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Abstract: Assessment of dietary intake is challenging. Traditional methods suffer from both random
and systematic errors; thus objective measures are important complements in monitoring dietary
exposure. The study presented here aims to identify serum metabolites associated with reported
food intake and to explore whether combinations of metabolites may improve predictive models.
Fasting blood samples and a 4-day weighed food diary were collected from healthy Swedish subjects
(n = 119) self-defined as having habitual vegan, vegetarian, vegetarian + fish, or omnivore diets.
Serum was analyzed for metabolites by 1H-nuclear magnetic resonance spectroscopy. Associations
between single and combined metabolites and 39 foods and food groups were explored. Area under
the curve (AUC) was calculated for prediction models. In total, 24 foods or food groups associated
with serum metabolites using the criteria of rho > 0.2, p < 0.01 and AUC ≥ 0.7 were identified.
For the consumption of soybeans, citrus fruits and marmalade, nuts and almonds, green tea, red
meat, poultry, total fish and shellfish, dairy, fermented dairy, cheese, eggs, and beer the final models
included two or more metabolites. Our results indicate that a combination of metabolites improve
the possibilities to use metabolites to identify several foods included in the current diet. Combined
metabolite models should be confirmed in dose–response intervention studies.

Keywords: 1H-NMR metabolomics; food intake; serum metabolites; 4-day dietary record; habitual
food intake

1. Introduction

Poor diet is one of the leading risk factors for morbidity and mortality worldwide [1,2].
Nutritional epidemiology provides the main method for the assessment of long-term risk
from diet in populations and accurate measurements of habitual diet is therefore crucial.
However, measurement of true dietary intake is challenging. Traditionally used methods
include food frequency questionnaires (FFQ), 24 h recalls and food records (weighed
or unweighted). These methods are based on self-reported data and therefore prone
to subjectivity and suffer from systematic and random errors such as recall bias and
under-reporting [3]. As a result, epidemiological studies of diet/health relationships may
suffer from inaccurate risk estimates and/or inconsistencies [3,4]. Consequently, objective
measures, for example biomarkers, are of importance to reduce errors in the measure of
dietary exposure and to correlate food intake to health outcomes.

Few validated dietary biomarkers exist and these include urinary sodium, nitrogen
and sucrose/fructose for the estimation of salt, protein, and sugar intake, respectively, and
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the doubly labeled water technique for energy expenditure and alkylresorcinols for whole
grain intake [4]. Nevertheless, putative dietary biomarkers have been proposed for several
foods or food groups, including red meat, coffee, nuts, red wine, vegetables, legumes,
fermented food products, citrus fruit, apples, milk, cheese, tea, and sugar-sweetened
beverages [5–13] as well as for dietary patterns [14]. Metabolomics has been used to
identify several of these dietary biomarkers and seems to be a promising approach for
providing possible biomarkers of dietary intake [4]. Commonly, single biomarkers have
been identified to estimate intake of a food, food groups, or nutrients. However, combining
biomarkers may further improve the possibility to accurately predict dietary exposure.
Using observational and intervention studies, multiple biomarkers as predictors of dietary
exposure have been explored [15]. Even so, the food, food groups, and dietary patterns
explored are to date limited.

Using 1H-nuclear magnetic resonance (1H-NMR) metabolomics analysis, we aimed
to (1) identify serum metabolites associated with reported food intake and (2) explore
the potential to use combinations of serum metabolites to improve predictive models of
reported habitual food intake.

2. Results
2.1. Subject Characteristics

Subjects ranged in age from 19 to 57 years with a median age of 28 years, 63%
of the subjects were female, and the median body mass index (BMI) (min-max) was
21.6 (18.2–28.9) kg/m2. The distribution of self-reported habitual dietary intake pattern
was vegan (n = 43), lacto–ovo vegetarian (n = 25), lacto–ovo vegetarian + fish (n = 13), and
omnivore (n = 38). For most food groups, consumers, as well as non-consumers, were
identified; in short, 66% of subjects reported consumption of cruciferous vegetables, 26%
of fish and shellfish, 31% of meat and poultry, 44% of eggs, 60% of dairy, and 23% re-
ported consumption of beer during the 4 days. Relatively few subjects reported consuming
soybeans (3.4%), white wine (14%), or spirits (5.9%).

