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Abstract: Light emitting diodes (LEDs) have recently been considered an efficient artificial light
source in plant factories for enhancing plant growth and nutritional quality. Accordingly, this study
aimed to review blue, red, and white LED light sources for efficiency and length of the growing
period to produce seedlings of Scutellaria baicalensis with high nutritional value. The roots, stems, and
leaves of S. baicalensis seedlings were grown under different LED lights and harvested after two and
four weeks, and analyzed using high-performance liquid chromatography and gas chromatography
time-of-flight mass spectrometry to identify and quantify primary and secondary metabolites. Roots,
particularly in the seedlings treated with white LEDs were determined to contain the greatest
concentrations of the representative compounds present in S. baicalensis: baicalin, baicalein, and
wogonin, which show highly strong biological properties compared to the other plant organs. A total
of 50 metabolites (amino acids, sugars, sugar alcohols, organic acids, phenolic acids, and amines)
were detected in the roots, stems, and leaves of S. baicalensis seedlings, and the concentrations of
primary and secondary metabolites were generally decreased with the increasing duration of LED
illumination. Therefore, this study suggests that white LED light and a 2-week growing period are
the most efficient conditions for the production of baicalin, baicalein, and wogonin.

Keywords: LED lights; medicinal plant; Scutellaria baicalensis; flavones; metabolites

1. Introduction

Scutellaria baicalensis Georgi, known as Huang Qin in Chinese medicine, has been
used as a conventional herbal remedy in East Asia and is formally listed in the Chinese
Pharmacopeia [1]. According to previous research, the root extract of S. baicalensis causes
apoptosis of hepatocellular, prostatic, pancreatic, urothelial carcinoma, and breast cells,
and suppresses the growth of cancer cells in vitro, and it is often used in conjunction with
other medicinal plants [2].

Flavonoids are found in vegetables, seeds, nuts, flowers and stems, wine, tea [3], honey,
and propolis [4], and the roots of S. baicalensis contain flavonoids such as baicalin, baicalein,
wogonoside, and wogonin [5]. Baicalin is biosynthesized using several enzymes, including
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phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate: CoA
ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). It is catalyzed to
baicalein through 3-glucuronidase (GUS) or vice versa with UDPglucuronate: baicalein
7-O-glucuronosyltransferase (UBGAT) [6]. Similarly, baicalein has in vitro antioxidative,
anti-inflammatory, lipoxygenase inhibitory, antiviral, and anti-allergic activities [7]. Wogo-
nin, one of the main chemical components of S. baicalensis, is a flavanone derivative
containing the nucleus of a phenylbenzopyrone [8] that suppresses tumor growth and
angiogenesis in vitro [9].

Artificial light has been known to improve plant development, growth, and phy-
tochemical production; in plant factories that require strong light to grow vegetables,
light-emitting diodes (LEDs) are a promising source due to their durability, cool temper-
ature, long life, diverse wavelengths, and small diode size [10]. According to previous
studies, LEDs have positive effects on the accumulation of various secondary metabolites,
such as glucosinolate, phenylpropanoid, and carotenoid, in Brassica juncea sprouts, wheat
sprouts, and the callus of Scutellaria baicalensis [11-13].

However, there are no studies on the effects of LED lights and their duration on
metabolites in S. baicalensis sprouts. Therefore, this study aimed to investigate the effects of
different LED light sources (white, blue, and red) and their duration on metabolic changes
in S. baicalensis sprouts and to optimize the most efficient qualities for the production of
flavones (baicalin, baicalein, and wogonin).

2. Results
2.1. HPLC Analysis of Baicalin, Baicalein, and Wogonin in Root, Stem, and Leaf of S. baicalensis
Treated with Different LED Light Sources

The three LED lights (red, blue, and white) and their treatment duration caused
variations in flavones (baicalin, baicalein, and wogonin) in the roots, leaves, and stems
of S. baicalensis. Baicalin and baicalein were detected in all plant parts, whereas wogonin
was only found in the roots (Figure 1). Roots showed the greatest concentrations of the
flavones compared with leaves and stems, and the most abundant was baicalin, followed
by baicalein and wogonin. After two weeks under white LED light treatment the roots
of S. baicalensis seedlings produced the highest levels of baicalin (100.42 £ 0.32 mg/g dry
weight (dw)) and wogonin (4.51 £ 0.09 mg/g dw); whereas levels of these compounds
decreased in the roots under all three LED colors after four weeks. Similarly, roots under
white and blue LED lights, contained slightly higher levels of baicalein than those under
red LED light. In stems, baicalin began accumulating after four weeks regardless of light
color and those treated with red LED light contained the greatest amounts of baicalin
(0.17 £ 0.05 mg/g dw). In contrast, baicalein concentrations showed a slightly increasing
accumulation pattern under red LED illumination, whereas stems treated with white and
blue LED light revealed decreasing levels with increasing duration. Baicalin and baicalein
were also present in leaves, and those treated with red LED light showed increasing
patterns of baicalin and baicalein accumulation with increasing illumination duration.

