even though combination therapies typically take 
into account the toxicity of drug combinations and how effec-
tive they are against the cancer cells.1 Toxicity is generally a 
function of the reduction in the immune system performance 
of the patient, bodyweight loss, pain, and other side effects 
experienced by the patients. Such adverse events may range 
from grade 0 to grade 5 (grades 0, 1, 2, 3, 4, and 5 imply  
the absence of adverse events, presence of mild, moderate, 
severe, life-threatening, and death-related adverse events, 
respectively). The vital question is, “Could the patient take  
the drugs in a sequential manner, rather than simultaneously, 
such that the undesired biological signals are blocked and yet 

the toxicity is low?” In this study, we try to answer this question 
from a mathematical modeling perspective using switched  
systems control theory.

As a result of the increased toxicity associated with combi-
nation therapy, clinical trials and studies focusing on sequential 
drug intake have been conducted (or ongoing) by different 
research groups and one of the observations from those trials is 
that toxicity at MTD is lower in sequential drug intake as com-
pared with concomitant or simultaneous administration of 
anticancer agents.3–8 Thus, sequential regimen potentially low-
ers toxicity and provides a way to optimally deliver single-drug 
treatment and may improve patient’s quality of life.9 A review 
of trials which compares combination treatment with sequen-
tial regimens is provided by Miles et  al,9 and an additional 
review of clinical trials and preclinical evidence in support of 
each strategy is given by Felici et al.10

To reduce toxicity, delay resistance to the drug combina-
tions,11,12 and double the progression free survival of the 
agents,13,14 the authors from the research groups11,13–16 con-
ducted clinical trials on administering the drug treatments 
sequentially or on alternating days. For instance, metastatic 
renal cell carcinoma (mRCC) treatment is focusing on agents 
that block tumors and vascular growth pathways.13 Sunitinib is 
directed at blocking the vascular endothelial growth factor 
receptors, whereas temsirolimus inhibits the mammalian target 
of rapamycin (mTOR). Sunitinib and temsirolimus are agents 
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approved by the Food and Drug Administration (FDA) for 
mRCC treatment. Toxicity increases whenever such agents are 
taken together. The hope is that such agents can be safely 
administered sequentially at full dosages.13

Similar studies1,8,17 are experimental works in which the 
drug combinations were alternated, administered sequentially, 
or given simultaneously (at intervals) to ensure tolerable toxic-
ity levels. In this study, we examined a mathematical frame-
work for sequential drug treatment with anticancer agents and 
provide analytical insights into how effective such sequential 
treatment regimens are with a focus on GRN with switched 
(sequential) drug inputs. Specifically, we study how genetic 
regulatory systems respond to sequential (switched) drug 
inputs by treating the problem as a switched system with stable 
or weakly stable subsystems which can be addressed using the 
time-dependent switching mechanism. The design of the 
switching function guarantees the stability of the genetic regu-
latory system and the repression of the diseased genes with 
sequential (switched) drug inputs. For the proposed time-based 
switching approach, we provide simulation studies with proof-
of-concept GRNs having switched drugs perturbations and a 
practical case of the proliferation and survival pathways with 
sequential drug inputs to show the effectiveness of the approach.

The model and problem formulation are discussed in detail 
in section “Problem Formulation.” Section “Switching Design 
and Stability Analysis for Genetic Regulatory Systems With 
Sequential (Switched) Drug Input” presents the time-based 
switching strategy and the stability analysis for GRNs. 
Simulation results are provided in section “Simulation Results.” 
Section “Discussions” provides further discussions and section 
“Conclusions” concludes the article.