2.2. Diet-Metabolite Associations

In total, 438 associations with absolute rho > 0.2 (rho = −0.506 to 0.628) and p < 0.01
were identified between the 39 foods/food groups and 237 1H-NMR -variables reflecting
serum metabolites. These are presented in Supplemental Table S1.

Adding the criteria AUC ≥ 0.7, 95 of these associations, which included 24 of the food
or food groups, remained of interest (Table 1). Reported consumption (non-consumers and
consumers) of these 24 foods/food groups are shown in Supplemental Table S2.

Table 1. Serum metabolites associated with reported food intake among healthy Swedish subjects (n = 119).

Food/Food Group Metabolite Identification Rho 1 p 2 AUC 3

SOY

Soy beverage Glycine 0.319 <0.001 0.710
Soy beans (Asparagine) 4 0.252 0.007 0.891

Valine 0.264 0.005 0.904
Soy products Glycine 0.442 <0.001 0.776
Total soy Glycine 0.435 <0.001 0.761

FRUIT AND VEGETABLES

Cruciferous vegetables Glutamine + unidentified 0.499 <0.001 0.721
Citrus fruits and marmalade U 5 21 0.503 <0.001 0.754
Total citrus fruits and juices U21 0.628 <0.001 0.743

NUTS AND ALMONDS

Nuts and almonds U6 0.351 <0.001 0.714
U2 0.397 <0.001 0.745
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Table 1. Cont.

Food/Food Group Metabolite Identification Rho 1 p 2 AUC 3

RED MEAT AND POULTRY

Red meat (3-methylhistidine) 0.265 0.004 0.701
Creatine 0.511 <0.001 0.800
U6 0.315 <0.001 0.739
Valine + unidentified 0.345 <0.001 0.753
Phosphocholine + acetylcholine
+ phosphoethanolamine +
lipids/ffa

0.274 0.003 0.704

Creatinine + ornithine 0.286 0.002 0.721
Creatine + lysine 0.535 <0.001 0.824
Arginine + lysine 0.304 0.001 0.727
3-hydroxyisobutyrate 0.374 <0.001 0.768
Valine 0.391 <0.001 0.769
(2-aminobutyrate) 0.277 0.003 0.718
Leucine 0.333 <0.001 0.742
Leucine + isoleucine 0.269 0.004 0.706
Isoleucine 0.249 0.008 0.704

Meat products/Processed meat Creatinine 0.303 0.001 0.713
Creatine 0.434 <0.001 0.778
Creatinine + ornithine 0.268 0.004 0.706
Creatine + lysine 0.422 <0.001 0.777
3-hydroxyisobutyrate 0.331 <0.001 0.749
Leucine 0.283 0.002 0.701

Poultry Creatine 0.518 <0.001 0.870
U5 0.335 <0.001 0.743
Valine + unidentified 0.343 <0.001 0.751
Creatine + lysine 0.524 <0.001 0.886
3-hydroxyisobutyrate 0.384 <0.001 0.819
Valine 0.380 <0.001 0.764
Leucine 0.306 <0.001 0.721
Leucine + isoleucine 0.303 0.001 0.700

Total meat Creatinine 0.364 <0.001 0.724
Creatine 0.553 <0.001 0.805
Valine + unidentified 0.344 <0.001 0.730
Valine + unidentified 0.382 <0.001 0.750
Creatinine + ornithine 0.322 <0.001 0.721
Creatine + lysine 0.551 <0.001 0.814
Arginine + lysine 0.328 <0.001 0.730
3-hydroxyisobutyrate 0.396 <0.001 0.765
Valine 0.435 <0.001 0.765
(2-aminobutyrate) 0.289 0.002 0.728
Leucine 0.382 <0.001 0.753
Isoleucine 0.290 0.002 0.720

SEAFOOD

Fatty fish Creatine 0.314 <0.001 0.747
Creatine + lysine 0.283 0.002 0.733

Lean fish Creatine + lysine 0.274 0.003 0.716

Shellfish Creatine 0.245 0.009 0.706

Total fish and shellfish Creatine 0.414 <0.001 0.748
Creatine + lysine 0.443 <0.001 0.770
3-hydroxyisobutyrate 0.302 0.001 0.709
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Table 1. Cont.

