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Many clinical populations that have sustained attention
deficits also have visual deficits. Therefore, it is
necessary to understand how the quality of visual input

and different forms of image degradation can contribute
to worse performance on sustained attention tasks,
particularly those with dynamic and complex visual
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stimuli. This study investigated the impact of image
degradation on an adapted version of the gradual-onset
continuous performance task (gradCPT), where
participants must discriminate between gradually fading
city and mountain scenes. Thirty-six normal-vision
participants completed the task, which featured two
blocks of six resolution and contrast levels. Subjects
either completed a version with gradually fading or
static image presentations. The results show decreases
in image resolution impair performance under both
types of temporal dynamics, whereas performance is
only impaired under gradual temporal dynamics for
decreases in image contrast. Image similarity analyses
showed that performance has a higher association with
an observer’s ability to gather an image’s global spatial
layout (i.e. gist) than local variations in pixel luminance,
particularly under gradual image presentation. This
work suggests that gradually fading attention paradigms
are sensitive to deficits in primary visual function,
potentially leading to these issues being misinterpreted
as attentional failures.

Introduction

Sustained attention, the effortful process of focusing
on tasks or goals while suppressing distracting
information over prolonged periods of time, is
critical for our daily interactions, whether it be
maintaining focus while driving, attending to a lecture,
or navigating through a crowded area (Chun, Golomb,
& Turk-Browne, 2011; Fortenbaugh, DeGutis, &
Esterman, 2017; Langner & Eickhoff, 2013; Sarter,
Givens, & Bruno, 2001). Early experimental paradigms
used to study sustained attention, including declines
in performance with time on task typically referred
to as the vigilance decrement, assessed performance
capabilities on monotonous tasks that span from
30 minutes to hours (Mackworth, 1948). However,
the longer time frames of many sustained attention
paradigms have also been argued to have limited clinical
practicality, as children and individuals with brain
injury may not have the ability to engage with tasks
of such long durations (Nuechterlein, Parasuraman,
& Jiang, 1983). In response, paradigms have been
developed to assess overall decrements in shorter time
periods by increasing task difficulty through various
types of paradigm modifications. These modifications
have included increasing the rate of individual
trial events that must be completed continuously
without breaks over a period of time (Ballard, 1996),
incorporation of response inhibition with responses
to frequent non-targets and withholding of response
to rare targets (Conners, Staff, Connelly, Campbell,
MacLean, & Barnes, 2000; Robertson, Manly, Andrade,
Baddeley, & Yiend, 1997), and increasing stimulus
complexity or degrading the quality of the images to

impede perceptual discrimination (Nuechterlein et al.,
1983).

Of particular relevance for the current study, is the
impact that stimulus complexity has on perceptual
and behavioral responses due to interactions between
attention and visual processing (Roebuck, Freigang, &
Barry., 2016). Visual stimuli in continuous performance
tasks (CPTs), such as the Sustained Attention to
Response Task (SART), include abrupt stimulus onsets
that exogenously re-orient participants (MacLean,
Aichele, Bridwell, Mangun, Wokciulik, & Saron, 2009;
Robertson et al., 1997; Yantis & Jonides, 1984). The
gradual-onset continuous performance task (gradCPT),
on the other hand, uses complex visual stimuli that fade
from one to the next in rapid succession (Esterman,
Noonan, Rosenberg, & Degutis, 2013). The stimuli
used in the gradCPT consist of complex scene images,
whereas the gradual fading of the task reduces image
saliency across trials as any one image is only fully
clear for 50 ms at a time. Beyond this time window, the
scenes are overlaid with the former and subsequent
scenes, reducing the clarity of the trial scene image
throughout the task. These task parameters combined
with the lack of abrupt stimulus onsets are thought
to increase the difficulty of this task not only by
eliminating exogenous cues from abrupt onsets but also
by reducing signal salience, consistent with previous
literature (Nuechterlein et al., 1983; Parasuraman, de
Visser, Clarke, McGarry, Hussey, Shaw, & Thompson,
2009; Temple, Warm, Dember, Jones, LaGrange,
& Matthews, 2000). Gradual fading of stimuli
may require accumulated processing of stimulus
information over time, providing room for more
top-down, predictive processes to affect performance.
Studies have shown that performance on the gradCPT
can be used to characterize moment-to-moment
fluctuations in sustained attention and has shown
sensitivity to discriminate between varying states
of task engagement during an experiment while
exhibiting vigilance decrements in as little as 8 minutes
time (Esterman et al., 2013; Esterman, Reagan, Liu,
Turner, & DeGutis, 2014; Esterman, Rosenberg, &
Noonan, 2014; Fortenbaugh, Rothlein, McGlinchey,
Degutis, & Esterman, 2018; Kucyi, Esterman, Riley,
& Valera, 2016; Kucyi, Daitch, Raccah, Zhao, Zhang,
Esterman, Zeineh, Halpern, Zhang, Zhang, & Parvizi,
2020). Other lines of work have also demonstrated
that increasing visual difficulty by reducing stimulus
saliency generates vigilance decrements over shorter
time durations. These studies have shown that vigilance
decrements can be obtained in under 8 minutes through
projector lens defocusing overlaid with noise masks
(Nuechterlein et al., 1983), low-pass filtering with
pixelated noise (Nuechterlein et al., 1983; Parasuraman
et al., 2009), or reducing contrast in cluttered displays
of high frequency information (Temple et al., 2000).
Although there is a clear link between stimulus salience
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and time-on-task decrements in the literature with
decreased stimulus saliency relating to greater vigilance
decrements, parametric investigations of image
degradation from blur and contrast manipulations
using within-subject designs have not been done. Thus,
previous research has demonstrated that making an
image harder to see decreases performance both overall
and over time but work to date has not addressed the
question of whether how one makes an image harder to
see differentially impacts performance for a fixed set of
stimuli used in CPT tasks.

Although manipulating image complexity or saliency
has been used to hasten performance declines with time
on task, it is important to note that in clinical settings
overall performance measures, such as accuracy rates or
reaction time variability, are used as important clinical
indicators of sustained attention ability (Auerbach,
Kim, Chango, Spiro, Cha, Gold, Esterman, & Nock,
2014; Conners et al., 2000; DeGutis, Esterman,
McCulloch, Rosenblatt, Milberg, & McGlinchey, 2015;
Esterman, Fortenbaugh, Pierce, Fonda, DeGutis,
Milberg, & McGlinchey, 2019; Park, Aul, DeGutis,
Lo, Poole, McGlinchey, Bean, Leritz, & Esterman,
2021). Manipulating task difficulty through image
complexity or image degradation to induce time-on-
task decrements more readily raises the question of
whether overall measures of ability continue to reflect
sustained attention capabilities on these tasks or may
be confounded with visual processing limitations.
Although CPTs are used to measure sustained attention
in many clinical populations with higher rates of
primary visual function deficits, image quality may
not always differentially impact performance in these
populations based on the nature of the task. For
example, Berardi, Parasuraman, and Haxby (2001)
showed that image degradation using the defocusing
approach developed by Nuechterlein et al. (1983)
on a digit discrimination CPT reduced performance
overall, but no main effect of age or interaction with
age group was found for overall performance or
vigilance decrements across young, middle-aged, and
older adult age groups. Conversely, the gradCPT has
exhibited robust age-related effects across the lifespan
with performance declines observed in older adults
(Fortenbaugh, DeGutis, Germine, Wilmer, Grosso,
Russo, & Esterman, 2015). Age-related declines in
visual function are also well-established (Owsley, 2011).
Presbyopia, which reduces resolving power for near
objects due to a loss of elasticity in the lens of the
eye, has a current estimated prevalence of over 60%
for individuals over 50 years of age, with roughly
45% of presbyopia cases uncorrected globally (Fricke,
Tahhan, Resnikoff, Papas, Burnett, Ho, Naduvilath, &
Naidoo, 2018). Although performance declines have
been observed under degraded simple or object-based
stimuli (Nuechterlein et al., 1983; Parasuraman et al.,
2009; Temple et al., 2000), such image manipulations

have not been studied in paradigms using more complex
scene-based stimuli with documented age-related
declines in performance.