Problem Formulation
Genetic regulatory networks can be modeled with rate equa-
tions that express the differences between production and deg-
radation rates.18–20 The corresponding ordinary differential 
equation (ODE) model is defined as follows:

x g x xi i i i= −( ) γ 	 (1)

where xi⩾0 represents the expression level of the ith  gene. 
gi ( )  is a nonlinear function denoting the rate of synthesis. γ i ix  

corresponds to the degradation rate. For diseased genes not 
repressed, γ i  is reduced to γ γid i

, which implies a weak or 
almost negligible negative feedback. When the gene loses self-
regulation, this corresponds to the absence of negative feedback 
and the system will be unstable and the diseased gene expres-
sion level will grow very high. Whenever drugs are used as the 
control input for repressing the expression level of the target 
gene, say xi , it is assumed that the drug supplies the negative 
feedback term −γ u

ix  where γ u  is the drug effect factor.
Because multiple mutated genes are involved in the growth 

and development of cancer, multiple drugs are normally used 
simultaneously to attack the cancer cells, but the increased 

toxicity becomes a challenge. We therefore propose a switched 
systems mathematical model for taking the multiple drugs 
sequentially or alternately to inhibit those diseased genes while 
reducing toxicity, as corroborated by the clinical trials and previ-
ous studies.3–8 To illustrate the proposed sequential drug intake 
paradigm, consider a GRN with 2 diseased genes ( , )x xi j :
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The ODEs for the normal genes are omitted above. We 
assumed that the drug effects of the 2 drugs will not overlap, ie, 
the effect of drug 1 decays considerably when drug 2 is taken. 
This ensures that the toxicity of the 2 drugs will not add 
together such that the patient can tolerate. It should be noted 
that the systems become a switched system.

In various ODE models for biological pathways, simple lin-
ear approximations of gi  and g j  are used. Then, the state-
space model for the pathways including the treated genes, 
equations (2) and (3), can be expressed as follows:

x A B xi i= +( )ησ 	 (4)

where Ai  and Bi  are matrices of appropriate dimensions cor-
responding to the case that only the drug for xi  is taken. It is 
assumed that the matrix A Bi i+ ησ  is invertible. ησ  is the drug 
effect factor related to the pharmacology model of the drug. σ  
denotes the switching logic. The switching rule between sub-
systems depends on drug administration.

As a simple conceptual introduction to the sequential drug 
intake strategy, consider a gene regulatory network, as shown in 
Figure 1, with a focus on gene 1 and gene 2 only. For simplicity 
and mathematical tractability, we examine ODE model with 
no cross talk among the genes as follows ( , )i =1 2 :
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where xi  is the diseased gene, βi  is the constant synthesis rate 
of the genes, αi  is the gene degradation rates, and γ i

u  is the drug 
effect factor for drug i . In the matrices Ai, Bi, and ησ , we have

x A B x Ci i i= + +( )ησ 	 (6)
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For 2 diseased genes ( , )x x1 2  with α γi i
u

 , the state-space 
trajectory is shown in Figure 2. The plot shows the different drug 
administration methods. For instance, with no drug intake, the 
expression levels of the diseased genes are too high signifying 
overexpression of the diseased genes. With only 1 drug intake, the 
other gene is overexpressed and its expression level is therefore 
too high. The sequential drug intake involves switching between 
the 2 drugs at intervals determined by the proposed time-driven 
drug switching logic. The state-space trajectory depicts that both 
the simultaneous drug intake and sequential drug intake signifi-
cantly reduced the expression levels of the diseased genes. 
Although they are both effective against the diseased genes, tox-
icity is a concern with the simultaneous drug intake.3–8 Therefore, 
this study is focused on time-based switching control and stabil-
ity analysis for the sequential drug intake approach due to the 
reduced toxicity associated with such drug intake methods.

Switching Design and Stability Analysis for Genetic 
Regulatory Systems With Sequential (Switched) 
Drug Input
This section aims to design the switching of the drug inputs so 
that the diseased genes are repressed. We refer to this as global 
asymptotic stability. Switched systems are made up of differ-
ence or differential equations with an associated rule that 
defines the switching strategy between them.21–24 Switched 
systems stability has been researched extensively, for instance, 
with stable subsystems,25–28 unstable subsystems,29–31 and a 
mixture of both.26,29,32 The switching strategy used in this 
study is referred to as the time-based switching approach in 
which all the subsystems or modes are stable or weakly stable 
based on the pathway models.33

Comment 1.  Stability of the subsystems in the case of gene 
regulatory networks without (or with) drug input is based on 

the assumption that, for each subsystem, the genes may be 
overexpressed but the gene expression levels do not grow out of 
bounds as time t →∞ .