Food/Food Group Metabolite Identification Rho 1 p 2 AUC 3

EGGS

Eggs Creatine + lysine 0.334 <0.001 0.700
3-hydroxyisobutyrate 0.370 <0.001 0.728
Valine 0.418 <0.001 0.723
(2-aminobutyrate) 0.353 <0.001 0.719
Leucine 0.436 <0.001 0.735
Isoleucine 0.364 <0.001 0.712

DAIRY

Milk Creatine 0.420 <0.001 0.730
Creatine + lysine 0.480 <0.001 0.780
Arginine + lysine 0.391 <0.001 0.741
3-hydroxyisobutyrate 0.289 0.002 0.701

Fermented dairy products Creatine 0.371 <0.001 0.726
Valine + unidentified 0.353 <0.001 0.705
Creatine + lysine 0.452 <0.001 0.777
Arginine + lysine 0.287 0.002 0.713
Valine 0.407 <0.001 0.714
(2-aminobutyrate) 0.303 0.001 0.715

Cheese Creatine + lysine 0.328 <0.001 0.743
(2-aminobutyrate) 0.309 <0.001 0.708

Total dairy Creatine 0.458 <0.001 0.749
Valine + unidentified 0.333 <0.001 0.700
Valine + unidentified 0.394 <0.001 0.723
Creatine + lysine 0.524 <0.001 0.804
Arginine + lysine 0.355 <0.001 0.743
3-hydroxyisobutyrate 0.357 <0.001 0.736
Valine 0.442 <0.001 0.747
(2-aminobutyrate) 0.330 <0.001 0.732
Leucine 0.416 <0.001 0.724
Isoleucine 0.384 <0.001 0.714

ALCOHOLIC BEVERAGES

Beer Glucose + lysine + unidentified 0.258 0.005 0.718
Isoleucine + unidentified 0.249 0.007 0.735
Glucose 0.250 0.007 0.707
Lipids/ffa + (methylguanidine) 0.378 <0.001 0.799
Lipids/ffa 0.244 0.009 0.758
Proline 0.253 0.007 0.709
Proline + unidentified 0.272 0.003 0.752

White wine (Xylose) 0.244 0.009 0.702

Spirits Lactate + proline + 3-hydroxybutyrate 0.260 0.005 0.844
Citrate 0.251 0.007 0.782

1 Spearman’s rank correlation coefficient; 2 Associations were calculated using Spearman’s partial correlation
adjusted for age, sex, BMI, physical activity, and energy intake; 3 Area under the curve; 4 Uncertain metabolite
identification in brackets; 5 Unidentified metabolite.

2.2.1. Plant-Derived Foods

No associations with metabolites were identified for legume consumption, but con-
sumption of soy beverages (rho = 0.32, AUC = 71%) and soy products (rho = 0.44,
AUC = 78%) was associated with glycine (Table 1). In addition, soybean consumption
was associated with asparagine and valine; however, among the study subjects, overall
consumption of soybeans was low (3.4%). Diet-metabolite associations were also identi-
fied for cruciferous vegetables and citrus fruits. Cruciferous vegetable consumption was
associated with glutamine + an unidentified metabolite. Citrus fruits and citrus products
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were associated with two unidentified variables, and this was also the case for the reported
consumption of nuts and almonds (Table 1).

