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Abstract: Monitoring biomass of forages in experimental plots and livestock farms is a time-
consuming, expensive, and biased task. Thus, non-destructive, accurate, precise, and quick
phenotyping strategies for biomass yield are needed. To promote high-throughput phenotyping in
forages, we propose and evaluate the use of deep learning-based methods and UAV (Unmanned
Aerial Vehicle)-based RGB images to estimate the value of biomass yield by different genotypes
of the forage grass species Panicum maximum Jacq. Experiments were conducted in the Brazilian
Cerrado with 110 genotypes with three replications, totaling 330 plots. Two regression models
based on Convolutional Neural Networks (CNNs) named AlexNet and ResNet18 were evaluated,
and compared to VGGNet—adopted in previous work in the same thematic for other grass species.
The predictions returned by the models reached a correlation of 0.88 and a mean absolute error of
12.98% using AlexNet considering pre-training and data augmentation. This proposal may contribute
to forage biomass estimation in breeding populations and livestock areas, as well as to reduce the
labor in the field.

Keywords: Convolutional Neural Network; biomass yield; data augmentation; phenotyping

1. Introduction

Monitoring crop parameters like nutrient content, biomass, and plant height is essential for
yield prediction and management optimization [1]. In situ measurements of these parameters can
be a time-consuming, expensive, and biased task. To assist in plant breeding programs [2] as well
as in precision agriculture practices [3], remote sensing technologies have been used in multiple
approaches [4–6], and, lately, this has expanded with the implementation of UAV (Unmanned Aerial
Vehicle) based-data. In recent years, UAV-based images, in conjunction with robust and intelligent data
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processing methods, are being used as an alternative to the human-visual inspection of agricultural
landscapes [7].

The use of machine learning methods [8], such as RF (Random Forest) and SVM (Support Vector
Machine) in remote sensing applications has been increasing in the last few years, even in precision
farming approaches [9–11]. Deep learning is a type of machine learning technique that automatically
extracts features, and uses a deeper neural network with hierarchical data representation [12].
This technique uses different structures to perform multiple tasks, and, recently, Convolutional Neural
Networks (CNNs) [13] are considered as one of the most important architectures to image and pattern
recognition, especially regarding remote sensing related tasks [14,15].

Deep learning was applied in diverse scenarios with crops such as citrus-trees [11,16], canola [17],
rice [18], corn [19], bean and spinach [20], and others. There is still a lack of deep learning-based
applications in forage crops, specifically using remote sensing data. Although many deep neural
networks were proposed to object detection and segmentation in different agriculture practices,
few studies implemented this evaluation for biomass estimate for pasture fields. Biomass yield is the
main trait evaluated in forage breeding programs, and selection gains can be increased by strategies
that allow high-throughput phenotyping in larger breeding populations. In livestock farms, accurately
measuring biomass is relevant since the profitability can be strongly affected by it [21].

In agriculture-related problems, Osco et al. [4] estimated nitrogen content in citrus-trees using
multispectral UAV-based imagery. A study [22] was able to model water-stress in a vineyard using
hyperspectral UAV-based imaging. Another approach [9] proposed a new technique with UAV-based
hyperspectral imagery to detect citrus canker disease. Regarding plant detection, a study [23]
proposed a method to identify tobacco plants in UAV-RGB-based images automatically. Most of
these practices were beneficiated from the usage of machine learning [4,9,22] and deep learning [23]
methods combined with UAV data, mainly because of the relatively low cost of the equipment and
a high capacity to map plantation fields with very high spatial-resolutions.

Regarding biomass estimation, Bendig et al. [1] proposed an approach adopting CSMs
(Crop Surface Models), which are estimated based on the difference of the DSM (Digital Surface Model)
and the DTM (Digital Terrain Model), both obtained with UAV Photogrammetry. Going forward,
Bendig et al. [24] compared CSMs and VIs (Vegetation Indices) approaches to determine biomass.
The authors used three visible band (RGB) VIs: the green red vegetation index (GRVI), the modified
GRVI (MGRVI), and the red-green-blue VI (RGBVI). They concluded that GRVI and RGBVI are
promising as data input, but the CSMs approach based on plant height returned more accurate results.
Ballesteros et al. [25] used canopy cover, crop height, and canopy volume to estimate onion biomass.
Batistoti et al. [26] also investigated CSM models to estimate biomass in pasture species, achieving
satisfactory results.

Strategies based on plant height are limited because they require DTMs, which are 3D models of
the terrain (i.e., without the plants covering the surface). The generation of a DTM can be performed
using a GNSS (Global Navigation Satellite System)-based survey [26], which is time-consuming,
especially in large areas, or flight-based approaches before initializing the planting process [1].
Although it is not possible to provide more accurate results compared to the CSMs approach,
RGB VI-based approaches already demonstrated promising results, and Bendig et al. [24] pointed out
that further investigation in this matter is necessary.

Nasi et al. [27] investigated the use of RGB and hyperspectral UAV-based data to estimate
biomass. They used the machine learning method RF (Random Forest) combining 3D information,
RGB, and hyperspectral imageries. The authors achieved the best performance by integrating
hyperspectral and 3D features. However, they highlighted that the integration of RGB images and the
3D features also provided excellent results. Li et al. [28] conducted experiments using the RF learner
by joining 3D information, RGB, and hyperspectral data for estimating potato plantations biomass.
Unfortunately, hyperspectral sensors are expensive, and, in a general sense, they are not available for
a wide range of applications.
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Previous researches related to our proposal used conventional machine learning methods,
which require handcraft features [29]. Although some of them returned good accuracies, there is
still a need for more robust models to be proposed in this task. Based on a review analysis, Kamilaris
and Prenafeta-Boldú [29] verified that deep learning methods outperformed traditional machine
learning in several agriculture applications. In this sense, the estimation of biomass using deep
learning is still scarce in the literature. In previous work, Ma et al. [30] assessed a deep learning
architecture based on VGGNet to predict the above-ground biomass of winter wheat. The authors
used an RGB camera on a terrestrial tripod, which somewhat limits the application in larger areas.
Nevertheless, this experiment demonstrated the potential of CNN to ascertain this task and stated that
the proposal of novel methods on this theme is still necessary.