Time-based switching for GRNs with stable 
subsystems

For GRNs with sequential (switched) drug inputs in which all 
the subsystems are asymptotically stable, we modify the approach 
in the study by Geromel et al25 to analyze the switching design 
and stability of such GRNs. Geromel et al25 studied the stability 
of continuous time switched systems whose subsystems are sta-
ble by determining the minimum dwell time (DT) required for 
stability through a class of quadratic Lyapunov functions. In this 
case, the Lyapunov functions are not required to uniformly 
decrease at every instant of switching as a condition of stability. 
We denote piecewise Lyapunov functions as V xσ ( ) . At each 
instant of switching, to bound the Lyapunov function increment, 
it is required that V x V xi j( ) ( )⩽µ  where µ >1  and i j,  are 
subsystem’s indices before and after switching.

For switched systems with stable subsystems, DT con-
straints are based on the concept that at the switching instants, 
the likely increment of the Lyapunov function is compensated 
for by the decrease in the Lyapunov function within the DT. 
There is also the relaxed condition on the Lyapunov function 
that at each switching instant tk , the sequence V x tk( ( ))  for 
k = ∞0, ,

, uniformly converges to 0.

Comment 2.  The Lyapunov functions are employed in deriving 
the conditions that ensure a particular drug administration 
interval or the drug DT is effective in driving the overall sys-
tem to the desired state, ie, driving the gene expression levels to 
the desired equilibrium point.

Figure 1.  A gene regulatory network. The focus is on gene 1 and gene 2 

with the effects of drugs 1 and 2 and neglecting the details in the dotted 

box for mathematical tractability. Figure 2.  State-space trajectory for the 2 diseased genes ( , )x x1 2  with 

different drug intake methods where the drug effect factors are γ1
u  and 

γ 2
u  for drugs 1 and 2, respectively.
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Consider the switched closed-loop genetic regulatory system,

x t A B x t C w tt t( ) ( ) ( ) ( )( ) ( )= + +ησ σ 	 (7)

The state is denoted by x n∈R  and w t( )  denotes outward 
disturbances. σ ( )t  denotes the time-dependent switching 
logic that is based on whether the drug of interest is present or 
not and therefore chooses the appropriate subsystem’s sequences 
from the available N p  expressed as { , , }, [ , ]A B C i Ni i i p∈ I 1 . 
We assume stable subsystems.

The following standard notations are used in this article: 
Set of real m n×  matrices is Rm n× , Sn n×  denotes real, sym-
metric n n×  matrix, and Sn n

+
×  stands for positive definite 

matrices. I  represents identity matrices of appropriate 
dimensions. The transpose of a matrix or vector is denoted  
as (’). For integers k k1 2, , with k k1 2< , we define 
I[ , ] , , ,k k k k k1 2 1 1 21= +{ } .

Stability analysis for time-based switching

The multiple quadratic Lyapunov functions are as follows:

V x x P x i I NT
iq q p( ) : , [ , ]= ∈ 1 	 (8)

where Piq > 0  and iq  is the active subsystem’s index. Each sub-
system is associated with its own Lyapunov function.

Definition 1.  The switching logic σ  is defined to have a DT 
τD  if t t kk k D+ − ∀1 τ ,⩾  where t tk k, +1  represent the succes-
sive switching instances.

Comment 3.  The DT corresponds to the least time interval 
between 2 consecutive drug intakes which ensure that the gene 
expression levels eventually decay to the desired equilibrium 
point with the sequential drug administration.

The goal of the proposed drug switching strategy is to 
determine the minimum DT T * > 0  that guarantees the 
asymptotic stability of the equilibrium point of the gene regu-
latory system in equation (7). In other words, asymptotic sta-
bility is guaranteed if σ ( )t  is not changed for periods of time 
t T *⩾ . The following proposition is modified from Geromel 
et al25 which provided the theorem that characterized an upper 
bound for T *  as a possible solution to the problem.