2.2.2. Animal-Derived Foods

Food-metabolite associations for meat, poultry, eggs, and dairy consumption were
mainly characterized by amino acids (Table 1). Consumption of red meat, meat prod-
ucts/processed meat, poultry, eggs, and total dairy were predominantly associated with
the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine (rho = 0.25–0.44,
AUC = 70–77%). These foods also were associated with 3-hydroxybutyrate (rho = 0.37–0.40,
AUC = 75–82%) and creatine (rho = 0.27–0.54, AUC = 71–87%). In addition, consumption
of red meat was associated with lipids, phosphocholine, acetylcholine, and phospho-
ethanolamine (rho = 0.27, AUC = 70%) and meat products/processed meat were associated
with creatinine (rho = 0.303, AUC = 71%). Cheese and fermented dairy products were associ-
ated with 2-aminobutyrate (uncertain identification) but not with 3-hydroxybutyrate. Total
fish and seafood consumption were also associated with creatine (rho = 0.41, AUC = 75%),
creatine + lysine (rho = 0.44, AUC = 77%), and 3-hydroxybutyrate (rho = 0.30, AUC = 71%).

2.2.3. Alcoholic Beverages

Beer consumption was associated with several metabolites: isoleucine + unidentified;
lipids/free fatty acids + methylguanidine; and glucose + lysine + unidentified and proline
(rho = 0.24–0.38, AUC = 71–80%).

2.3. Combined Serum Metabolites for Prediction of Food Intake

To improve the prediction of reported food exposure by serum metabolites, combina-
tions of two or more metabolites were created. Combinations of metabolites were selected
for all 39 food/food groups using forward stepwise logistic regression. For soybeans,
citrus fruits and marmalade, nuts and almonds, green tea, red meat, poultry, total fish and
shellfish, dairy, fermented dairy, cheese, eggs, and beer the final regression model included
two or more metabolites (Table 2).

Table 2. Combined metabolite models to predict reported food intake among healthy Swedish
subjects (n = 119).

Food/Food Group Metabolite Identification Rho 1 p 2 AUC 3

Soy beans (Asparagine) 4 0.252 0.007 0.891
Valine 0.264 0.005 0.904
Combined metabolite model 0.301 0.001 0.967

Citrus fruits and marmelade U 5 22 0.248 0.008 0.637
U21 0.503 <0.001 0.754
Combined metabolite model 0.515 <0.001 0.780

Nuts and almonds U4 0.299 0.001 0.696
U2 0.397 <0.001 0.745
Combined metabolite model 0.442 <0.001 0.749

Green/herbal tea Asparagine 0.255 0.006 0.641
Glycine 0.242 0.009 0.643
Combined metabolite model 0.306 <0.001 0.686

Red meat (3-methylhistidine) 0.265 0.004 0.701
Creatine + lysine 0.535 <0.001 0.824
Leucine 0.333 <0.001 0.742
Combined metabolite model 0.631 <0.001 0.924
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Table 2. Cont.

Food/Food Group Metabolite Identification Rho 1 p 2 AUC 3

Meat products/Processed meat Creatinine 0.303 0.001 0.713
Creatine + lysine 0.422 <0.001 0.777
Combined metabolite model 0.482 <0.001 0.849

Poultry Creatine + lysine 0.524 <0.001 0.886
Valine 0.380 <0.001 0.764
Combined metabolite model 0.577 <0.001 0.939

Meat total Creatinine 0.364 <0.001 0.724
Creatine + lysine 0.551 <0.001 0.814
Valine 0.435 <0.001 0.765
Combined metabolite model 0.681 <0.001 0.932

Fish and shellfish total Creatine + lysine 0.443 <0.001 0.770
Valine 0.250 0.007 0.659
Combined metabolite model 0.416 <0.001 0.772

Eggs Valine + unidentified 0.316 <0.001 0.680
Creatine + lysine 0.334 <0.001 0.700
Valine 0.418 <0.001 0.723
(2-aminobutyrate) 0.353 <0.001 0.719
Combined metabolite model 0.591 <0.001 0.838

Milk Creatine + lysine 0.480 <0.001 0.780
Arginine + lysine 0.391 <0.001 0.741
Combined metabolite model 0.532 <0.001 0.818

Fermented dairy Creatine + lysine 0.452 <0.001 0.777
Valine 0.407 <0.001 0.714
Leucine + isoleucine 0.241 <0.001 0.611
Combined metabolite model 0.577 <0.001 0.847