To the best of our knowledge, no literature focused on investigating deep learning-based
biomass estimation methods using UAV-RGB orthoimages in tropical forages. Approaches using
RGB orthoimages seem to be an interesting practice since they have higher spatial resolution compared
to images from other types of sensors, and it does not rely on the 3D information of the canopy,
reducing the amount of data necessary to perform the said task. The contribution of this study is to
propose a deep learning approach to estimate biomass in forage breeding programs and pasture fields
using only UAV-RGB imagery and AlexNet and ResNet deep learning architectures. We also compared
the results with VGGNet, used in previous work [30] on biomass estimation. The rest of the paper is
organized as follows. Section 2 presents both the materials and methods implemented in this study.
Section 3 presents and discusses the results obtained in the experimental analysis. Finally, Section 4
summarizes the main conclusions of our approach.

2. Materials and Methods

2.1. Study Area and Dataset

The dataset was formed by images obtained by the UAV DJI Phantom 4 PRO embedded with
an RGB digital camera with an image resolution of 5472× 3648. The area of the experiment is located in
Brazilian Cerrado at the Experimental Station of Embrapa Beef Cattle, Campo Grande, Mato Grosso do
Sul, Brazil (Figure 1—latitude 20◦26′46′′ S, longitude 54◦43′16′′ W) and altitude 535 m. The flight was
carried out on 23 January 2019, at around 9 a.m. with a relative height of 18 m, resolving 0.5 cm/pixel.
The photos were taken with a frontal overlap of 81% and a lateral overlap of 61%. The orthoimage
(Figure 2b) was generated using the Pix4D software based on the SfM (structure-from-motion) and
MVS (multi-view stereo) techniques.

The experiment was composed of 110 genotypes representing a high genetic diversity of the
species Panicum maximum (syn. Megathyrsus maximus), an important tropical forage grass for livestock
production [31]. These genotypes are grouped by 86 full-sib progenies, ten sexual and ten apomictic
progenitors along with four commercial cultivars (Mombaça, MG12 Paredão, BRS Quenia, and BRS
Tamani). All the genetic material, with exception of MG12 Paredão, was developed by the P. maximum
Breeding Program of Embrapa. A randomized complete block design was used with three replications,
totaling 330 plots. Each plot consisted of two rows of 2.0 m with 0.5 m apart. Each row contained
five plants spaced by 0.5 m between plants, totaling ten plants per plot. Plots were 1.0 m apart,
representing an area of 4.5 m2. We evaluated total green matter yield trait as ground truth data.
Each plot was harvested 0.2 m from the soil, and the green material was weighted in kg·plot−1 using
a field dynamometer and converted in kg·ha−1 on 25 January 2019. For term simplicity, this trait will
be named later only as biomass yield.

Figure 2 shows the plot’s definition procedure. We developed a python script tool (https://github.
com/wvmcastro/tiffviewer) named field plot cropper (FPLOTCROPPER). The inputs of the tool are:
the orthomosaic, the number of blocks in the image, the number of lines, and columns within each
block, and the user-defined rectangular polygons (Figure 2b). The result can be seen in Figure 2c.

https://github.com/wvmcastro/tiffviewer
https://github.com/wvmcastro/tiffviewer
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Figure 1. Dataset location considering WGS-84 reference system: (a) South America/Brazil; (b) Mato
Grosso do Sul State; (c) Campo Grande municipality and; (d) Study area.

Dealing with orthoimages can prove to be a challenging task from the computational point of
view, as images of this type can go beyond gigabytes in size. In this regard, the use of specific software
to reduce these images is necessary. For this, FPLOTCROPPER uses Matplotlib [32] packages for viewing
the orthoimages and capturing mouse events, which the user produces when defining the four corners
of each block. FPLOTCROPPER also uses Rasterio [33] for reading and writing of the images, along with
the Python 3 programming language [34].

(a) (b) (c)
Figure 2. Plots identification procedure: (a) Orthomosaic; (b) user defined experiment field in red and;
(c) plots defined using our Python script.

The presented proposal uses biomass yield as a class attribute y. Figure 3 plots the histograms of
the y data distribution of the 330 plots of the experimental station.
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Figure 3. Class attribute y distribution-biomass in kg·ha−1.

After this pre-processing step, where plots were correctly cropped and identified, we then
proceeded with the experimental evaluation described in the next sections.

2.2. Deep Learning Approach and Experimental Setup

Conventional machine learning techniques require considerable domain expertise and careful
engineering to extract meaningful features to train the models. According to LeCun [35], deep learning
methods can learn convolutional filters that can obtain those meaningful features from the images.
The advantage is that the learning process incorporates the learning of convolutional filters that replaces
the feature extractors designed by human engineers. This approach requires minimal engineering by
hand and has achieved a state of the art results in many areas of machine intelligence [35]. Therefore the
filters to emphasize and extract essential features are now inside the model, allowing the model to
process images in its raw format.