It is therefore important to consider whether
perceptual discrimination of complex, naturalistic
scenes is more susceptible to certain alterations in
image quality, such as changes in contrast and resolving
power, that may commonly accompany certain
vision-related conditions. Many clinical disorders
present with changes in both contrast and acuity, such
as glaucoma (Richman, Lorenzana, Lankaranian,
Dugar, Mayer, Wizov, & Spaeth, 2010) and cataracts
(Datta, Foss, Grainge, Gregson, Zaman, Masud,
Osborn, & Harwood, 2008; Shandiz, Derakhshan,
Daneshyar, Azimi, Moghaddam, Yekta, Yazdi, &
Esmaily, 2011), which predominantly impact older
adults, as well as traumatic brain injury (TBI; Bulson,
Jun, & Hayes, 2012; Fortenbaugh, Gustafson, Fonda,
Fortier, Milberg, & McGlinchey, 2021; Spiegel,
Reynaud, Ruiz, Laguë-Beauvais, Hess, & Farivar,
2016). However, other conditions differentially impact
one of these domains more prominently than the other.
For example, depression has mainly been shown to be
associated with decreased contrast sensitivity (Bubl,
Tebartz Van Elst, Gondan, Ebert, & Greenlee, 2009;
Fam, Rush, Haaland, Barbier, & Luu, 2013), whereas
presbyopia is associated with decreased acuity at close
ranges (Gupta, Wolffsohn, & Naroo, 2009; McDonnell,
Lee, Spritzer, Lindblad, & Hays, 2003). In addition,
several studies have suggested comorbidities between
attention deficit hyperactivity disorder (ADHD) and
vision problems characterized by both refractive and
nonrefractive errors (Akmatov, Ermakova, & Bätzing,
2019; DeCarlo, Swanson, McGwin, Visscher, & Owsley,
2016; Granet, 2014; Reimelt, Wolff, Hölling, Mogwitz,
Ehrlich, & Roessner, 2018; Su, Tsai, Tsai, & Tsai, 2019).
Finally, image clarity can be impacted by environmental
setting, with stimulus contrast independently impacted
by glare on a computer screen (Paulsson & Sjöstrand,
1980; Rodriguez, Yamin Garretón, & Pattini, 2016). As
different dimensions of visual spatial processing can
be impacted in several clinical populations for whom
sustained attention ability is often clinically assessed,
one goal of the current study was to independently
assess the impact of contrast changes and image
resolution on performance in a continuous performance
task.

In addition to parametrically assessing the
relationship between stimulus salience and sustained
attention performance, the current study sought to
examine the relationship among image degradation
type, image confusability, and behavioral performance.
Notably, recent work on attention and stimulus
features has demonstrated that the fidelity of image
representations is not static or wholly tied to retinal
and optical factors but also fluctuates as a function
of attentional states. Specifically, optimal attentional
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states have been associated with increased fidelity of
stimulus representations in visual regions and increased
connectivity of stimulus information between visual
and dorsal attention network regions, suggesting that
optimal attention facilitates both the representation
and transmission of task relevant visual features
(Rothlein, DeGutis, & Esterman, 2018). In assessing the
relationship between image similarity of the traditional
stimuli of the gradCPT and performance on the task,
Rothlein, DeGutis, Germine, Wilmer, McGlinchey, and
Esterman (2018) created new metrics that allow for
quantification of the similarity of two scene images.
These metrics are based on the concept of scene gist,
or the underlying spatial layout of a scene that is
predominantly captured in low frequency information
(Greene & Oliva, 2009; Oliva, 2005; Oliva & Torralba,
2001) and pixel intensity that captures high-frequency
position-specific information. Rothlein et al. (2018)
determined that individual sensitivity to stimulus
similarity on the gradCPT tends to predict better signal
discrimination and lower reaction time variability.
Although these studies suggest that sensitivity to the
similarity of high resolution/contrast scene images
affects sustained attention ability, it is unknown
if similarity and sustained attention performance
are influenced by declines in stimuli resolution and
contrast. Reductions in image contrast and resolution
have been previously discussed in terms of increasing
task difficulty, but difficulty is often operationally
defined in terms of behavioral performance. For tasks
like the gradCPT, which involve discrimination of
natural scenes, utilization of similarity metrics provides
an opportunity to test if difficulty can be defined by the
degree to which reductions in image quality makes a
given image more similar to other images, regardless of
the manner by which image degradation occurs. Image
similarity measures could therefore serve as a common
metric to allow for comparison between the two types
of degradation and their impact on sustained attention
and scene discrimination ability.

To address the questions outlined above, the current
study completed a parametric investigation of how
image degradation due to reductions in the resolution
or contrast of stimuli impacts discrimination ability
for scene images used in the gradCPT. To do this, a
modified two alternative forced choice (2AFC) task
was developed that presented these scene images
under either dynamic (gradual onset) or static (abrupt
onset) image presentation sequences to assess how
the impact of image degradation on performance
changes with the temporal presentation of stimuli
when the same scene images are used as stimuli.
It was predicted that the increased visual difficulty
of gradual image presentations coupled with the
rapid temporal presentation structure would increase
the impact of image degradation manipulations
on discrimination accuracy relative to abrupt onset

presentations. These tasks were also compared against
performance on the original gradCPT to determine
the magnitude of performance decrements over
time with disparate task parameters. In addition,
the present study directly compared the impact
of image degradation through reduced resolution
versus contrast using measurements of gist and pixel
similarity developed by Rothlein et al. (2018), to assess
if similarity measures provide a common metric for
understanding changes of perceptual scene properties
under low vision manipulations. It was hypothesized
that image degradation manipulations that increase
image similarity measurements more would lead to
greater deficits in discrimination ability regardless of
the nature of degradation type.

Methods

Participants

Thirty-six naïve volunteers (29 women, mean
age = 20.8 ± 2.21 years) were recruited from the
Boston University and Northeastern communities.
All participants reported being neurologically healthy
with normal or corrected-to-normal vision and passed
screening on the Freiburg Acuity and Contrast Test
assessments (FrACT; Bach, 1996). This research
was approved by the VA Boston Healthcare Internal
Review Board, complied with American Psychological
Association (APA) ethical standards, and followed the
tenets of the Declaration of Helsinki. All participants
provided signed informed consent before the study and
were compensated $15/hour for their time.