Proposition 1.  Assuming that for certain T > 0, there exists 
positive definite matrices P S i Ni

n n
p∈ ∈+

× , [1I , ]  such that25

( ) ( ) , ,A B P P A B i Ni i i i i i p+ ′ + + < ∀ =η ησ σ 0  1 	 (9)

e P e P i j NAi Bi T
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Ai Bi T
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− < ∀ ≠ =

ησ ησ 0  1 	 (10)

Then, according to the DT switching approach σ ( )t  with 
t tk k+ −1 ⩾T, the switched system (equation (7)) is globally 
asymptotically stable.

The proof is given in Appendix 1. An upper bound for the 
minimum DT T *  is obtained from the optimal solution of the 
optimization problem25:
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(11)

Comment 4.  Equations (9) to (11) describe the conditions on 
the model parameters of the gene regulatory system and the 
least drug intake interval (or DT) that ensure the genes are not 
overexpressed as time t →∞ . This translates to the conditions 
under which the gene expression levels are regulated with a 
given sequential drug intake schedule.

Comment 5.  An assumption behind the presented rationale of 
the mathematical framework is that a time factor (sequentially 
or alternating strategy) is crucial to allow the body to react 
properly to toxicity. This makes sense; a patient usually needs a 
few days to recover from cancer drugs. But the effects are often 
cumulative (for brain, heart, liver, kidney, skin, etc) depending 
on the drugs.

Simulation Results
We first examine simulations of simple GRNs with and with-
out cross talk among the genes and with sequential drug per-
turbations using MATLAB/Simulink and the results obtained 
in section “Switching Design and Stability Analysis for Genetic 
Regulatory Systems With Sequential (Switched) Drug Input.” 
We then simulate the proliferation and survival pathways with 
sequential drug inputs using a sequential intake of lapatinib 
and temsirolimus which are FDA-approved drugs.

Case of 2 diseased genes ( x )x1 2,  with sequential 
drug intake and absence of cross talk between the 
genes

We revisit the simple model in equation (5) with i =1 2, . We 
consider 2 diseased genes ( , )x x1 2  with no cross talk between 
the genes for mathematical tractability. The following param-
eter values are used: β β1 2 0 2= = . , α1 0 2= . , α2 0 15= . , 
γ1 1u = , and γ 2 2u = . Using the multiple quadratic Lyapunov 
functions v x x P xT( ) , ,= =σ σ 1 2  and the analysis condition 
proposed in section “Time-based switching for GRNs with 
stable subsystems,” we have

P P1 2
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Figure 3(A) to (D) depicts the switching of the drug input, 
dynamics of x1  and x2  with sequential drug intake, simultane-
ous drug intake, and no drug intake, respectively. Figure 3(E)  
is the state-space trajectory for x1  and x2  with different 
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schedules of the 2 drugs including monotherapeutic cases 
where only 1 drug is administered. Figure 3(E) also shows the 
switching points (A, B, and C) of the drugs and the effects on 
the dynamics of x1  and x2  as we switch from one drug to the 
other in a sequential manner. It is observed that with no drug 
intake (Figure 3(D)), the diseased genes are overexpressed as 
indicated by the high expression levels compared with the 
other cases. With the sequential drug intake, Figure 3(B) 
depicts that the genetic regulatory system will be stabilized as 
the expression levels of the 2 diseased genes decay to the same 
equilibrium point as that of the simultaneous drug intake.

Case of 2 diseased genes ( , )x x1 2  with sequential 
drug intake and with cross talk among the genes

With cross talk between the diseased genes, we consider a sim-
ple switched GRN where subsystem 1 (only drug 1 is taken) is 
defined as follows:





x x x x
x x x

u
1 1 1 2 1 1 1 1

2 2 2 1 2 2

= + − −
= + −
β ψ γ γ
β ψ γ

	 (12)

Similarly, when drug 2 is taken, subsystem 2 is defined as 
follows:





x x x
x x x xu
1 1 1 2 1 1

2 2 2 1 2 2 2 2

= + −

= + − −

β ψ γ

β ψ γ γ
	 (13)

where β1  and β2  denote the synthesis terms, γ1  and γ 2  rep-
resent the degradation terms, and γ i

u  denotes the drug effect 
term. ψ1 0>  and ψ2 0>  are parameters of the positive feed-
back between the genes.