However, the training of CNNs requires large datasets, such as ImageNet, with 14 million images.
In the forage literature, to the best of our knowledge, there is no such dataset. In green biomass
estimation, the sample size is relatively small for deep learning standards. This limitation relates to
obtaining the ground truth of the field biomass, which requires expensive laboring work to harvest
and weigh each plot’s biomass.

In our study, we have only 330 plots. Training CNNs with a small sample size is a challenging
task. The literature points to fine-tuning approaches using a pre-trained model [36], learn smaller
models [37], and perform data augmentation [38]. We address the learning problem by trying these
three approaches. We selected AlexNet [39] (8 layers), a popular and relatively small convolutional
neural network, and ResNet [40] (18 layers), both with and without a pre-trained model, and with and
without data augmentation. We designed the experimental evaluation, not only to show the individual
accuracy rate of each model but also to measure how effective is each of these three approaches.
As a baseline we use VGGNet [41] (11 layers), because it was used for the same purpose in other
species [30].

We used AlexNet, ResNet18 and VGGNet from PyTorch [42]. The last fully connected layer
architectures was changed so that the models were adapted to a regression problem. The settings
for each experiment can be seen in Table 1. In all experiments, the Adam [43] optimization method
was used, with the descending gradient algorithm, in a fixed learning rate of 0.001, constant β1 = 0.9,
β2 = 0.999 and ε = 10−8. The number of epochs was defined empirically using early stopping
evaluated every 100 epochs. The pre-trained models are PyTorch pre-trained model on ImageNet
(see https://pytorch.org/docs/stable/torchvision/models.html), where we loaded these pre-trained
weights and fine-tuned these models using the training set. Models without pre-training were fully
trained using the training set.

Considering the relatively restricted number of 330 plots (examples), we performed all
experiments using ten-fold cross-validation, since cross-validation produces better generalization error
than hold-out [44,45]. To pursue more robust models, we trained them using the data augmentation

https://pytorch.org/docs/stable/torchvision/models.html
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technique. We named augmented horizontally (augmented h) for regular data augmentation, where the
images were flipped from left to right. We named augmented horizontally and vertically (augmented hv)
for data augmentation, where the images were also flipped from top to bottom. The models without
data augmentation were named original in Table 1.

Table 1. Experimental setup.

#Experiment Model Batch Size Data-Set Epochs

1 AlexNet 256 original 400
2 AlexNet 256 augmented h 400
3 AlexNet 256 augmented hv 500
4 Resnet18 128 original 500
5 Resnet18 128 augmented h 500
6 Resnet18 128 augmented hv 500
7 AlexNet Pre-Trained 256 original 200
8 AlexNet Pre-Trained 256 augmented h 200
9 AlexNet Pre-Trained 256 augmented hv 200

10 ResNet18 Pre-Trained 128 original 500
11 ResNet18 Pre-Trained 128 augmented h 400
12 ResNet18 Pre-Trained 128 augmented hv 400
13 VGGNet11 Pre-Trained 64 augmented hv 400

All models were trained to adopt the MSE (mean square error) as the loss function. The mean
square error evaluated values between the actual value of biomass, in kg·ha−1 (yi), and the value
predicted by the model was used (ŷi). The formula is in the Equation (1),

ε =
1
n

n

∑
i=0

(yi − ŷi)
2 (1)

where n is the number of examples, yi is the true score, ŷi is the predicted score, and yi ∈ [1556, 15, 333],
which means that the yi varied from 1556 kg·ha−1 to 15,333 kg·ha−1. We used a desktop with a NVIDIA
Titan X GPU (12 GB), Intel i7-6800K 3.4 GHz CPU, and 64 GB of RAM.

We assess the regression problem using MAE (mean absolute error), MAPE (mean absolute
percentage error), R (Pearson correlation). However, these metrics can hide predictions biased towards
higher or lower values than the true prediction. The same can occur with the graphs in Section 3,
where high-density regions can overlap points. This limitation motivates the evaluation of the results
under RROC (Receiver Operating Characteristic Curves from Regression) [46]. We also evaluate the
results using histograms (Section 3.3). The number of bins was determined using the elbow rule [47]
from the partitioning of the samples’ real values.

For visual inspection of the model activations, the last convolutional layers of CNNs retain
spatial information and high-level semantics of the CNN [48]. Looking at these layers, it is possible
to highlight the class-discriminative regions of the images. One of the first methods to emphasize
the discriminative areas of the images was the CAM (class activation mapping) [48]. However, CAM
works only on CNNs without fully connected layers architectures. One year later, Grad-CAM [49]
was proposed, enabling the use of fully connected layers without architectural changes or re-training.
We applied Grad-CAM and displayed some results in Section 3.4.

3. Experimental Results Evaluation

We divided our evaluation into four parts: (1) evaluation of the results using standard metrics
MAE, MAPE, and R, and the graphs of predicted versus real values; (2) a visual representation of the
error by ROC Regression curves; (3) the histograms of the predictions; and (4) the heat map of the
feature map activation for visual inspection.
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3.1. Standard Evaluation: MAE, MAPE, R, and Graph of Predicted Versus Real

Table 2 shows the mean and standard deviation of mean absolute error, mean absolute percentage
error, and Pearson Correlation of ten-fold cross-validation. The results indicate four groups of outcomes.
The best first group represents AlexNet pre-training, Experiment #7, #8, and #9. These results are
among the top 3 results showing an average MAE lower than 768.75 kg·ha−1. The second best group
is also from AlexNet, but without pre-training, Experiment #1, #2, and #3 with average MAE lower
than 924.48. The third and fourth groups are the ResNet18 results, where the MAE is higher than 1000.
Overall and surprisingly, the results of AlexNet are better than ResNet18. The VGGNet (baseline) was
considered only with pre-training and data augmentation because we verified that this contributed to
the improvement of the other models. The AlexNet also outperformed VGGNet11, which presented
an average MAE of 825.94 kg·ha−1. Experiment #9 presented the best absolute result.