Power analysis and sample size calculation
The current study used a counterbalanced order for

block presentations (see below). As a result, participant
sample size needed to be completed in groups of six
to complete the counterbalancing sequence. Using the
software programG*Power version 3.1 (Faul, Erdfelder,
Lang, & Buchner, 2007) we estimated the group sizes
needed to measure medium effect sizes (Cohen’s f
= 0.25) with 95% power for the 2 × 6 mixed-design
ANOVAs that were the primary focus of our behavioral
performance measures was 14 per group or 28 total.
Thus, a sample size of 18 per group with a total sample
size of 36 was chosen for the current study.

Materials and procedure

The experiment was conducted on a 15 inch
Macbook Pro (1440 × 900 screen resolution) with
stimuli created using Matlab (Mathworks, Natick,
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Figure 1. Example city image from experiment illustrating the six
levels of reduced resolution using a disc blur filter (top panels)
and the six levels of reduced contrast by rescaling maximum
and minimum luminance of greyscale images (bottom panels).

MA, USA) and the Psychtoolbox (Brainard, 1997)
and Palamedes (Prins & Kingdom, 2018) extensions.
The following tasks used the same stimuli that were
developed for the standard gradCPT task, which
included 10 images of city scenes and 10 images
of mountain scenes (Esterman et al., 2013). All 20
greyscale images were 300 × 300 pixels shown within
a circular aperture (see Figure 1). The paradigm was
modified from a go/no-go paradigm to a 2AFC task
where participants were asked to discriminate between
image types by pressing “z” for city images and by
pressing “/” for mountain images. Unlike the traditional
go/no-go gradCPT paradigm where there is a 90%
probability of city images on a given trial, city and
mountain images were shown with equal probability.
Recent work has demonstrated that performance
decrements on the gradCPT are not attributable to
target frequency, with similar time-on-task decrements
obtained when mountain images are presented at 50%
frequency compared to 10% in the standard gradCPT
design (Jun, Remington, Koutstaal, & Jiang, 2019).
Given this finding and the concern that higher image
degradation levels could be associated with differential
changes in response patterns across individuals, namely
a significant reduction in the total number of responses
in blocks with highly degraded images due to shifts in
criterion, a 50% target 2AFC design was chosen.

Participants were seated at a viewing distance of
50 cm from the laptop screen throughout the
experiment. All participants completed four versions
of the 2AFC task outlined below (a blocked task for
reduced resolution and contrast, and then an adaptive
task for reduced resolution and contrast). Task order
was counterbalanced across participants with half of
the participants completing the resolution degradation
version before the low contrast versions and vice versa.

Blocked image degradation task
For the blocked tasks, participants were divided

into two groups of 18 with one group completing
the static blocked task and the other completing the
dynamic blocked task. Trials in the dynamic task
followed the same temporal pattern as the standard

gradCPT in which images fade from one to the next
every 800 ms using linear interpolation continuously
for 8 minutes with no breaks provided (Esterman et al.,
2013). In the static task, each trial began with a blank
grey screen shown for 200 ms, followed by one of the
greyscale images which remained on the screen until
participants responded. Importantly, the self-paced
static task was implemented to represent an optimal
control condition that lacks the response time restraints
and the gradual fading of the dynamic condition.
This provides an upper bound of performance under
image degradation using a paradigm that more closely
resembles traditional perceptual discrimination tasks
rather than having the temporal constraints that are
associated with continuous performance tasks.

For both block types, six levels of resolution or
contrast were tested within a block of trials. The six
image degradation levels were determined based on
pilot testing using the dynamic image presentations.
Image resolution was reduced using a disc filter applied
over the image with a larger radius leading to a higher
defocusing of the image. Disc filter radius values used
were 0, 5, 10, 15, 25, and 40 pixels (see Figure 1).
This method has been shown in the literature to
provide a better approximation of image distortions
due to refractive errors in humans than low-pass or
Gaussian filters (Strasburger, Bach, & Heinrich, 2018).
Although refractive errors due to retinal disease would
reduce both resolution and contrast simultaneously,
the goal was to isolate these two factors to explore
their impact independently of one another. To better
isolate resolution changes from contrast levels, image
luminance ranges were rescaled to the range of [0 to 1]
after application of the disc filter.

Contrast levels were defined by the intensity range of
greyscale minimums and maximums with a maximum
range of 0 (black) to 1 (white) for a given image. The
smaller the range between minimums and maximums,
the lower the contrast of the image. The six contrast
ranges tested were: 1 [0, 1], 0.164 [0.418, 0.564], 0.128
[0.436, 0.564], 0.092 [0.546, 0.454], 0.056 [0.528, 0.472],
and 0.020 [0.51, 0.49]. The average log10 root mean
square (RMS) values across all 20 images for these
six intensity ranges was −1.47, −3.04, −3.26, −3.54,
−3.98, and −4.87, respectively (see Figure 1). Movies 1
and 2 illustrate the resolution and contrast conditions
for the dynamic block type.

For both block types (dynamic/static) and
degradation type (resolution/contrast), each of the
20 unique images was repeated five times at a given
image degradation level. Image sequence order was
randomly determined for each participant with the
constraint that a given image could not be presented
twice in a row. Across the six resolution/contrast levels
within a task, a total of 600 trials were completed.
For the gradual condition, block run time was fixed at
8 minutes, whereas in the static condition, the total
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Movie 1. Resolution Degradation.Movie illustrating the six
levels of reduced resolution tested in the blocked image
degradation task. Eight images are shown at each blur level and
the images are shown fading one into the next in the same
manner used in the dynamic blocked image degradation
condition. Movie is available on the journal website.

run time was dependent on reaction times (mean
= 9.5 minutes; range = 7.0 to 13.8 minutes). Block
order for the six degradation levels was determined
using a six level Williams design Latin square approach
to control for first-order carryover effects. Prior to

Movie 2. Contrast Degradation.Movie illustrating the six levels
of reduced contrast tested in the blocked image degradation
task. Eight images are shown at each contrast level and the
images are shown fading one into the next in the same manner
used in the dynamic blocked image degradation condition.
Movie is available on the journal website.

beginning both the blur and contrast tasks, participants
completed 120 practice trials. Here, each of the
20 images was presented once at each degradation level.
During practice, resolution and contrast levels were
presented in order starting with the no-degradation
condition and moving down to the greatest blur/lowest
contrast to help familiarize participants with the stimuli
and image degradations used in the experimental
blocks.

Adaptive image degradation task
As the blocked design required an a priori definition

of the maximum image degradation (i.e. largest blur
radius and lowest contrast), participants also completed
an adaptive threshold version of the static presentation
task for both the resolution and contrast manipulations
to assess for potential group-level differences in
perceptual discrimination ability. Participants began
each block with a practice session of 10 trials. As in the
blocked task, each trial started with a grey screen for
200 ms followed by one of the city or mountain images,
which was presented until participants responded. On
each trial, a random image was chosen from the 20 total
images with the constraint that no image was repeated
twice in a row and a total of 50 trials were completed.
The adaptive task used a bestPEST (parameter
estimation by sequential testing) algorithm, which
does not require any prior information and assumes a
constant fixed slope of the psychometric function. For
this task, the bestPEST determines the disc filter radius
or contrast threshold level that corresponds to a 75%
accuracy rate for an individual (Bach, 1996).