In state-space model form, we have

�� �
X A B X Ci i i= + +( )ησ 	 (14)

Figure 3.  (A) The switching signal according to the analysis in section “Time-based switching for GRNs with stable subsystems.” (B) State dynamics of 

x1  and x2  with sequential drug intake according to the analysis in section “Time-based switching for GRNs with stable subsystems.” (C) State dynamics 

of x1  and x2  with simultaneous drug intake. (D) State dynamics of x1  and x2  with no drug intake. (E) State-space trajectory of the gene expression 

levels x1  versus x2  with different drug administrations. GRNs indicate genetic regulatory networks.
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It can be observed that the subsystems have stable eigenval-
ues and are thus stable. We adopt the multiple quadratic 
Lyapunov functions v x x P xT( ) , ,= =σ σ 1 2 , and employing 
the analysis condition proposed in section “Time-based switch-
ing for GRNs with stable subsystems,” we have
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From Figures 4 and 5, it is observed that with no drug 
intake, as shown in Figure 4(D), the diseased genes are 

overexpressed. With the sequential drug intake, Figure 4(A) 
and (B) depicts that the genetic regulatory system will be sta-
bilized as the expression levels of the 2 diseased genes decay to 
the same equilibrium point as in the case of taking both drugs 
simultaneously. These observations are similar to the case when 
there is not any cross talk among the genes. However, unlike in 
Figure 3, it is also observed in Figure 4 that the value of this 
equilibrium point does not correspond to the ones that only 1 

Figure 5.  State-space trajectory of the gene expression levels x1  versus 

x2  with different drug administration schedules.

Figure 4.  (A) The switching signal according to the analysis in section “Time-based switching for GRNs with stable subsystems.” (B) State dynamics of 

x1  and x2  with sequential drug intake according to the analysis in section “Time-based switching for GRNs with stable subsystems.” (C) State dynamics 

of x1  and x2  with simultaneous drug intake. (D) State dynamics of x1  and x2  with no drug intake. (E) State dynamics of x1  and x2  with intake of drug 1 

only. (F) State dynamics of x1  and x2  with intake of drug 2 only. The parameter values are ψ1 0 4= . , ψ 2 0 4= . , γ1 0 4= . , γ 2 1= , γ 2 0 8u = . , and 

β β1 2 0 2= = . . GRNs indicate genetic regulatory networks.
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drug is taken. This is due to the positive feedback, and thus, the 
equilibrium points are different. In addition, unlike in Figure 3, 
due to the positive feedback, the switching is damped and is 
not very easy to observe in Figure 4.

Case of the proliferation and survival pathway 
with sequential drug intake

The PI3K/AKT/mTOR pathway is a prototypical survival 
pathway which is essentially activated in several cancer types. 
The pathway is activated by various mechanisms some of 
which include mutating or amplifying the PI3K, losing the 
tumor suppressor (phosphatase and tensin homolog) functions, 
activating the growth factor receptors, amplifying or mutating 
AKT, exposures to carcinogens, and so on. After activation, 
signaling via AKT may propagate to different arrays of sub-
strates, which includes mTOR, a vital regulator of protein 
translations. This pathway serves as an appealing drug target 
for cancer therapeutics as it functions as point of convergence 
for several growth stimuli. It is also responsible for regulating 
cellular processes contributing to cancer initiation and mainte-
nance through its downstream substrates. In addition, activat-
ing the AKT/mTOR pathway aids resistances to several cancer 
treatment types, and it constitutes one of the poor prognostic 
factors for various cancer types.35

However, the RAS/RAF/MEK/ERK pathway is commonly 
associated with cell proliferations, prevention of apoptosis, and 
drug resistances. This pathway is employed by mitogens and 
growth factors in transmitting signals from the receptors for 
the regulation of gene expressions and prevention of pro-
grammed cell death or apoptosis. Some of this pathway com-
ponents (eg, B-RAF, RAS) undergo mutation or overexpression 
in human cancer (eg, prostate and breast cancers).36