Table 2. Experimental results. Experiment #9’s results present the lowest MAE (mean absolute error)
and highest correlation. It is good to remind the reader that yi, ranging from 1556.00 kg·ha−1 to
15,333.00 kg·ha−1, therefore MAE of 730 represents a variation of 730 kg·ha−1 in this range of values.

#Experiment Model Mean Absolute Error Mean Absolute
Percentage Error Correlation (r)

1 AlexNet 837 ± 106 14.58 ± 2.52 0.84 ± 0.03
2 AlexNet h 880 ± 202 15.11 ± 3.24 0.83 ± 0.06
3 AlexNet hv 924 ± 143 15.48 ± 2.30 0.82 ± 0.05
4 ResNet18 1086 ± 219 17.70 ± 3.41 0.74 ± 0.06
5 ResNet18 h 1046 ± 107 19.01 ± 2.77 0.74 ± 0.06
6 ResNet18 hv 1031 ± 153 18.76 ± 4.28 0.75 ± 0.06
7 AlexNet Pre-Trained 759 ± 102 13.23 ± 2.23 0.87 ± 0.05
8 AlexNet Pre-Trained h 768 ± 123 13.54 ± 2.88 0.87 ± 0.03
9 AlexNet Pre-Trained hv 730 ± 59 12.98 ± 2.18 0.88 ± 0.04
10 ResNet18 Pre-Trained 1206 ± 233 19.46 ± 5.15 0.73 ± 0.04
11 ResNet18 Pre-Trained h 1205 ± 194 23.16 ± 4.80 0.71 ± 0.07
12 ResNet18 Pre-Trained hv 1012 ± 128 18.58 ± 2.34 0.77 ± 0.05
13 VGGNet11 Pre-Trained 825 ± 152 13.89 ± 3.09 0.84 ± 0.04

We then proceed with the experimental evaluation performing a one-way ANOVA test.
We obtained an F-statistic of 9.81, and with a p-value of 5.16 × 10−13 < 0.05, we can reject the null
hypothesis that the models have are equal performance using MAE. We continue the evaluation with
Tukey’s pos-hoc test to find the differences among the experiments. Figure 4 shows the Tukey’s HSD.

600 700 800 900 1000 1100 1200 1300 1400

VGGNet11_ptrain_hv
ResNet18_ptrain_hv
ResNet18_ptrain_h

ResNet18_ptrain
AlexNet_ptrain_hv
AlexNet_ptrain_h

AlexNet_ptrain
ResNet18_hv
ResNet18_h

ResNet18
AlexNet_hv
AlexNet_h

AlexNet

Multiple Comparisons Between All Pairs (Tukey)

Figure 4. Mean and the 95% confidence interval of a pos-hoc Tukey’s HSD test performed on MAE results.

The results that differ significantly with AlexNet_ptrain_hv are red, the insignificant difference
are gray. Therefore the results indicate that AlexNet_ptrain_hv has a significant difference with all
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ResNet18 results. The pre-trained models showed a slight improvement in the AlexNet result but not
in ResNet. The ResNet results, except for ResNet18_ptrain_hv, the pre-training deteriorated the results.
For data augmentation hv, we can see a small improvement in pre-trained models of AlexNet and
ResNet. For the AlexNet without pre-training, the use of data augmentation worsens the results.

The mean and standard deviations of MAE, MAPE, and R assume Gaussian distributions.
Plotting the real values and the prediction in the same graph can be a more precise visualization
of the results, such as point cloud density and outliers.The graphs presented in Figure 5 show exactly
these visualizations, where points are pair of (y, ŷ). In a situation of perfect predictions, these graphs
would be perfect lines (1:1).
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Figure 5. Predicted vs. real plots.
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In all graphs, the models show more spread results on the top right and a high concentration
of points in the center of the diagram, which corroborates with the real class y (Figure 3) where the
numbers of biomass higher than 11,000 kg·ha−1 are scarce, and the average value of y is close to
6000 kg·ha−1.

When comparing the graphs of AlexNet and ResNets, we can see that all ResNet results
(Experiments #4, #5, #6, #10, #11, and #12,) show a point cloud lying more to the bottom right,
indicating that ResNet has difficulties predicting values higher than 10,000 kg·ha−1 than AlexNet.
The pre-trained AlexNet (Experiments #7, #8, and #9 ) shows a narrow corridor of points close to the
ascending diagonal (dotted line). The narrowest point cloud and closer to the dotted line seems to be
the Experiment #9, which confirms the results of the absolute number of MAE, MAPE, and R.

3.2. ROC Regression

Figure 6 shows RROC, where the closer to the (0, 0) point, called RROC heaven, the better the
model. Closer the results to the dotted line UNDER + OVER = 0, the less biased the model is to
predict values below or above the true regression values.

0 200 400 600 800 1000
OVER

1000

800

600

400

200

0

UN
DE

R

#1

#2
#3

#4

#5
#6

#7#8#9

#10

#11
#12#13

RROC SPACE
AlexNet
ResNet18
VGGNet11

Figure 6. ROC (Receiver Operating Characteristic) for regression. Points closer to (0,0) mean better results.