Reference data for time-on-task decrement validation
Whereas the current dynamic version matched the

standard gradCPT in almost all aspects, the present
study changed both the frequency of city/mountain
image presentations and the response type from the
standard gradCPT. Although a recent study found
that performance decrements are still observed under
50% response frequency (Jun et al., 2019), it is possible
that the current changes altered the extent to which
the dynamic condition tapped into sustained attention
ability. To test if this was the case, we assessed whether
performance deficits were observed with time on task
(i.e. vigilance decrements) and if those performance
decrements were similar in magnitude to those from
the standard gradCPT paradigm. Data from a total of
72 participants were gathered from the study reported
in Esterman, Reagan, et al. (2014) to compare time-
on-task decrements between the traditional go/no-go
rare-target gradCPT and the current tasks that are
2AFC with 50% stimulus frequency. This study used the
same stimuli and temporal presentation structure as the
dynamic condition in the current experiment, but with
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10% mountain and 90% city scenes. Participants were
instructed to respond to city scenes and withhold their
response to mountain scenes. In Esterman, Reagan, et
al. (2014), which investigated the impact of reward on
participant performance, participants were assigned
to reward conditions and non-reward conditions. As
this study found no difference in slope estimates for
accuracy and reaction time variability measures across
reward conditions (i.e. no difference in the magnitude
of time-on-task decrements), subjects were pooled
across conditions for the purpose of our time-on-task
decrement comparisons.

Analyses
For the blocked image degradation tasks, three

performance measures were calculated. Accuracy was
calculated as the proportion of correct responses across
all 100 trials tested at each level of image degradation.
Next, mean reaction time was calculated for trials
where a correct response was made in keeping with
the standard approach to assessing reaction times in
the standard gradCPT task (Esterman et al., 2013).
For participants in the static condition, reaction time
was calculated as the time between the onset of the
city/mountain image and when participants pressed
one of the response buttons. For participants in the
dynamic condition, reaction times were calculated using
the iterative algorithm used in the standard gradCPT
task (Esterman et al., 2013). Briefly, reaction time on
each trial is defined relative to when the image on that
trial begins to fade in from the previous image. Thus,
reaction times less than 800 ms indicate the image on
that trial was still fading in from the previous image,
and reaction times greater than 800 ms indicate that
the current trial image was in the process of being
replaced by the next trial image. Given that images are
presented at a fixed temporal rhythm, all button presses
are recorded during completion of the task block and
the iterative algorithm is used to assign reaction times
after completion (see Fortenbaugh et al., 2015 for
details). The third performance measure calculated for
all blocks was a measure of reaction time variability
(coefficient of variation [CV]). Here, reaction time
variability was calculated as the CV, or the standard
deviation of correct reaction times divided by the mean
correct reaction time. For the adaptive classification
task, image degradation levels at the last trial were
taken as the threshold.

Time-on-task effects (i.e. vigilance decrements) were
calculated for the four blocked image degradation
conditions. As image degradation levels were intermixed
in blocks of 100 trials, corresponding to 1.33-minute
windows, this window size was used to calculate
accuracy scores and reaction time variability for
the six blocks of trials. Linear mixed effects models
were then calculated, which included block time and

image degradation levels as repeated fixed factors. The
estimated beta parameter in this model represents the
estimated slope accounting for changes in performance
due to image degradation level and provided reference
values that the time-on-task decrements measured in
Esterman, Reagan, et al. (2014) could be compared to
using one-sample t-tests. We note, however, that no
significant differences in slopes were observed and that
slopes were equivalent when the first 8-minute vigil was
compared to the 10-minute slope in Esterman, Reagan,
et al. (2014). For the Esterman, Reagan, et al. (2014)
dataset, to ensure that similar windows of time were
used across datasets, slopes for each participant were
re-calculated here using linear regression on six 100 trial
(1.33-minute) windows for correct omissions (COs)
and reaction time variability, as rare mountain images
are considered the “target” stimulus in the standard
gradCPT.

As the image resolution and contrast manipulations
degrade image quality in different ways, it is not
possible to directly compare their impact on image
discrimination ability using the native metrics (e.g. disc
filter radius versus log10 RMS contrast). To assess
if measurements of image similarity could provide
a common metric that predict how performance is
associated with changes in resolution and contrast, our
final analysis utilized an approach recently developed by
Rothlein et al. (2018) that characterized the similarity of
a given image to all other images in the stimulus dataset.
Here, the two exemplar-based similarity measures
from this study were applied: cross-category pixel
similarity and gist similarity. Pixel-based similarity,
which is sensitive to position-specific, high-frequency
commonalities across image pairs, used correlations of
pixel intensity values across the grey-scaled images to
determine the degree to which a given image is likely
to be mistaken as an image in the other category (e.g.
responding that an image is a city image when it is in
fact a mountain image). For each of the 20 images in the
stimulus dataset, pixel intensity values across the 300 ×
300 image matrix were reshaped into a column vector
and correlated with the reshaped pixel intensity values
of the 10 images in the other category. That is, pixel
intensity values for each city image were correlated with
pixel intensity values for all 10 mountain images and
vice versa, using Pearson correlation coefficients. The
largest r-value was taken as the exemplar pixel similarity
value for that stimulus (i.e. the r-value associated with
the nearest cross-category neighbor). A single pixel
similarity value was obtained for each of the 20 images
in the dataset. To assess how similarity changes as a
function of image degradation, the 20 images were
degraded using the six blur disc filters and six contrast
reduction levels in the blocked task. This allowed us to
generate two 6 × 20 matrices showing the change in
image pixel similarity for each image at each resolution
and contrast level tested. A similar approach was used
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to calculate gist similarity. However, for this measure,
each image was represented as a Gist descriptor vector
with 512 values as defined in Rothlein et al. (2018).
Briefly, each image was divided into 16 equal subsets
of size 4 × 4 and 32 Gabor filters (8 orientations × 4
sizes) were applied to these subsets to obtain a measure
of energy or the degree to which the oriented Gabor
matched the image at that location. This measure of
similarity is less sensitive to high-frequency spatial
variations than the pixel similarity measure and better
summarizes the spatial layout of scene images (Oliva
& Torralba, 2001; Oliva & Torralba, 2006; Rothlein
et al., 2018). As with the pixel similarity measure, the
512-length feature vector for each image was correlated
with the 10 images from the other category and the
maximum r-value was taken as the gist similarity
value for that image. These calculations were run at
each of the six resolution and contrast levels tested to
generate the two 6 × 20 matrices showing the change in
image gist similarity for each image at each resolution
and contrast level tested. Defining the pixel and gist
similarity values for each image allowed for assessment
of how accuracy changed when images became more
similar at the individual subject and group level using
a common metric for both resolution and contrast
manipulations.

Results

Participant demographics in the dynamic and
static presentation conditions

Comparisons of participant demographics showed
that individuals assigned to the dynamic blocked
image degradation task did not differ from individuals
assigned to the static blocked image degradation task in
terms of gender, χ2(1) = 1.596, p = 0.402, or age, t(24)
= 1.134, p = 0.265.