The aforementioned pathways are referred to as the  
proliferation and the survival pathways,33,34,37 which biologists 
presently understand, for instance, the Kegg collections of 
pathways (http://www.genome.jp/kegg/pathway.html) as well 
as National Institutes of Health BioCarta pathways collections 
(http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways), are 
depicted in Figure 6 and Table 1. Table 1 shows the pathway 
dynamics for the proteins and complexes together with input 
from drugs lapatinib and temsirolimus.33

In this simulation, the drug Lapatinib is used to inhibit 
RAF/RAS pathway, and temsirolimus blocks mTOR. The 2 
drugs were applied sequentially based on the switching logic 
derived analytically in section “Time-based switching for 
GRNs with stable subsystems.” Each drug was switched for 
roughly 50% of the simulation time duration. It can be observed 
from Figure 7(C) that the expression levels of the proteins and 
complexes given in Table 1 are stabilized and this translates to 
the regulation of the proliferation and survival pathway com-
ponents and thereby regulating cell survival and proliferations. 
All the results here are in agreement with the analysis pre-
sented in “Time-based switching for GRNs with stable 

subsystems.” We simulated the pathway dynamics in Table 1 
without drug intake and with both drugs taken simultaneously. 
Figure 7(A) corresponds to the case with no drug intake, and 
Figure 7(B) corresponds to the case with both drugs applied 
simultaneously. The expression levels of the genes in the drug 
intake case are significantly lower than the expression levels in 
the no drug case for both the sequential and simultaneous drug 
intake methods (see Figure 7(A) to (D)). For instance, the 
steady-state ratio of the expression levels of mTOR and FOS 
in the drug input case to the no drug case is approximately 40% 
(see Figure 8). This suggests that the drugs are effective when 
taken simultaneously or sequentially based on the reduction in 
the expression levels of the proteins and complexes. However, 
toxicity becomes a concern in the simultaneous intake case as 
already investigated in the previous studies.3–8 This suggests 
that the proposed sequential or switched drug inputs approach 
is a promising solution.

Discussions
The dynamics of cancer cells can be described using continu-
ous, discrete, or hybrid mathematical modeling framework. 
Continuous models are the seemingly appropriate candidates 
for modeling large-scale systems. They are able to capture 
large-scale behaviors of cancer growth and development at a 
reduced computational cost with the disadvantage of sacrific-
ing the resolution of individual cells, especially when the cell 
properties vary over small spatiotemporal scales. Discrete mod-
els provide spatiotemporal representations of individual cells as 
well as cell-to-cell interactions. A main disadvantage of this 
modeling method is that the required computational cost is 
proportional to the number of cells being modeled. This limi-
tation confines such modeling method to very small number of 
cells. Hybrid models combine the strengths of both continuous 
and discrete modeling approaches. They can also model ran-
domness that may be inherent to the system being modeled. 

Figure 6.  The proliferation and survival pathways with several drug 

inputs. Reproduced with permission from Li et al33 and Hua et al.34

http://www.genome.jp/kegg/pathway.html
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways


8	 Cancer Informatics ﻿

They are appealing for modeling GRNs under drug perturba-
tion because biological systems are naturally nonlinear, have 
highly varied regulatory requirement, and possess a wide range 
of control strategies for meeting their needs. In the case of 
pathway dynamics, we employed the well-recognized ODE 
models which are widely used to model GRNs and pathways. 
An advantage of ODE models is that the mathematical analy-
sis of the system structure is considerably simpler compared 
with other model types, and the solutions of ODE models are 
easier to simulate computationally with high efficiency. This 

means that such model structures can be made exceedingly 
complex before they become computationally infeasible.

Combination therapy is believed to be the standard of care 
in the prevention of gene mutations and drug resistance. 
Multiple drugs are used to attack cancer cells and these drugs 
synergistically disrupt distinct phases in the reproduction 
cycles of the cells.1 The benefits of this type of cancer therapy 
includes the improvement in patients’ compliance as a result of 
the reduction in number of administration, drug dosage decre-
ment with associated reduction in toxic effects to healthy 

Table 1.  Notations and pathway dynamics (η1, η2, and η3  are the coefficients due to drug lapatinib acting on different proteins or complexes, and 
η6  is the coefficient due to drug temsirolimus acting on mammalian target of rapamycin33,37).