Among the results with pre-training (Figure 6), AlexNet original, AlexNet augmented h,
and AlexNet augmented hv (#7, #8, and #9) are closer to (0,0). ResNet18 pre-trained augmented
h (Experiment #11) is above the dotted line, indicating better results for UNDER the prediction than
OVER the prediction. In practice, this is equivalent to an average prediction of ŷ slightly higher than
the true prediction y for Experiment #11. This interpretation may be counter-intuitive when we look
at Figure 5k due to the points on the middle right of the graph, however looking closely, we can see
high-density points in the middle left, that corroborates with the RROC result. The other way around
occurs with ResNet18 original (Experiment #4) and VGGNet11(Experiment #13), where the results
are below the dotted line.

When comparing AlexNet (light blue) and ResNet (red), we can see that AlexNet points are closer
to the (0,0). All ResNet points are further away from the AlexNet points and spread over the graph,
showing a barrier of points close to the ascendant diagonal.
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3.3. Histograms

The histogram graphs of Figure 7 show the intersection between the distribution of the real
data and the distribution of the predictions of each experiment. The addition of new groups did not
significantly increase the representativeness of the data with more than 20 bins, so the number of bins
was set to 20. The intersection areas between the distributions were calculated for each experiment
and are presented in Table 3.
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Figure 7. Comparison of prediction ŷ vs. real y data distribution. Larger intersecting areas between
histograms indicates better prediction.
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Table 3. Intersection areas of the histograms shown in Figure 7.

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13
Intersection Area 0.83 0.83 0.91 0.78 0.72 0.78 0.89 0.89 0.92 0.68 0.62 0.76 0.90

Comparing the ResNet and AlexNet, we can see a peek of orange values on x-axis surrounding
the 7500 kg·ha−1 in all ResNet experiments (Experiment #4, #5, #6, #10, #11, and #12). The AlexNet
histograms go along the true class (blue) histogram. Experiment #1 and #2 are the only histograms
where the highest bin is blue.

Through the Table 3 and Figure 7, it is possible to conclude the superiority of the results of
Experiment #9, where the training set used was at least twice as large concerning any other experiment
due to the data augmentation.

From the plot of the validation loss given the number of epochs during training presented
in Figure 8, it can be observed that Experiments #1, #2, #3, #7, #8, #9, and #13 were the ones to converge
the fastest getting to a plateau at around 100 epochs. Experiments #5 and #11 converged at approximately
230 epochs. Experiments #6 and #12 converged after about 300 epochs. Finally, Experiments #4 and #10
were the ones that took the longest to reach the plateau, taking approximately 500 epochs. From this
analysis, it is possible to conclude that the AlexNet and VGGNet11 models were able to consistently
present better results earlier when compared to experiments using the ResNet18 model.
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Figure 8. Validation loss over epochs for all experiments.

3.4. Visual Inspection

Figures 9 and 10 show the heatmaps from Grad-CAM on Experiment #9. Warm colors (red)
indicate a more class-discriminative region to the prediction, while cold colors (blue) represent the
lower class-discriminative region.
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(a) (b) (c)

Figure 9. Heatmaps of the top 3 best predictions made by Experiment #9 (Pre-trained AlexNet Model
with hv data augmentation): (a) First best prediction; (b) Second best prediction; (c) Third best
prediction.

(a) (b) (c)

Figure 10. Heatmaps of the top 3 worst predictions made by Experiment #9 (Pre-trained AlexNet
Model with hv data augmentation): (a) First worst prediction; (b) Second worst prediction; (c) Third
worst prediction.

Figure 9 shows the three best predictions, where no strong red or blue regions are highlighted.
Figure 10 shows the three worst predictions, where extreme values in the neurons, strong red and
blues, occur. We believe that these extreme values create a broader range of values that make the
regression problem more difficult to solve, worsening the results’ MAE.
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3.5. Training and Test Time

Finally, we also evaluated the training and test time of one fold of the ten-fold cross-validation
procedure. The test set has fix size of 33 examples, and the training set 300, 600, and 900 examples for
original, augmented h and augmented hv, respectively. Table 4 shows the results.

Table 4. Training and test time on one-fold of the cross-validation procedure.

#Experiment Model Training Time (min) Test Time (s)

1 AlexNet 35.8 0.39
2 AlexNet h 95.6 0.46
3 AlexNet hv 122.2 0.40
4 ResNet18 60.2 0.47
5 ResNet18 h 131.3 0.54
6 ResNet18 hv 133.7 0.53
7 AlexNet Pre-Trained 15.8 0.37
8 AlexNet Pre-Trained h 36.2 0.44
9 AlexNet Pre-Trained hv 43.7 0.50
10 ResNet18 Pre-Trained 58.1 0.47
11 ResNet18 Pre-Trained h 102.2 0.67
12 ResNet18 Pre-Trained hv 104.4 0.43
13 VGGNet11 Pre-Trained hv 372.2 0.81

The training time needs to be analyzed with the respective number of training steps. It is
interesting to see that although the h and hv have two and three times more examples, their training
time was not multiplied by a factor of two and three on ResNet. While for the AlexNet, these factors
are consistent. The test time stays between 0.39 and 0.67 for AlexNet and ResNet. The testing time of
VGG was the highest among the tested results.