Testing for time-on-task performance
decrements

Performance decrements with time on task are a
hallmark feature of sustained attention tasks. As the
tasks used in this study were adapted from a go/no-go
sustained attention paradigm with only 10% probability
of a target appearance to a 2AFC discrimination
task with equal probability of stimuli appearing, it
was necessary to determine whether the performance
decrement over time that is typically observed in the
original gradCPT was also present in the 2AFC version,
as would be predicted by prior work (Jun et al., 2019).
To confirm this, the magnitude of the performance
decrements of the traditional go/no-go gradCPT with

a 10% target rate observed in Esterman, Reagan, et al.
(2014) were compared to those of the current tasks.
The Table 1 shows the calculated slopes for correct
omissions and reaction time variability computed
from the Esterman, Reagan, et al. (2014) dataset along
with slope estimates for accuracy and reaction time
variability in the dynamic and static blocked tasks using
resolution or contrast image degradation in the current
study. As seen in the Table 1, significant time-on-task
effects were found in the current study, with accuracy
declining over time in all four conditions (p values ≤
0.008 for all). Figure 2 shows the decline in accuracy
with time on task for the dynamic presentation in the
resolution and contrast image degradation blocks, after
residualizing out the effect of image degradation levels.
Reaction times were found to become significantly
more variable over time in the dynamic conditions (p
values ≤ 0.001 for both), whereas no significant change
was seen in the static conditions (p values > 0.73 for
both). One-sample t-tests were calculated to determine
if the slopes calculated from the Esterman, Reagan,
et al. (2014) study differed from the slope parameter
estimates from the current tasks. Comparison of
slopes for accuracy in the current study to the slope of
correct omission rates (correctly withholding responses
to no-go targets) in Esterman, Reagan, et al. (2014)
were completed as errors to infrequent targets occur
at a higher rate than failures to respond to frequent
non-target stimuli (i.e. omission errors). As seen in
the Table 1, the rate at which accuracy rates declined
in the current study did not differ from the rate at
which correct omissions declined on the standard
gradCPT for the two conditions with dynamic stimulus
presentations (p values > 0.10 for both). With static
stimulus presentations, slopes did not differ for the
resolution degradation condition (p = 0.089), but slopes
were significantly shallower for static presentations
in the contrast degradation condition (p = 0.012).
Considering changes in reaction time variability over
time, results show increases in response variability in the
dynamic presentation conditions that were larger than
those seen in Esterman, Reagan, et al. (2014) for the
resolution image degradation condition (p = 0.0015) or
did not significantly differ from Esterman, Reagan, et
al. (2014) in the contrast image degradation condition
(p = 0.176). For the static presentation blocks, reaction
time variability slopes were significantly shallower
for both image degradation conditions (p values <
0.001 for both). Collectively, these results demonstrate
significant declines in performance over time for all
four conditions in the present study. Importantly, when
a fixed temporal structure is utilized in the dynamic
presentation condition similar to other continuous
performance tasks, declines in accuracy and increases in
reaction time variability were as large if not larger than
those seen in the standard gradCPT paradigm over an
8-minute “vigil.”
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Figure 2. Scatterplots showing the performance decrements in accuracy over the six blocks of task in the dynamic condition after
regressing out effects of image degradation level. The left panel shows performance for the resolution image degradation condition
and the right panel shows performance for the contrast image degradation condition. Individual participant data are shown as blue or
red diamonds. The black lines show the best-fitting linear regression model with 95% confidence intervals shaded in grey.

Figure 3. Behavioral results from blocked image degradation task. (a) The top panels show results from blocks where resolution was
reduced used a blur disc filter. The three figures show the mean proportion correct, mean reaction time in seconds and reaction time
variability calculated as the coefficient of variation as a function of blur level for participants who completed the dynamic or static
conditions. (b) The bottom panels show results from blocks where image contrast was reduced. The three figures show the mean
proportion correct, mean reaction time in seconds and the coefficient of variation as a function of contrast level calculated using
log10 RMS for participants who completed the dynamic or static conditions. Error bars show ±1 SEM.

Group-level behavioral performance

The next level of analysis examined how performance
variables changed as a function of image degradation
level. Figure 3 shows the group-level means for each
of the three performance measures (accuracy, mean
reaction time, and reaction time variability) at the

six levels of image blur and reduced contrast tested.
For group-level analyses of behavioral performance
on the blocked image degradation task, mixed-design
ANOVAs were calculated for each of the three
performance measures assessed with the resolution
and contrast image degradation manipulations as the
dependent variable. Each ANOVA included condition
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(dynamic/static) as a between-subject factor and
degradation level (6 levels of blur or reduced contrast)
as a within-subject factor and used Greenhouse-Geisser
correction when assumptions of sphericity were
violated.

For the resolution image degradation conditions (see
Figure 3a), there was a significant overall reduction in
accuracy as the degree of blur increased, F(5,170) =
104.196, p < 0.001. Overall, accuracy was higher with
static image presentation compared to the dynamic
presentation, F(1,34) = 76.99, p < 0.001, and a
significant interaction was seen between blur level and
presentation condition, F(5,170) = 6.591, p < 0.001.
For reaction time, results showed no overall main effect
as the degree of blur increased, F(1.4,48) = 2.708, p
= 0.093, but significantly faster reaction times with
static image presentation compared to the dynamic
presentation, F(1,34) = 13.555, p < 0.001. A significant
interaction between blur level and presentation
condition was also seen in reaction times with the
greatest difference seen when no blur filter was applied
and no difference in reaction times across presentation
conditions with the largest blur filter, F(5,170) = 4.184,
p < 0.001. Post hoc comparisons using Bonferroni
correction for multiple comparisons with an adjusted
critical α = 0.0083 support this pattern. Participants
in the static condition were significantly faster in their
correct discrimination reaction times for the four
lowest blur levels (all p values < 0.001) but were not
significantly faster in the two highest blur levels (p
= 0.026 and p = 0.770, respectively). Reaction time
variability generally increased as the degree of blur
increased, F(2.9,98) = 3.887, p = 0.012, and was higher
with static image presentation compared to the dynamic
presentation, F(1,34) = 67.33, p < 0.001. Results did
not show a significant interaction between blur level
and presentation condition on reaction time variability,
F(5,170) = 1.409, p = 0.223. For the contrast image
degradation conditions (see Figure 3b), accuracy
was higher with static image presentation compared
to the dynamic presentation, F(1,34) = 96.926, p <
0.001. There was also a significant main effect of
contrast level with accuracy dropping as contrast was
reduced, F(5,170) = 52.687, p < 0.001. However, as
seen in Figure 3, this overall main effect was primarily
driven by reductions in accuracy in the dynamic
presentation condition, which is seen in the significant
interaction between contrast level and presentation
condition, F(5,170) = 43.290, p < 0.001. For reaction
time, results showed a general slowing of reaction
times as the image contrast was reduced, F(2.8,95.3) =
3.159, p = 0.031, and faster overall reaction times with
static image presentation compared to the dynamic
presentation, F(1,34) = 54.891, p < 0.001. However,
a significant interaction between contrast level and
presentation condition was again seen with the greatest
difference in reaction times when no contrast filter

was applied and a reversal in reaction time patterns
across presentation conditions at the lowest contrast
level tested, F(5,170) = 35.471, p < 0.001. Post hoc
comparisons using Bonferroni correction for multiple
comparisons (critical α = 0.0083) were again calculated
for reaction times. Results show that participants
in the static condition were significantly faster in
their correct discrimination reaction times for the
five highest contrast levels (all p values < 0.001).
Whereas participants in the static condition were
numerically slower to respond at the lowest contrast
condition, the difference across presentation conditions
was not significantly different (p = 0.017). Reaction
time variability also mirrored findings from the blur
conditions. Here, reaction time variability increased as
image contrast was reduced, F(5,170) = 11.053, p <
0.001, and was higher with static image presentation
compared to the dynamic presentation, F(1,34) = 16.50,
p < 0.001. The interaction between contrast level and
presentation condition was not significant, F(5,170) =
0.489, p = 0.784.