Cheese Creatine + lysine 0.328 <0.001 0.743
(2-aminobutyrate) 0.309 <0.001 0.708
Combined metabolite model 0.372 <0.001 0.762

Dairy total Creatine + lysine 0.524 <0.001 0.804
Valine 0.442 <0.001 0.747
(2-aminobutyrate) 0.330 <0.001 0.732
Leucine + isoleucine 0.266 0.004 0.626
Combined metabolite model 0.645 <0.001 0.889

Beer Isoleucine + unidentified 0.249 0.007 0.735
Lipids/ffa+ (methylguanidine) 0.378 <0.001 0.799
Lipids/ffa 0.244 0.009 0.758
Proline 0.253 0.007 0.709
Combined metabolite model 0.365 <0.001 0.835

1 Spearman’s rank correlation coefficient; 2 Associations were calculated using Spearman’s partial correlation
adjusted for age, sex, BMI, physical activity, and energy intake; 3 Area under the curve; 4 Uncertain metabolite
identification in brackets; 5 Unidentified metabolite.

AUC for soybean consumption was improved using combined metabolites (valine and
asparagine). For citrus fruits and marmalade as well as for nuts and almonds, combined
metabolites (all unidentified) only marginally improved the model (Table 2); note that
unidentified variables may originate from the same metabolite. The predictive ability of
consumption of meat products/processed meat and poultry consumption increased when
combining metabolites (creatinine, creatine + lysine, and valine). For red meat consumption,
the combined metabolite model (3-methylhistidine, leucine, and creatine + lysine) improved
the AUC (92%) compared to each separate metabolite (70–82%) (Figure 1A).
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For egg consumption, the combined metabolite model improved AUC (84%) in com-
parison to models with each separate metabolite (AUC = 68–72%) (Table 2, Figure 1B).
For fermented dairy products, the combined metabolite model improved AUC (85%) in
comparison to models with each separate metabolite (AUC = 61–77%) (Table 2, Figure 1C).
Finally, for beer consumption, the combined metabolite model improved AUC (84%) in
comparison to models with each separate metabolite (AUC = 71–80%) (Table 2, Figure 1D).

3. Discussion

The results from our explorative analysis show that serum metabolites can be asso-
ciated to reported intake of different foods, when applying partial correlation and stepwise
forward logistic regression analysis. In addition, the use of a combination of several serum
metabolites improved predictive models for several foods and food groups, including soy-
beans, meat products/processed meat, poultry, red meat, eggs, fermented dairy, and beer.

Comparing the predictive power of our combined metabolite models with the predic-
tion by one metabolite (AUC) from a paper by Wang et al. [16] shows that the predictability
was higher in our combined metabolite models for soy beans, red meat, poultry, total meat,
eggs, and beer.

Combining metabolites using stepwise logistic regression analyses have only been
used in a few previous studies. In contrast to our study, these studies aimed at exploring
associations between intake of specific foods (cocoa [17], bread [18], red wine [11], and
walnuts [19]) and changes in urine metabolites. In addition, the dietary assessment methods
used in these studies were FFQs to capture habitual intake, while a 4-day dietary record to
capture recent intake was used in the current analyses. Even though both methods may
capture habitual intake, dietary records also reflect the specific foods actually consumed
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the days before sampling, and this is an advantage when aiming to identify patterns of
metabolites in serum associated with food consumption.

We did not identify some of the known food-metabolite associations such as, for example,
genistein and daidzein for soy consumption [7]. This reflects that 1H-NMR metabolomics,
the method used for our serum analysis, is a less sensitive method than for example mass
spectrometry and therefore hampered the identification of low concentration metabolites.