Variable Protein or complex Pathway dynamics

y(1) EGFR2 dy
dt

EGFR EGFR y S y
( )

[ ][ ] ( ) ( )
1

1 71 1 1 12= − −β α η α

y(2) EGFR + ERBB2 dy
dt

EGFR ERBB y S y
( )

[ ][ ] ( ) ( )
2

2 2 72 2 2 10= − −β α η α

y(3) ERBB2 + ERBB3 dy
dt

ERBB ERBB y S y
( )

[ ][ ] ( ) ( )
3

2 3 3 73 13 3 11= − −β α η α

y(4) RAS dy
dt

y S y S y y
( )

( ) ( ) ( ) ( )
4

1 2 4 41 1 2 2 3 4= + − −α η α η α α

y(5) RAF dy
dt

y y y
( )

( ) ( ) ( )
5

4 10 53 5 6= − −α α α

y(6) MEK dy
dt

y y
( )

( ) ( )
6

5 66 7= −α α

y(7) ERK dy
dt

y y y y y y
( )

( ) ( ) ( ) ( ) ( ) ( )
7

6 7 7 7 7 77 8 9 10 11 12= − − − − −α α α α α α

y(8) PI3K dy
dt

y S y y
( )

( ) ( ) ( )
8

3 8 413 3 14 4= − +α η α α

y(9) PDPK1 dy
dt

y y
( )

( ) ( )
9

8 914 15= −α α

y(10) AKT dy
dt

y y y
( )

( ) ( ) ( )
10

9 10 1015 5 16= − −α α α

y(11) mTOR dy
dt

y y S
( )

( ) ( )
11

10 1116 17 6= −α α η

y(12) RP6SKB1 dy
dt

y y y
( )

( ) ( ) ( )
12

11 7 1217 9 18= + −α α α

y(13) FOS dy
dt

y y y
( )

( ) ( ) ( )
13

7 12 138 18 19= + −α α α

ηiS Drug coeff.
η

ηi
i

S
Drug is not present

Drug is present
i=






=

1
12 3, ,
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tissue, synergistic or additive effects of drug interactions, and 
delaying or overcoming multidrug resistances. These benefits 
are the motivations behind several combination therapy 
researches.1,17 They also motivated us to study combination 

therapy for GRNs from a sequential drug intake perspective. 
Because the perturbation of genes is usually responsible for 
oncogenesis, the theoretical analysis provided in this study pre-
sents a mathematical tool with a promising application to 
sequential cancer therapy which has been investigated as a way 
to reduce toxicity and improve the quality of life of the patient.

There are a number of challenges associated with the mode-
ling framework proposed in this study. One is the assumption 
that the drug effects do not overlap which may not be the case in 
reality.1,17 Knowledge of the biological half-life of the drugs 
could help in scheduling the sequential drug administration such 
that the effect of one drug would have decayed significantly 
before the second drug is taken. Another way is to follow the 
methodology adopted in the study by Lewis13 where one of the 
drugs is taken for a certain period of time (eg, 4 weeks) followed 
by a long period of rest (2 weeks) and then the second drug is 
taken similarly to ensure that the drug effects do not overlap.

The state-space model adopted so far assumes that the reg-
ulatory systems are time-invariant. In reality, biological regula-
tory networks involve several different but interconnected 
phenomena, which are dynamic, nonlinear, stochastic, and may 

Figure 7.  Proliferation and survival pathway simulations. (A) Pathway state dynamics according to Table 1 without drug intake. (B) Pathway state 

dynamics according to Table 1 with simultaneous drug intake. (C) Pathway dynamics with sequential drug intake based on analysis in section “Time-

based switching for GRNs with stable subsystems,” (D) The Switching signal based on analysis in section “Time-based switching for GRNs with stable 

subsystems.” Parameter values are α α α α α1 2 13 16 19 1= = = = = =
, α α14 15 0 6= = . , and α α17 18 0 8= = . . GRNs indicate genetic regulatory networks.