As images in the static condition remained on the
screen until participants responded while trial durations
were fixed at 800 ms in the dynamic condition, an
additional qualitative analysis was completed looking
at the impact of trial duration on accuracy in the static
condition. Assessment of individual trial reaction
times across all participants showed that with reduced
resolution blocks, images were shown for longer than
800 ms on 27.8% of all trials, whereas for reduced
contrast blocks, images were shown for longer than
800 ms on 18.4% of all trials. To see if higher accuracy
rates in the static condition relative to the dynamic
condition could be accounted for by this subset of trials
where images were presented for more than 800 ms,
we recalculated accuracy scores for each of the image
degradation conditions excluding individual trials that
presented images for longer than 800 ms. Figure 4
shows the mean accuracy rates for all trials along
with the recalculated accuracy scores only considering
trials where images were shown for 800 ms or less. As
seen in Figure 4, the pattern of mean accuracy rates
is equivalent for resolution and contrast degradation
conditions, indicating that the subset of trials with
longer image presentations than the gradual condition
cannot account for the higher accuracy rates seen in the
static presentation condition.

Rate of change in performance across
degradation levels

Whereas the ANOVAs showed a significant
interaction between the degradation level and
presentation conditions on the accuracy measure for
both the resolution and contrast manipulations, this
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Figure 4. Mean proportion correct as a function of degradation
level in the static conditions. The six contrast degradation levels
are shown in red while the six resolution degradation levels are
shown in blue (1 = no image degradation, 6 = highest image
degradation block). Diamonds and solid lines show the
proportion correct calculated on the subset of trials where
images were shown for 800 ms or less, whereas square symbols
and dashed lines show the proportion correct calculated with
all trials as in Figure 3.

analysis is not well suited to address questions about
rate of change when intervals are not equally spaced. To
test whether performance drops at different rates with
the static and dynamic image presentations as image
quality is degraded, an additional hierarchical linear
regression approach was also used on the group-level
mean accuracy scores to test the hypothesis that
performance levels drop at a faster rate in the dynamic
condition than in the static condition. Here, two
models were tested using GraphPad Prism (GraphPad
Software, LLC version 8.4.1). The first model allowed
for separate slope and intercept parameters to be fit
to the group-level means for the dynamic and static
conditions (i.e. performance drops at different rates).
The reduced model was compared to allow for separate
intercepts but required a shared slope value across
the dynamic and static conditions (i.e. performance
drops at the same rate). Quality of fit of the first model
was compared to the reduced model using an extra
sum-of-squares F-test. Figure 5 shows the results of
this analysis. For the resolution condition, results from
the hierarchical regression show that the alternative
model with separate intercepts and slopes for the static
and dynamic conditions did not provide a significantly
better fit for the group-level accuracy scores, F(1,8)
= 2.063, p = 0.1889. Changes in accuracy were well
fit by the reduced model with two lines with a shared
(global) slope parameter, with the proportion of correct
responses dropping by 0.009 for every pixel increase
in the blur filter radius (static condition: R2 = 0.94
and dynamic condition: R2 = 0.92). In contrast, the
alternative model was found to be a significantly better
fit when modeling the change in accuracy as image

contrast was reduced, F(1,8) = 21.98, p = 0.0016 (static
condition: R2 = 0.51 and dynamic condition: R2 =
0.86).

Adaptive image degradation task

The adaptive image degradation task was completed
to assess for each participant the maximum degree of
image degradation that could be applied under static
presentation conditions where performance could
be maintained at 75% accuracy. Figure 6 shows the
results from the adaptive image degradation task. To
test whether threshold values fell outside the range of
values tested in the blocked image degradation task
(max blur filter = 40-pixel radius; lowest log10 RMS
contrast = −4.87), two one-sample Wilcoxon signed
rank tests were calculated. Results showed that the
average threshold for the resolution version of this
task was significantly smaller than the largest blur
disc filter radius tested (median blur filter radius: 28
pixels, z = −5.236, p < 0.001). In contrast, the average
threshold for the contrast task was lower than the most
reduced contrast condition in the blocked task (median
log10 RMS = −4.92, z = −2.278, p = 0.023). While
participants were split into two groups (static/dynamic)
when completing the blocked image degradation task,
all 36 participants completed the same adaptive image
degradation task. Therefore, in order to assess for any
between-group differences in performance abilities
across the groups when completing the same task,
Mann-Whitney U tests were calculated comparing
thresholds on the resolution and contrast version of
the adaptive image degradation task across the two
groups of participants. Results of these tests showed
no difference in thresholds for either the resolution or
contrast tasks across the two groups of participants,
indicating similar perceptual discrimination abilities
at the group-level (blur: U =116, p = 0.152; contrast:
U =120, p = 0.192).

Image similarity

The final analysis assessed the extent to which
pixel and gist similarity measures are able to capture
the relationship between image degradation and
behavioral performance on the blocked task and
whether these measures can provide a common metric
for understanding the impact of resolution and blur on
scene discrimination ability. For this analysis, images
were defined based on their maximum similarity to the
10 images in the opposite category using pixel and gist
similarity measures outlined in the Methods section
above (Figure 7). As each image was only repeated five
times at each image degradation level, for a descriptive
analysis, data were concatenated across all 18 par-
ticipants in each condition (dynamic/static)
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Figure 5. Results of hierarchical model fitting of mean proportion correct scores from the blocked image degradation task. (a) Results
for the resolution condition showing that decreases in performance as a function of blur disc filter radius were best fit by lines with a
shared slope and different intercepts across the dynamic and static conditions. (b) Results for the contrast condition showing the
decreases in performance as a function of reductions in log10 RMS contrast were best fit by lines with different slopes and intercepts
across the dynamic and static conditions. Squares and circles show mean accuracy levels at each condition with error bars showing
±1 SEM. The solid lines show the best fitting regression line with 95% CI for the regression line shaded in grey.

Figure 6. Threshold results from the adaptive image degradation task. (a) Box plot showing the median and interquartile range of
thresholds from the resolution image degradation block indicating the radius of the disc filter in pixels. (b) Box plot showing the
median and interquartile range of thresholds from the contrast image degradation block showing thresholds by the log10 RMS across
all 20 stimulus images. For both plots, individual subject thresholds from all 36 participants are overlaid on the box plot.

Figure 7. Figure illustrating the change in cross-category pixel and gist similarity measures in the reduced resolution (left panels) and
reduced contrast (right panels) blocks. Pixel and gist similarity are shown for each of the 20 images used in the experiment at each of
the six resolution and contrast levels tested in the blocked image degradation task. Columns 1 to 10 show the values for the city
images, whereas columns 11 to 20 show the values for the mountain images.
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Figure 8. Scatterplots from image similarity analyses on (a) the dynamic presentation condition and (b) the static presentation
condition. Scatterplots show the association between pixel similarity (left panels) and gist similarity (right panels) with mean accuracy
scores for each image collapsed across participants. Data from the 120 images in the resolution degradation condition are shown as
light grey circles while data from the 120 images in the contrast degradation condition are shown as dark blue diamonds.

and proportion correct was calculated for each of
the 120 images across the 90 image presentations (18
participants × 5 repeat trials) in the resolution and
contrast manipulation blocks.