Soy products are becoming more common in our diets due to the protein shift from
animal-based products to plant-based products. In this study sample, with a large propor-
tion of vegans and vegetarians, about 56% reported consuming soy products, and these
reported intakes were associated with a high content of the amino acid glycine in serum.
Glycine is a nonessential amino acid which can be found in many types of foods [20].
However, soy protein has a glycine content of 3.8 g/100 g, which is about twice the content
of other foods also regarded to have a high glycine content [21]. Although many subjects
consumed soy products, few subjects consumed soybeans. Surprisingly, in our study,
soybeans did not associate with glycine but with valine and asparagine. However, the
content of glycine in dried and cooked soybeans is only about 0.46 g/100 g, which probably
explains our result. This highlights the complexity of using food groups when trying to
identify markers for food intake. In our study, a combination of valine and asparagine
improved the specificity to capture the intake of soybeans. Legumes and nuts, including
soybeans, have a comparatively high content of valine and asparagine, but foods from
animal sources also contribute to these amino acids, thus complicating the picture.

In a combined metabolite model to predict intake of green/herbal tea, glycine and
asparagine jointly qualified. It is unlikely that these amino acids would increase after
green/herbal tea intake, and we therefore tested if subjects who consumed soy products
also were more prone to drink green/herbal tea. This was not the case, but intake of
green/herbal tea may be correlated to consumption of some other foods that we were
unable to capture or this could be a chance finding due to multiple testing.

Reported intake of cruciferous vegetables was associated with a variable including
glutamine and an unidentified metabolite. This may be explained by the finding that sub-
jects with a high intake of cruciferous vegetables concurrently had a low intake of protein.
Similarly, serum glutamine has been reported to be inversely correlated to protein intake
in other studies [22]. In line with this, glutamine has been associated with vegan diet in a
previous report [23]. A higher glutamine-to-glutamate ratio has been associated with an im-
proved cardiometabolic risk profile, making this marker interesting to explore further [24].
Nevertheless, a direct link between dietary intake pattern and serum glutamine/glutamate
ratio has not yet been established.

In our study, foods from animal sources were associated with a wide range of amino
acids, most notably the branched amino acids leucine, valine, and isoleucine and creatine.
Interestingly, most animal protein sources were associated with 3-hydroxyisobutyrate,
although this metabolite did not qualify in any of the combined metabolite models.

When comparing models among foods of different animal sources, creatinine was only
included in the model for processed meat and 3-methylhistidine was only included in the
model for red meat. Still, both metabolites were associated with not only meat intake but
also with muscle mass in our data. When adjusting for lean body mass in the analyses, none
of these markers remained significant, suggesting endogenous origin, and hence cannot be
seen as reliable markers for meat intake. In contrast to our findings, 3-methylhistidine has
previously been associated with poultry intake [25,26]. The difference in results may be
explained by the adjustment for lean body mass in our study. To improve models further,
the combination of serum metabolites with lipidomic data or with fatty acid concentrations
may be applied since many amino acids are overlapping among animal products.

In contrary to other animal-foods, the models for eggs and cheese contained the
metabolite 2-aminobutyrate (L-alpha-aminobutyric acid), which is a metabolite from the
amino acid metabolism. Few studies have reported 2-aminobutyrate concentrations in
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relation to diet. However, Gu et al. found increased concentrations of 2-aminobutyrate in
relation to a diet high in eggs and other animal proteins [27].

Beer consumption was associated with several metabolites, among them lipids, glu-
cose, and proline. In a combined metabolite model, lipids/free fatty acids, proline, and a
variable including isoleucine + unidentified increased the precision. Since accurate reported
intake of alcoholic beverages is notoriously difficult to obtain, this could be of special inter-
est for future research. In our setting, beer consumption 1–3 days before sampling had a
significant impact on blood lipids, a fact that might be of importance when studying blood
lipids and for clinical sampling. In support of our results, previous studies have shown
an association between alcohol intake and increased levels of high-density lipoprotein
levels [28,29]. In our study, for other alcoholic beverages only single metabolites were asso-
ciated, presumably xylose, for white wine and citrate and a combined variable with lactate,
proline and 3-hydroxybuturate for spirits. Contrary to our results, in a meta-analysis of
three cohorts the reported alcohol intake was inversely correlated with citrate in serum
samples [30]. However, in our study alcohol could be consumed up to the day before sam-
pling, whereas the number of days between consumption of alcohol and sample collection
was unknown in the study by Würtz et al. [30].