2.2. Metabolite-Specific Profiling of Root, Stem, and Leaf of S. baicalensis Treated with Different
LED Light Sources

GC-TOEMS was used to detect 50 metabolites (amino acids, sugars, sugar alcohols,
organic acids, phenolic acids, and amines) in the roots, stems, and leaves of S. baicalensis
seedlings treated with different LED light sources (red, blue, and white). In leaves and
stems treated with blue LED light, a greater number of metabolites were detected than in
those treated with red and white LED light. The majority of the amino acids, organic acids,
and TCA cycle intermediates showed decreasing patterns in leaves and stems treated with
increasing durations of LED light regardless of the source. In contrast, the levels of most
sugars and sugar alcohols had slightly increasing patterns in both plant parts. Similarly,
roots of seedlings treated with blue or red LED lights contained greater concentrations of
metabolites and displayed decreasing patterns of most amino acids, organic acids, and
TCA cycle intermediates over time regardless of the light source. White LED light induced
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slightly increasing levels of sugars and sugar alcohols in the roots, whereas blue and red
LED lights revealed decreasing accumulations of these metabolites. Additionally, roots
under white LED light for two weeks contained lower levels of sugars and sugar alcohols
than those under blue and red LED lights. Partial least-squares discriminant analysis
(PLS-DA) was performed with the data derived from GC-TOFMS and HPLC to investigate
the metabolic changes in the roots, stems, and leaves of S. baicalensis seedlings under
various LED light treatments and their durations (Figure 2). The PLS-DA results showed
a separation between the leaf group at 2 weeks from that at 4 weeks. This separation
was attributable to changes in amino acids, organic acids, sugars, and sugar alcohols as
related previously.
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Figure 1. Flavone contents of the leaf (A), stem (B), and root (C) of S. baicalensis seedlings grown under LED treatment of

varying duration. 2 w and 4 w indicate 2 weeks and 4 weeks, respectively (t-test, * p < 0.05, ** p < 0.01, *** p < 0.005).
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Figure 2. (A) Scores and loading plots of the PCA model using metabolites from the leaves of S. baicalensis seedlings grown
under the LED treatment of varying duration, (B) Scores and loading plots of the PCA model using metabolites from the
stem of S. baicalensis seedlings grown under the LED treatment of varying duration, and (C) Scores and loading plots of the

PCA model using metabolites from the root of S. baicalensis seedlings grown under the LED treatment of varying duration.

2 w and 4 w indicate 2 weeks and 4 weeks, respectively, as well as B, R, and W indicate blue, red, and white, respectively.
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To measure the relationship between different metabolites quantified in the roots,
stems, and leaves of S. baicalensis seedlings treated with different LED lights, an HCA was
performed using Pearson’s correlation results (Figure 3). Compounds involved in nitrogen
metabolism into amino acids (glutamine, glutamic acid, aspartic acid, and asparagine)
and other nitrogen-containing compounds, were positively correlated, and these amino
acids and their derivatives were also positively correlated in the roots, stems, and leaves of
S. baicalensis seedlings treated with different LED lights. Phenylalanine and tryptophan,
arising from the shikimate biosynthesis pathway, had a positive relationship with shiki-
mate. The carbohydrates sucrose, galactose, mannose, and raffinose also returned positive
correlations. Phenylalanine is a precursor of phenolic acid and flavonoid biosynthesis,
and it showed a negative correlation with most phenolic acids and flavonoids. Similarly,
most carbohydrates, which act as energy sources, were negatively correlated with most
phenolics detected.
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Figure 3. Correlation matrix (A) of metabolites obtained from the leaf of S. baicalensis seedlings grown under the LED

treatment of varying duration, correlation matrix (B) of metabolites obtained from the stem of S. baicalensis seedlings

grown under the LED treatment of varying duration, and correlation matrix (C) of metabolites obtained from the root of

S. baicalensis seedlings grown under the LED treatment of varying duration. Each square indicates the Pearson’s correlation

coefficient for a pair of compounds, and the value of the correlation coefficient is represented by the intensity of the deep

blue or deep red color, as indicated on the color scale.