Figure 8 shows the proportion correct as a function
of presentation type (dynamic/static) and image
similarity score. As seen in Figure 8, the gist similarity
measure provides a stronger association with overall
performance across both types of image degradation
and both presentation types. Moreover, the results
show that performance begins to drop when image
similarity is lower in the dynamic presentation condition
while performance remains both high and relatively
unimpacted by increases in image similarity under
the static image presentations until the gist similarity
approaches 0.8, after which accuracy begins to rapidly
decrease as images more closely resemble images in the
opposite category. To provide a statistical assessment
of these trends, separate linear mixed-effects models
were calculated for dynamic and static presentation

conditions using SPSS version 25. In each model,
the mean accuracy for each image across the five
repeats was included as the dependent variable. Images
were combined across the resolution and contrast
conditions with each participant providing accuracy
scores for 240 images. Fixed factors were the pixel and
gist similarity values for each image. Random effects
included subject intercepts and random slopes for the
pixel and gist similarity values. Results show similar
trends to those seen in Figure 8. For the dynamic
condition, pixel similarity was found to be negatively
associated with accuracy (β = −0.1396, p < 0.001)
as was gist similarity (β = −0.3526, p < 0.001). In
contrast, for the static condition, gist similarity was
still negatively associated with accuracy (β = −0.7826,
p < 0.001) but no association was seen between pixel
similarity and accuracy scores (β = 0.0070, p = 0.787).
Thus, gist provides a more robust metric for associating
how image degradation through reduced resolution
and contrast impacts scene discrimination across both
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image presentation types than the pixel similarity
measure.

Discussion

The current study investigated the impact of image
degradation and stimulus presentation patterns on
sustained attention performance. First and foremost,
this work demonstrates that the impact of image
degradation on sustained attention is dependent
on the way in which images are manipulated and
the nature in which images are presented. Notably,
accuracy decreased under both reduced resolution and
contrast under complex, dynamic stimulus presentation
whereas reductions in contrast were relatively stable
under static stimulus presentations. Additionally,
image similarity measures provide a common metric
for assessing the relationship among different types
of image degradation, perceptual sensitivity, and
overall performance on these sustained attention tasks,
suggesting that reduced resolution makes the gist
of images more confusable under dynamic stimulus
presentation. Moreover, as the current task response
mode and stimulus frequency differ from that of the
original gradCPT, we also validate that the current
task is sensitive to sustained attention as performance
decrements are equal to those observed in the original
gradCPT.

Greater task demands and poorer performance

Our main findings first support the notion that
greater degradation of stimulus contrast and resolution
leads to performance deficits. With increases in blur,
accuracy declined at a similar rate under both static and
dynamic presentation, but accuracy was lower overall
in the dynamic stimulus presentation (see Figures 3,
5). These results highlight the deleterious impact of
reduced resolution for discriminating complex natural
scene images, such that even with extended viewing
times and removing the fading component from the
trial structure, participants were still impaired at
identifying objects and forms within a given image.
Conversely, reducing image contrast had little impact
on performance under the static temporal pattern,
whereas performance declined at a quicker rate under
a gradual temporal pattern. This asymmetry suggests
that, when presented with images that do not fade
from one to the next, participants can successfully
discriminate images even with significant reductions in
contrast but fail to do so when images are presented
rapidly and in a gradually fading manner. Importantly,
under both contrast and resolution degradation, mean
reaction times were shorter than 800 ms (trial length

of the dynamic condition) in the static condition
for all blocks except for the highest degraded trials,
meaning images were shown for less time in the static
condition on average. As seen in Figure 4, longer
stimulus presentations on a subset of trials in the
static condition cannot account for higher overall
accuracy rates in the static condition. Rather, the
pattern of results suggests that decreased perceptual
saliency within the dynamic condition trials due to the
complex image fading in addition to the overall image
degradation manipulations likely plays a significant role
by increasing stimulus ambiguity. Notably, previous
literature has suggested reaction time results are driven
by an initial burst of processing activation during the
240 ms of a stimulus’ display and that this period is
the most critical in determining reaction time (Ulrich,
Rinkenauer, &Miller, 1998). Although the different trial
durations between the dynamic and static conditions
pose a limitation in the interpretation of reaction time
differences across the conditions, future work is needed
to better characterize the impact of trial timing on
overall performance. Even so, the present results suggest
that time limitations alone cannot explain performance
disparity between conditions. Additionally, results from
the adaptive image degradation task (see Figure 6)
revealed that thresholds for both the contrast and
resolution degradation conditions did not significantly
differ across the two groups of participants, which
suggests that behavioral differences were due to the
image manipulations (i.e. static versus dynamic) and
not the implicit capabilities of participants in each
condition.

The gradCPT (Esterman et al., 2013) is a prime
example of a current sustained attention paradigm
that features complex, naturalistic, gradually fading
stimuli and is used in research to assess various clinical
populations. The temporal dynamics of this task were
designed to increase task sensitivity to fluctuations in
sustained attention relative to other paradigms that
use more simple stimuli and abrupt onsets that may
exogenously cue attention on a trial-by-trial basis.
Because complex stimuli with dynamically changing
temporal patterns are becoming more common in
assessments of sustained attention (Chuang, Ko, Jung,
& Lin, 2014; Esterman et al., 2013; Jun & Lee, 2021;
Zhang, Zhang, & Xu, 2021), this study suggests that
these newer paradigms may be more sensitive to deficits
in primary visual function, increasing the possibility
that primary visual deficits will negatively impact
performance on these tasks. From a clinical perspective,
the present findings suggest that attentional failures
in populations with similar low vision conditions
may appear more pronounced due to reduced quality
of visual input. Although this study did not feature
a clinical population, the current results support
the importance of considering visual status prior
to attentional testing. In addition, reductions in
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image contrast were seen to impact performance in
the dynamic condition to a far greater extent than
was seen in the static condition and the results of
the adaptive threshold testing showed that contrast
thresholds for most participants fell outside of the
range of values tested in the block design. These results
suggest a need for researchers to check the testing
environment when utilizing paradigms that involve
complex image presentation sequences, as glare from
light sources in the environment may impact image
contrast (Paulsson & Sjöstrand, 1980; Rodriguez et
al., 2016). Based on these findings, it is possible that
suboptimal lighting conditions, whether from the
environment or the computer monitor itself, may have
pronounced effects on performance in dynamic testing
settings regardless of the visual status of participants.
With the coronavirus disease 2019 (COVID-19)
pandemic there has been an accelerated interest in
using telehealth for neuropsychological assessments,
though work in this area has been developing for over
a decade. Web-based assessments can increase clinical
reach to remote populations but also reduces control
of testing environments. The present results suggest
that in this context, using static stimulus presentations
may make for a more reliable assessment of attention
on continuous performance tasks as these may be
less sensitive to visual deficits or issues with testing
environments that could impact image contrast.