Since metabolites from certain foods have different half-times in serum, a combination
of several metabolites may jointly cover both short- and long-term metabolites, resulting
in a more accurate picture of the dietary intake. In addition, the effect of endogenous
metabolites may have less influence on the total concentration using a combination of
several markers.

This study has several strengths. Fasting serum samples were used and these were
rigorously handled following a strict protocol, resulting in high-quality 1H-NMR data. The
wide range of consumption of food specifically from animal sources is another strength, as it
makes it possible to find correlations between concentration of metabolites and specifically
meat but also dairy and egg. In a normal population, few individuals exclude meat.
However, this is also a weakness of the study as there can be other lifestyle factors coincident
among vegans in addition to excluding meat, fish, egg, and dairy that might influence the
results. Therefore, findings from this study should be confirmed in other settings.

To sum up, using models with combinations of metabolites quantified by 1H-NMR
metabolomics analysis shows the potential to improve the precision of assessing certain
food intake compared to today’s standard subjective methods, such as FFQ. It is important
to notice that when a certain food represents a minor portion of all the carbohydrates,
proteins, lipids, or overall calories, it is unlikely its individual fingerprint can be identified
by 1H-NMR metabolomics analysis in serum since metabolites unique for individual foods
are often found in low concentrations.

Findings in this work should be confirmed in intervention studies and evaluated in
large epidemiological cohorts.

4. Materials and Methods
4.1. Subjects

The current work was based on data from a cross-sectional metabolomics study
which included 124 healthy subjects living in the Gothenburg area, Sweden, registered at
Clinicaltrials.gov as NCT02039609. Recruitment, study design, subject characteristics, and
dietary intake have been described in detail elsewhere [31,32]. Briefly, healthy females and
males complying with self-reported habitual vegan, (lacto-/ovo-) vegetarian, vegetarian
adding fish, or omnivore diets were recruited during 2013 and 2015. Inclusion criteria were
age between 18 and 65 y, no regular use of medications, and having a BMI between 18 and
30 kg/m2. Subjects who were pregnant, lactating, or used nicotine products regularly were
excluded. Subjects were not allowed to drink alcohol the night before or to consume diet
supplements one week before sampling.

Clinicaltrials.gov
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Subjects with BMI < 18.0 kg/m2 (n = 2) or with food intake level (FIL; calculated by
dividing total reported energy intake with estimated basal metabolic rate [33]) < 1.0 (n = 3)
were excluded, leaving 119 subjects for the current analyses (Figure 2).
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4.2. Dietary Assessment

Food intake was estimated from a 4-day weighed food diary recorded by subjects
at one time point before blood sampling. Subjects were instructed to weigh all food and
drinks consumed during 3 weekdays and 1 weekend day using a household scale. Records
were registered in the nutritional calculation program DietistNet version 18.12.16, (Kost
och Näringsdata AB, Bromma, Sweden). For nutritional calculations the databases from
Sweden (National Food Agency, Uppsala, Sweden, version 17.12.15) and Finland (Fineli,
National Institute for Health and Welfare, Helsinki, Finland, version 18.02.28) were used.
Micro- and macro-nutrient intakes have been reported in detail elsewhere [32].

Dietary intake was categorized into 32 foods/food groups and 7 combined groups
such as total meat (Supplemental Table S1). The foods/food groups have all previously
been associated with different metabolites in serum in metabolomic studies [6–10,26,34,35].

4.3. Covariate Data

Weight and height were measured, and BMI was calculated by weight (kg)/height2

(m). Physical activity was self-reported and estimated by two questions capturing physical
exercise (six scores) and everyday physical activity (seven scores) [36]. A physical activity
score was calculated by multiplying physical exercise with a factor of two (to consider
higher intensity) and adding everyday physical activity resulting in an individual score of
3–19. Physical activity scores were divided into tertiles.