3. Discussion

In this study, the roots of S. baicalensis seedlings treated with white LED light contained
the highest levels of baicalin, baicalein, and wogonin and lower levels of most sugars
than the other plant parts, suggesting the need for energy to enhance the biosynthesis
of phenolic compounds, including the three described here. These results agree with
previous studies showing that sugar concentrations for anthocyanin accumulation were
lower in purple kohlrabi than in green kohlrabi [14] and that a fungal elicitor allowed for
the more rapid depletion of sugar pools to promote alkaloid biosynthesis in cell cultures of
Papaver somniferum [15].

Numerous previous studies have reported that LED illumination can enhance sec-
ondary metabolite production in vegetables and medicinal plants. White LED illumination
has been shown to increase the accumulation of phenolics in Agastache rugosa seedlings [16],
carotenoids in Fagopyrum tataricum sprouts [17], and glucosinolates in Brassica juncea
sprouts [11], compared with other colored LED lights, consistent with the findings of
this study. Blue LED light has been reported to increase accumulations of phenolics in
Brassica napus [18] and Glycine max sprouts [19], and red LED light has been shown to
enhance both phenolic compounds in the leaves of Myrtus communis in vitro [20] and
carotenoid production in the outer peel layer of citrus fruit [21].
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The metabolic networks of glutamine, glutamate, aspartate, and asparagine are in-
volved in various nitrogen-related processes, including nitrogen assimilation by plants,
metabolism into amino acids and other nitrogen-containing compounds, transport between
source and sink, stress-associated metabolism, and carbon-nitrogen partitioning. Glu-
tamine is derived from ammonium assimilation and can be converted into glutamic acid
with a-ketoglutarate, a TCA cycle intermediate. This glutamic acid is further metabolized
into aspartic acid, which is converted to asparagine. The first three compounds can be used
for the synthesis of proteinogenic and non-proteinogenic amino acids, amides, and other
nitrogenous compounds. Asparagine is a prominent nitrogen transport agent as well as a
proteinogenic amino acid [22-24].

In this study, glutamate, glutamine, asparagine, and aspartate showed decreasing
concentration levels in the roots, leaves, and stems of S. baicalensis seedlings treated with
different LED lights, with a related reduction of their derivatives. This result was sup-
ported by the positive correlations between these four compounds and their derivatives.
Furthermore, since shikimate and phenylalanine, which are derived from the shikimate
pathway, were negatively correlated with most phenolic compounds, the biosynthesis
of these compounds, including phenolic acids and flavones must have been assisted by
intermediates or precursors. These findings corroborate a previous study reporting that
the internal pool of phenylalanine was lower in purple kohlrabi, which contained a high
amount of phenolic compounds, reflecting a precursor supply to produce phenolic acids
and anthocyanins [14].

Artificial LED source is important to regulate the lighting systems in a plant factory
to produce high-quality plant materials. Therefore, this study suggests that S. baicalensis
seedlings, containing a high number of health-beneficial compounds, can be produced
under LED lights in limited space since S. baicalensis was generally cultivated in the
field and indicates that the optimal light was white LED for flavone accumulation in
S. baicalensis seedlings.

4. Materials and Methods
4.1. Preparation of Plant Materials

S. baicalensis seeds were purchased from Aram Seed Co. (Seoul, Korea). Seeds for
germination were soaked overnight in water. To produce seedlings, 50 seeds were placed
in each pot (diameter: 12 cm, height: 11 cm) containing vermiculite and grown in a growth
chamber equipped with fluorescent light with a flux rate of 35 umol-m~2-s~ ! at 25 °C. After
2 weeks, the seedlings in six pots were moved to a room in a growth chamber equipped
with each blue, white, and red LED light with a flux rate of 90 pumol-m~2-s~ ! at 25 °C with
an 8 h dark/16 h light cycle. The leaves, stems, and roots from seedlings were harvested
with liquid nitrogen and then freeze-dried for further metabolite analysis after two and
four weeks of LED light treatment. The LED light sources, and their specific information
are described in Appendix A Table A1 and a previous study [18]. Seedlings from three pots
were used as independent replicates for each LED light for each duration.