It is important to note that response mode
and stimulus frequency of the current task differs
considerably from the original gradCPT in that
2AFC and 50 percent stimulus frequency have been
implemented in the current experiment. Comparison
of slopes between correct omissions in the original
gradCPT and accuracy in the current task demonstrates
statistically similar performance decrements in the
dynamic condition, suggesting that the task still taps
into sustained attention despite the changes in the
nature of the task. This is consistent with previous
work showing that altering the response frequency
to equal probability results in identical performance
decrements as that of the rare target version, suggesting
that stimulus frequency is not the basis for changes
in performance over time (Jun et al., 2019). Instead,
it appears that the complexity of the stimuli coupled
with short trial durations completed continuously over
minutes are the main factors in inducing performance
declines over time. These results are consistent with
other findings demonstrating that the common
cognitive operation used to engage cognitive control
in go-no/go and stop signal studies is monitoring of
environmental context rather than a unique cognitive
operation related to motoric stopping (Chatham,
Claus, Kim, Curran, Banich, & Munakata, 2012)
and suggests that the critical component of tasks
designed to measure sustained attention is whether they
continuously engage monitoring functions over time.

A gist framework of scene discrimination

In extension of Rothlein et al. (2018), analyses of gist
and pixel similarity on degraded images suggest that
degradation of resolution has the greatest impact on
image similarity and that this is especially apparent in
the gist-descriptor category of similarity, supporting
a gist framework of naturalistic scene discrimination
under low vision (see Figures 7, 8). Although contrast
and resolution are considered orthogonal dimensions
of early visuospatial processing (De Valois & De
Valois, 1988), the relationship between visual deficits
in either dimension and attentional load has been
long noted in the low vision literature. Studies have
found that impairments in either acuity and contrast
place increasing demands on attentional resources to
maintain adequate levels of performance on complex
everyday tasks, such as crossing a busy street or
avoiding obstacles while walking (Geruschat & Turano,
2007; Kuyk, Elliott, & Fuhr, 1998). The concept of
similarity provides a commonmetric to investigate these
two orthogonal concepts and to quantify the extent
to which reductions in these domains impacts visual
processing of complex scenes. Behaviorally, we observe
that accuracy decreases with greater gist similarity,
and that this begins to occur at a lower gist similarity
level under dynamic temporal patterns compared to
that of the static temporal dynamics (see Figure 8).
To further support this perspective, the mixed effects
model showed that gist similarity was predictive of
task accuracy in both the gradual and static conditions,
suggesting that as properties that affect gist become
more similar, performance decreases in both temporal
patterns. These findings suggest that image properties
impacted by decreases in resolution that most directly
related to behavioral performance were those related
to perceptual gist, such as recognition of vertical or
horizontal structures, or the spatial envelope related to
the global degree of naturalness or ruggedness in an
image. Disrupting accessibility to these distinguishing
features impacted behavioral performance more than
the pixel luminance similarity measure.

These analyses determine that the impact of gist
similarity on performance is much more pronounced
when the temporal pattern of the task increases visual
load through greater stimulus presentation complexity.
In the context of reduced resolution especially, we see
that the holistic properties related to perceptual gist
become much less recognizable and that discrimination
of images is less successful with dynamic image
presentation. The greater visual demands associated
with dynamic temporal patterns do not appear to allow
for full visual processing of semantic scene recognition,
especially under decreased resolution. Because previous
work has shown that incoherent jumbling of objects
in a scene alters recognizability (Biederman, 1972;
Biederman, 1982), it may be that reductions in resolving
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power in particular impact the ability to process
scene-specific properties to construct a holistic semantic
conclusion about complex scenes in dynamic settings.
Although the ability of the human visual system to
gather the gist of a scene occurs rapidly (Thorpe, Fize,
& Marlot, 1996), our results show that this ability may
fall short or be delayed when visual input is degraded.
Whereas accuracy decreased in the dynamic condition
for both resolution and contrast manipulations at
higher image similarity levels, this same pattern was
not seen in the static condition where accuracy was
unaffected by contrast manipulations. One possible
explanation for the pattern of accuracy effects is that
contrast manipulations function as a veil where relevant
features for image discrimination could be recovered
over time in the static condition when multiple images
were not overlaid, but accuracy declined under more
complex temporal stimulus presentation patterns where
a given trial image was only completely shown alone for
50 ms at a time. With less complexity, even if all features
become more difficult to discern, the features that are
extracted are still beneficial for scene discrimination
across all contrast levels. Although the use of gradually
fading stimuli with overlaid images may be unique to
the gradCPT task, we note that utilization of complex,
dynamic stimulus presentations (e.g. driving simulators
and virtual environments) to increase the ecological
validity of studies are increasingly being reported
(Cassarino, Maisto, Esposito, Guerrero, Chan, & Setti,
2019; Chuang et al., 2014). The results from the present
study suggest that both changes in visual acuity and
contrast sensitivity may negatively impact performance
in these types of studies given the complex and dynamic
natures of visual stimuli.

Limitations and conclusions

An important limitation to consider in this research
is the meaningfulness of gist image similarity measures
in other tasks that do not use naturalistic stimuli. Gist
similarity measures, which focus on holistic global
image properties of a scene (Greene & Oliva, 2009;
Oliva & Torralba, 2006; Oliva, 2005), may not be
suitable to measure similarity for SART-like tasks that
use non-scene stimuli, such as letters or numbers. The
analyses used are better suited to answer questions
regarding complex scenes to determine the ways that
individuals perceive multiple discrete scene properties
as a single unit. Another important limitation is
that our image degradation manipulations may not
accurately capture or represent performance changes
associated with deficits in visual acuity and contrast
sensitivity. Assessing changes in performance across
varying levels of image degradation in a within-subject
design provides an opportunity to help isolate the
impact of image characteristics on performance while

holding the attentional ability of an observer relatively
constant. Dissociating perceptual and attentional
capabilities is more difficult using between-subject
designs in populations where either visual, attentional,
or both vision and attentional processing may be
disrupted. However, directly extending conclusions
about performance deficits measured with experimental
manipulations of image quality to behavioral
performance of individuals with deficits in acuity or
contrast was not possible in the current study. Thus,
an important area for future research is to assess
performance on this task in individuals with confirmed
acuity and contrast sensitivity deficits to determine
the extent to which external image manipulations
are representative of the challenges typically faced in
various clinical populations.

Overall, our study highlights the importance
of considering visual properties on continuous
performance tasks designed to screen for sustained
attention, as these tasks are often used to assess
cognitive function in clinical populations where
primary visual deficits occur at a higher rate than
in healthy adults. Whereas the notion that clinicians
ought to be sure that patients can see visual stimuli
before using them to measure cognitive abilities
seems like an obvious statement, a silo effect tends to
exist across clinical domains such as optometry and
neuropsychology. Although profound visual deficits will
be readily noticed in patients and for many tasks subtle
visual deficits may not impact performance, the results
of the present study suggest that for CPTs, utilization
of rapid trial presentations and complex visual stimuli
will increase the impact of milder deficits in resolution
and contrast on performance. These results point to
the need for comprehensive visual screenings prior
to attention testing in clinical populations and for
future work to assess the potential impact of visual
deficits on performance as a function of commonly
used complex temporal dynamics. These results also
highlight the need for communication among different
departments and practices in clinical care. Because
comorbidities between various psychiatric conditions
and visual deficits exist, our results provide preliminary
evidence that misinterpreted attention issues may be a
consequence of visual problems.

Keywords: sustained attention, continuous
performance task, contrast sensitivity, resolution
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