4. Discussion

Our study focused on a deep learning-based approach to estimate biomass yield in forage
fields. Furthermore, we investigated the impact of the data augmentation and pre-training steps
on the estimation results. CNN is a state-of-the-art method to evaluate imagery data. We also
considered different genotypes of a forage species, which contribute to the heterogeneity of our dataset.
For assessing the experiments, we presented regression analysis results with a high correlation between
predicted and measured yields (Table 2 and Figure 4), an RROC space comparing the deep networks
implemented (Figure 5), an intersection analysis between each experiment (Table 3 and Figure 6)
and qualitative information such as heat maps illustrating the best and worst predictions of our data
(Figures 8 and 9).

When comparing against other methods to estimate biomass, our approach differentiates from
a methodological point-of-view. Up to the point, most approaches considered shallow learners
(i.e., conventional machine learning methods) and RGB imagery combined with DSM and DTM
models, LiDAR or even vegetation spectral indices from multi and hyperspectral data [1,24–28,50].
As an advantage of adopting deep neural networks is the oversimplification of remote sensing data
variety necessary to conduct this estimation. Although the production of input data such as DTM,
DSM, spectral indices, and multiple bands is a relatively easy task in remote sensing, the costs to
obtain such products, specifically LiDAR and hyperspectral data, are highly-priced when comparing
against RGB only imagery. Our deep networks, trained with RGB inputs, can perform similarly or even
better than most traditional methods and data previously described. This is an important advance for
agricultural remote sensing approaches. The caveat of the proposal and other CNN-based approaches
are the requirements of computational intensive procedures, often requiring the use of GPUs.
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Compared to the previous study that used 3D information to estimate the biomass for the
same species [26], we achieved more accurate results. Batistoti et al. [26] achieved an R2 of 0.74
considering a limited number of plots (four in total). Another study [51] estimated yield with proximal
sensing equipment in a heterogeneous sward structure of grasslands and applied a MLPSR (Multiple
Partial Least Square Regression) approach, which returned an R2 of 0.69. In estimating biomass
from legume-grass, Wachendorf et al. [52] produced high accuracies with a similar approach as
Moeckel et al. [51], returning accuracies up to 0.95 for specific models. Another study [53] considered
machine learning techniques to estimate grassland biomass in spectral data, with an RMSE equal
to 71.2 t·ha−1. This indicates that our UAV-based RGB dataset, in conjunction with more robust
methods (i.e., deep neural networks), can be compared against expensive measurement remote systems,
considering even terrestrial measurements.

In this study, we implemented two convolutional networks (AlexNet and ResNet18) and tested
as a baseline another network (VGGNet11), as stated in the previous sections. To evaluate the
impact of samples in our approach we tested whether pre-trained models and data augmentation
produced significant improvements in its accuracy. Our results indicated that the AlexNet method
performed better. A possible explanation for this is that the ResNet18 method, although being a deeper
network than the implemented AlexNet, was unable to represent the pre-trained problem with its
convolutional filters properly. In other words, it was not able to modify its layers with enough
precision. Results without pre-training steps were also not sufficient. This demonstrates how the lack
of data for training impacted its performance. Nevertheless, the evaluation of different pre-processing
steps (with and without data augmentation and pre-training) resulted in essential implications for
integrating agronomic measurements collected in the field with these robust methods in remote sensing
RGB imagery.

The VGGNet11 performance was calculated to be compared against the accuracy obtained
in a previous paper [30]. In this paper [30], more traditional approaches were also compared
against this deep learning method. These approaches were related to spectral vegetation indices
and 3D models as standalone data to estimate biomass yield. Even so, it was demonstrated that
the VGGNet11 outperformed these traditional approaches. Here, our proposal focused mostly on
evaluations with the AlexNet and ResNet18 networks throughout the experiment. We noticed that
in both methods, data augmentation improved the overall performance in estimating biomass yield.
As a result of this outcome, we also implemented data augmentation in the VGGNet11 network.
Nonetheless, our analysis (Figure 5) demonstrated that the AlexNet method was superior to the deep
learning method implemented in [30], even with data augmentation. This may be an indicator that
this type of approach with RGB imagery performs better with shallow architectures.

It is possible to observe that the models used were able to return a high correlation between
the RGB images of the plots and the real yield value (Table 2 and Figure 4). This study is the
first approximation of its kind. We believe that many aspects to be evaluated in future research.
Although we stated the importance of RGB data in an economic point-of-view, we do not disregard
the impact of other types of remote sensing methods to increase the accuracy of deep learning-based
neural networks. The use of 3D reconstruction data from point-clouds can also be explored in the
future since biomass has a strong relationship with the volume of the plant. This data insertion
could assess whether there are performance gains in the prediction and infer the density of the plant,
a significant characteristic for researchers in the area. Regardless, the results utilizing only RGB and
the cross-validation method indicate the capability of the proposed method in this approach.

5. Conclusions

Until this moment, this paper’s proposed approach is the first research that implemented and
evaluated a CNN-based architecture, combined with high-resolution UAV RGB images, for the
prediction of biomass yield considering different forage genotypes.
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Two regression models based on CNNs (Convolutional Neural Networks) named AlexNet and
ResNet18 were evaluated, and compared to VGGNet—adopted in previous work in the same thematic
for other grass species. The predictions returned by the models reached a correlation of 0.88 and a mean
absolute error of 12.98% using AlexNet considering pre-training and data augmentation. Comparing
the achieved results to a previous study that was based on 3D information to estimate the biomass for
the same species [26], we achieved more accurate results.

In conclusion, the models used were able to establish a high correlation between the images and
the biomass value measured in the field. This demonstrates how feasible the proposed approach
is to predict forage yield at highly detailed RGB imagery, producing accuracy comparable to more
expensive approaches with both aerial and proximal remote sensing.