4.2. High-Performance Liquid Chromatography (HPLC) Analysis for Flavones

We detected three flavones (baicalin, baicalein, and wogonin) using a slightly modified
method of Park et al., [25]. The freeze-dried samples were ground into a powder using
a grinder (Wonder blender WB-1, SANPLATEC CORP, Osaka, Japan). The S. baicalensis
root, stem, and leaf powders (0.1 g each) from seedlings treated with various LED lights
were extracted with 2 mL of 80% (v/v) aqueous MeOH and vortexed for 30 s. Following
sonication for 1 h, the samples were centrifuged at 10,000 x g at 4 °C for 20 min, and the
crude extracts were syringe-filtered to a vial for analysis. The HPLC system and analysis
conditions were the same as those used in the method reported by Park et al. [25] (Table A2).
The three different flavones were identified by retention time and spike tests, and the
equation of calibration curves for each flavone was obtained to quantify the compounds in
the roots, stems, and leaves of S. baicalensis seedlings treated with the different LED lights.
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4.3. Gas Chromatography Time-of-Flight Mass Spectrometry (GC-TOFMS) Analysis

Hydrophilic metabolites were detected using the method reported by Park et al. [26].
The root, stem, and leaf powders (0.1 g each) of S. baicalensis seedlings treated with different
LED lights were extracted with 2 mL of 80% (v/v) aqueous MeOH and vortexed for 30 s.
After sonication for 1 h, each sample was centrifuged at 10,000x g at 4 °C for 20 min,
and then the crude extracts were syringe-filtered into a vial for analysis. The system and
analysis conditions were reported by Park et al., 2021. Retention time comparison and spike
test were conducted to identify the three different flavones, and the equation of calibration
curves for each flavone was obtained to quantify the compounds in the roots, stems, and
leaves of the S. baicalensis seedlings. The tissue powders (0.01 g each) were placed ina 2 mL
tube along with 1 mL of a water/chloroform/methanol mixture (1:1:2.5 v/v/v) and 60 pL
of ribitol (0.2 g/L; Sigma, St. Louis, MO, USA) as an internal standard. The extracts were
mixed at 1200x g using a thermomixer, followed by centrifugation at 10,000 x g for 5 min.
The polar phase (0.8 mL) was transferred to a fresh tube containing water for chromatogra-
phy (0.4 mL) and evaporated for 3 h. The dried residues were derived by adding 0.08 mL
of methoxyamine hydrochloride/pyridine (20 g/L), followed by shaking at 37 °C for 2 h.
After the addition of 0.08 mL of N-methyl-N-(trimethylsilyl)trifluoroacetamide, each tube
was heated at 37 °C for 30 min. The final extract was placed in a vial for GC analysis. The
analysis system, condition, and program of GC-TOFMS were used to identify and quantify
metabolites in the roots, stems, and leaves of S. baicalensis seedlings treated with different
LED lights according to the previous studies [26,27].

4.4. Statistical Analysis

SPSS (version 24.0;(IBM, Chicago, IL, USA)) was used to perform a t-test and Metabo-
Analyst 5.0 (http:/ /www.metaboanalyst.ca/, accessed on 5 March 2021) was used for
principal component analysis (PCA) and hierarchical cluster analysis (HCA) using Pearson
correlations for the metabolites detected in roots, stems, and leaves of S. baicalensis seedlings
treated with different LED lights. The resolution of the resulting figures was improved
using Adobe Illustrator.

5. Conclusions

Considering flavone content, white LED light for 2 weeks was the most efficient for
the production of the three different flavones in the roots, stems, and leaves of S. baicalensis
seedlings. Based on the results from the current and previous studies, it appears that the
effect of different LED lights on the accumulation of secondary metabolites may depend on
plant species, and this study reports that white LED lights are the most optimal for flavone
accumulation in S. baicalensis seedlings.
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Appendix A

Table Al. Plant growth method using LED lights.

LED Plant Growth Chamber

Multi-Room Chamber HB-302S-4 (Hanbaek
Product . g
Scientific Co.,)

Picture, which is taken from a previous
study [10]

Dimension of each room (L x W x H) 136 cm x 78 cm X 168 cm

The white (450-660 nm), blue (450 nm), or red
. (660 nm) LED lights (PGL-PFL series) were
LED lights manufactured from PARUS LED Co.,
Cheonan, Korea

Table A2. HPLC analysis method.

HPLC Analysis Performed Using Our Previous Study [25]

Equipment NS-4000 HPLC apparatus (Futecs, Daejeon, Korea)
Detector UV-Vis
optimapak C18 column (250 mm x 4.6 mm, 5 um;
Column RStech, Daejon, Korea)
Detector wavelength 275 nm
Oven temperature 30°C
Flow rate 1.0 mL/min
Mobile phase Acetonitrile, solvent A and 0.2% (v/v) acetic acid,
solvent B
Solvent B 90%; 0 min,

solvent B 80%; 10 min,
solvent B 80%; 15 min,
Gradient program solvent B 75%; 20 min,
solvent B 75%; 25 min,
solvent B 40%; 50 min,
solvent B 90%; 50.1-60 min
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