Figure 8.  The expression levels of mTOR and FOS with no drug and with 

sequential drug input.
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occur at different temporal and spatial scales.37 A way to partly 
tackle this challenge is by extending the current time-driven 
switching strategy to incorporate stochasticity in the analysis 
presented in section “Time-based switching for GRNs with 
stable subsystems.” The construction of a multiscale computa-
tional predictive model which is based on biological evidence 
and parameterized by biomedical data will undoubtedly be very 
useful. Advanced experimental technology and computational 
method should be mutually applied in a synergistic manner in 
addressing some of these challenges.

Conclusions
In this work, we have revisited combination therapy for cancer 
when toxicity is a concern. Instead of a patient taking all the 
drugs at the same time, the potential effects of sequential 
(switched) administration of drugs are examined. We believe 
that this is the f irst attempt to mathematically model and analyze 
such an approach to combination therapy for cancer. Specifically, 
the goal is to stabilize a GRN such that the oncogenes are 
repressed with sequential (switched) drug inputs. The analysis 
and design are based on multiple Lyapunov functions and lin-
ear matrix inequality. For linear approximations of the GRN, 
closed-form solution of the switching logic and thus the 
sequential (switched) administration of drugs are obtained. 
Simulation studies of proof-of-concept GRNs with switched/
sequential drugs’ perturbations, and the proliferation and sur-
vival pathway with sequential drug inputs are provided to dem-
onstrate the effectiveness of the method.

Experimental data have suggested that MTDs for combina-
tion therapy drugs are different from those of monotherapy in 
which the drugs are given sequentially or individually3–5,8 and 
toxicity of drug combinations are higher than single-drug 
treatments. The model presented in this work is based on some 
previous studies.3–8 It is shown that the sequential treatment 
schedule has lower drug-related toxicity when compared with 
the drugs taken simultaneously.13 Future studies will explore an 
extension of the current time-based switching approach to the 
stability analysis of tumor ODE models with sequential drug 
intake as well as the stability analysis for nonlinear gene regula-
tory systems. Such endeavor will be close to what obtains in 
wet lab experiments on tumor modeling with drug intake and 
it will also involve collaborations with experimental and clini-
cal professionals.
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Appendix 1
Proof of proposition
Proof.  The proof of the proposition is based on stability anal-
ysis of switched systems using multiple Lyapunov functions. 
The goal is to obtain the minimum dwell time T * > 0  
between drug intakes that guarantee the global asymptotic 
stability of the equilibrium point of equation (7) based on the 
time-dependent switching logic:

σ = ∈ ∈ +i I N t t tq p k k[ , ], [ , )1 1 	 (15)

Let τ = −+t tk k1  with τ⩾T > 0 . At the time instant t tk= +1, 
the time-dependent switching logic switches to

σ ( ) [ , ]t j Nq p= ∈ I 1 	 (16)

Consider equation (9), the derivative of the Lyapunov functions 
V x x P xiq
( ) = ′  along arbitrary trajectories of equation (7) satisfies

V x x A B P P A B xi i i i i i( ) [( ) ( )]= ′ + ′ + + <  0η ησ σ 	 (17)

This implies that there exist positive scalars λ > 0  and 
µ > 0  that satisfy

|| ||x t e V x t t t tt tk
k k k( ) ( ( )) [ , )( )2

1   µ
λ− −

+∀ ∈⩽ 	 (18)

Also, using inequality (equation (10)), we obtain
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Inequality (equation (10)) holds based on the fact that for 
every τ τk T= − ⩾0, the following inequality is true:

e P eAi Bi k
i

Ai Bi k( ) ( )+ ′ +ησ τ ησ τ
⩽Pi	 (20)

The result is that there exist α ∈ ( , )0 1  such that

V x t V x kk
k( ( )) ( )α 0 ∀⩽ 	 (21)

Equations (18) and (21) guarantee the global asymptotic 
stability of the equilibrium solutions of equation (7).