Metabolites 2022, 12, 908 11 of 14

4.4. Data Acquisition
4.4.1. Sampling, Sample Handling, and Preprocessing

Fasting venous blood was collected at one time point. Sample handling and prepro-
cessing have been reported in detail elsewhere [31]. Briefly, blood was drawn into a 5 mL
BD vacutainer glass tube, allowed to clot for 30 min, and centrifuged (2600× g, 10 min).
Serum aliquots were placed at −20 ◦C within 1 h and stored at −80 ◦C within 2 h until
analysis. Before 1H-NMR analysis, serum samples were thawed and mixed with phosphate
buffer whereafter 180 µL of the sample mix was transferred to 3.0-mm NMR tubes (Bruker
BioSpin, Billerica, MA, USA, 96 sample racks for SampleJet) using a SamplePro liquid
handling robot (Bruker BioSpin). Samples were kept at 6 ◦C until analysis.

4.4.2. NMR Spectroscopy
1H-NMR analysis has been described in detail previously [31]. In short, spectra

were recorded at 800 MHz with a Bruker Advance III HD spectrometer with a 3-mm TCI
cryoprobe. NMR data were recoded using the Bruker pulse sequence “zgespe”. A total of
128 scans were collected into 64 k data points. Data processing was performed with TopSpin
3.2p16 (Bruker BioSpin) and MatLab (MathWorks Inc., Natick, MA, USA), using TSP-d4
for referencing. In total 237 peaks were manually aligned and integrated peak-by-peak,
and these variables represent ∼70 metabolites. A variable could also reflect more than one
metabolite. Only variables of interest were identified.

For annotation Chenomx NMR suite 8.31 (Chenomx Inc., Edmonton, AB, Canada), the
Human Metabolome Database [37] and an in-house implementation of the statistical total
correlation spectroscopy (STOCSY) routine [38] were used.

4.5. Statistics

Subject characteristics and reported dietary intake are presented as median (min-max),
mean (SD), or proportions (n, %). Partial correlation (Spearman’s rank correlation) was used
to determine associations between foods and metabolites controlling for age (y, continuous),
sex, physical activity score (categorical), BMI (kg/m2, continuous), and reported energy
intake (kcal/d, continuous). Correlations were considered statistically significant if p values
were <0.01. We further set absolute values of the correlation coefficients (rho) >0.2 to be
considered relevant. Furthermore, to evaluate the predictive accuracy of dietary biomarkers
to discriminate consumers from non-consumers, the area under the curve (AUC) was
calculated from the receiver operating characteristics (ROC) curve. AUC <0.7 was deemed
as low, 0.7 to <0.8 as moderate and ≥0.8 as high predictive accuracy. Because selected
variables had to meet these three statistical requirements, no other correction for multiple
hypothesis tests were done.

To assess if combined biomarkers would increase predictive models, a stepwise
forward logistic regression was applied. All metabolites with an absolute correlation
coefficient > 0.2 and p < 0.01 were included in the regression model. If two or more metabo-
lites were included in the final model of stepwise forward logistic regression, these were
further evaluated in combination using predictive probabilities. Diet–metabolite asso-
ciations for combined biomarkers were evaluated using Spearman’s partial correlation.
Further, AUC was calculated for the combined model and compared with the AUC for
each single metabolite and ROC presented.

The computer software package SPSS for Windows, version 28 (IBM, New York, NY,
USA) was used for statistical analyses.

5. Conclusions

Our results show that few serum metabolites are unique for a certain food item,
but they can possibly be used in combinations to predict intake of some foods or food
groups ingested in a habitual diet. The overall protein intake seems to be crucial for
many of the metabolites found by 1H-NMR -analysis to associate with different foods.
However, since many metabolites from animal products are both provided by the diet
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and are endogenously produced, it is important to adjust for factors such as lean body
mass, which could contribute to the metabolite concentration in serum. Combinations of
metabolites associated to food intake identified here might be of interest to evaluate further
in dose–response intervention studies as potential combinatorial biomarkers. Finally, as the
data analysis was performed without correction for multiple testing, we view the results
presented here as an exploratory report on a potential method to combine metabolites from
1H-NMR -analysis to predict the intake of foods from serum samples.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12100908/s1, Table S1: Serum metabolites associ-
ated with reported food intake; Table S2: Reported consumption of 24 foods/food groups.
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