Since this is the first study of its kind, there are many aspects to be evaluated in future research.
It is worth noting that the models developed here are not yet ready to be deployed in commercial
production. Although cross-validation has been used in all experiments, the dataset is still considered
small. However, the results obtained are strong indications of the method’s future success in more
significant variations of forage crop datasets. Experiments using datasets from different locations and
weather conditions are essential to provide more generalized models, and we intend to conduct this in
future work.

Author Contributions: Conceptualization, E.M., M.S., and J.M.J.; methodology, E.M., W.G., and W.C.; software,
W.C., C.P., L.R., and E.M.; formal analysis, W.C., J.M.J., L.P.O., and E.M.; resources, M.S. and E.M.; data curation,
E.S., W.G., M.S., L.J., S.B., C.V., R.S., and C.C.; writing—original draft preparation, W.C., C.P., L.P.O., J.M.J., M.S.,
and E.M.; writing—review and editing, L.R., W.G., L.A.d.C.J., E.S, L.J., S.B., C.V., R.S., and C.C.; supervision,
project administration and funding acquisition, E.M. and M.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia
do Estado do Mato Grasso do Sul (FUNDECT-MS) grant number 59/300.075/2015, Empresa Brasileira de
Pesquisa Agropecuária (EMBRAPA), and Associaçao para o Fomento à Pesquisa de Melhormento de Forrageiras
(UNIPASTO), CNPq (433783/2018-4, and 303559/2019-5). The authors acknowledge the support of the
Universidade Federal de Mato Grosso do Sul (Federal University of Mato Grosso do Sul)—UFMS/MEC—Brasil.
Finally, this study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 001.

Acknowledgments: The authors would like to acknowledge NVidia c© for the donation of the Titan X graphics
card used in the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using
Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412.
[CrossRef]

2. Gebremedhin, A.; Badenhorst, P.E.; Wang, J.; Spangenberg, G.C.; Smith, K.F. Prospects for measurement of
dry matter yield in forage breeding programs using sensor technologies. Agronomy 2019, 9, 65. [CrossRef]

3. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review.
Remote Sens. Environ. 2020, 236, 111402. [CrossRef]

4. Osco, L.P.; Ramos, A.P.M.; Pereira, D.R.; Moriya, É.A.S.; Imai, N.N.; Matsubara, E.T.; Estrabis, N.;
de Souza, M.; Junior, J.M.; Gonçalves, W.N.; et al. Predicting canopy nitrogen content in citrus-trees
using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens.
2019, 11, 2925. [CrossRef]

5. D’Oliveira, M.V.N.; Broadbent, E.N.; Oliveira, L.C.; Almeida, D.R.A.; Papa, D.A.; Ferreira, M.E.;
Zambrano, A.M.A.; Silva, C.A.; Avino, F.S.; Prata, G.A.; et al. Aboveground Biomass Estimation in
Amazonian Tropical Forests: a Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico
Mendes Extractive Reserve in Acre, Brazil. Remote Sens. 2020, 12, 1754. [CrossRef]

http://dx.doi.org/10.3390/rs61110395
http://dx.doi.org/10.3390/agronomy9020065
http://dx.doi.org/10.1016/j.rse.2019.111402
http://dx.doi.org/10.3390/rs11242925
http://dx.doi.org/10.3390/rs12111754


Sensors 2020, 20, 4802 16 of 18

6. Miyoshi, G.T.; Arruda, M.D.S.; Osco, L.P.; Junior, J.M.; Gonçalves, D.N.; Imai, N.N.; Tommaselli, A.M.G.;
Honkavaara, E.; Gonçalves, W.N. A novel deep learning method to identify single tree species in UAV-based
hyperspectral images. Remote Sens. 2020, 12, 1294. [CrossRef]

7. Leiva, J.N.; Robbins, J.; Saraswat, D.; She, Y.; Ehsani, R. Evaluating remotely sensed plant count accuracy
with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers. J. Appl.
Remote Sens. 2017, 11, 036003. [CrossRef]

8. Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random
forest, support vector machine, and patch-based deep convolutional neural networks for object-based
wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264.
[CrossRef]

9. Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-based remote sensing technique to detect citrus canker
disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11. [CrossRef]

10. Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine learning-based integration of remotely-sensed drought
factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019,
173, 303–316. [CrossRef]

11. Osco, L.P.; Ramos, A.P.M.; Pinheiro, M.M.F.; Moriya, É.A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.;
de Araújo, F.F.; Liesenberg, V.; de Castro Jorge, L.A.; et al. A machine learning framework to predict
nutrient content in valencia-orange leaf hyperspectral measurements. Remote Sens. 2020, 12, 906. [CrossRef]

12. Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images:
A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [CrossRef]

13. Al-Saffar, A.A.M.; Tao, H.; Talab, M.A. Review of deep convolution neural network in image
classification. In Proceedings of the 2017 International Conference on Radar, Antenna, Microwave,
Electronics, and Telecommunications (ICRAMET), Jakarta, Indonesia, 23–24 October 2017; pp. 26–31.

14. Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote
sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149.
[CrossRef]

15. Khamparia, A.; Singh, K.M. A systematic review on deep learning architectures and applications. Expert Syst.
2019, 36, 1–22,. [CrossRef]

16. Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial
Vehicle Imagery Using Convolutional Neural Networks. Drones 2018, 2, 39. [CrossRef]

17. Hassanein, M.; Khedr, M.; El-Sheimy, N. Crop row detection procedure using low-cost uav imagery system.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 349–356. [CrossRef]

18. Wu, L.; Zhu, X.; Lawes, R.; Dunkerley, D.; Zhang, H. Comparison of machine learning algorithms for
classification of LiDAR points for characterization of canola canopy structure. Int. J. Remote Sens. 2019,
40, 5973–5991. [CrossRef]

19. Kitano, B.T.; Mendes, C.C.T.; Geus, A.R.; Oliveira, H.C.; Souza, J.R. Corn Plant Counting Using Deep
Learning and UAV Images. IEEE Geosci. Remote Sens. Lett. 2019, 1–5. [CrossRef]

20. Dian Bah, M.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in
line crops in UAV images. Remote Sens. 2018, 10, 1–20. [CrossRef]

21. Legg, M.; Bradley, S. Ultrasonic Arrays for Remote Sensing of Pasture Biomass. Remote Sens. 2019, 12, 111.
[CrossRef]

22. Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using
hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [CrossRef]

23. Fan, Z.; Lu, J.; Gong, M.; Xie, H.; Goodman, E.D. Automatic Tobacco Plant Detection in UAV Images via
Deep Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 876–887. [CrossRef]

24. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining
UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass
monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [CrossRef]

25. Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB
imaging. Precis. Agric. 2018, 19, 840–857. [CrossRef]

26. Batistoti, J.; Marcato Junior, J.; Ítavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.;
Salgado Filho, G.; Akiyama, T.; et al. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna
Using UAV Photogrammetry. Remote Sens. 2019, 11, 2447. [CrossRef]

http://dx.doi.org/10.3390/rs12081294
http://dx.doi.org/10.1117/1.JRS.11.036003
http://dx.doi.org/10.1080/15481603.2018.1426091
http://dx.doi.org/10.3390/rs11111373
http://dx.doi.org/10.1016/j.agsy.2019.03.015
http://dx.doi.org/10.3390/rs12060906
http://dx.doi.org/10.1109/MGRS.2016.2616418
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.1111/exsy.12400
http://dx.doi.org/10.3390/drones2040039
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-349-2019
http://dx.doi.org/10.1080/01431161.2019.1584929
http://dx.doi.org/10.1109/LGRS.2019.2930549
http://dx.doi.org/10.3390/rs10111690
http://dx.doi.org/10.3390/rs12010111
http://dx.doi.org/10.3390/rs10020202
http://dx.doi.org/10.1109/JSTARS.2018.2793849
http://dx.doi.org/10.1016/j.jag.2015.02.012
http://dx.doi.org/10.1007/s11119-018-9560-y
http://dx.doi.org/10.3390/rs11202447


Sensors 2020, 20, 4802 17 of 18

27. Näsi, R.; Viljanen, N.; Kaivosoja, J.; Alhonoja, K.; Hakala, T.; Markelin, L.; Honkavaara, E. Estimating Biomass
and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D
Features. Remote Sens. 2018, 10, 1082. [CrossRef]

28. Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield
prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens.
2020, 162, 161–172. [CrossRef]

29. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018,
147, 70–90. [CrossRef]

30. Ma, J.; Li, Y.; Chen, Y.; Du, K.; Zheng, F.; Zhang, L.; Sun, Z. Estimating above ground biomass of winter
wheat at early growth stages using digital images and deep convolutional neural network. Eur. J. Agron.
2019, 103, 117–129. [CrossRef]

31. Jank, L.; Barrios, S.C.; do Valle, C.B.; Simeão, R.M.; Alves, G.F. The value of improved pastures to Brazilian
beef production. Crop Pasture Sci. 2014, 65, 1132–1137. [CrossRef]

32. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
33. Gillies, S.; Ward, B.; Petersen, A.S. Rasterio: Geospatial Raster I/O for Python Programmers. 2013.

Available online: https://github.com/mapbox/rasterio (accessed on 17 August 2020)
34. Oliphant, T.E. Python for scientific computing. Comput. Sci. Eng. 2007, 9, 10–20. [CrossRef]
35. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
36. Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence:

A survey. Knowl.-Based Syst. 2015, 80, 14–23. [CrossRef]
37. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking

generalization. arXiv 2016, arXiv:1611.03530.
38. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019,

6, 60. [CrossRef]
39. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural

Networks. 2012. Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networ (accessed on 10 August 2020).

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

42. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 8024–8035.

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Weiss, S.M.; Kapouleas, I. An empirical comparison of pattern recognition, neural nets, and machine learning

classification methods. IJCAI 1989, 89, 781–787.
45. Blum, A.; Kalai, A.; Langford, J. Beating the hold-out: Bounds for k-fold and progressive cross-validation.

In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, Santa Cruz, CA, USA,
7–9 July 1999; pp. 203–208.

46. Hernández-Orallo, J. ROC curves for regression. Pattern Recognit. 2013, 46, 3395–3411. [CrossRef]
47. Thorndike, R.L. Who belongs in the family. Psychometrika 1953, 18, 267–276. [CrossRef]
48. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative

localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 2921–2929.

49. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626.

50. Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A novel machine learning
method for estimating biomass of grass swards using a photogrammetric canopy height model, images and
vegetation indices captured by a drone. Agriculture 2018, 8, 70. [CrossRef]

http://dx.doi.org/10.3390/rs10071082
http://dx.doi.org/10.1016/j.isprsjprs.2020.02.013
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.eja.2018.12.004
http://dx.doi.org/10.1071/CP13319
http://dx.doi.org/10.1109/MCSE.2007.55
https://github. com/mapbox/rasterio
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1186/s40537-019-0197-0
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
http://dx.doi.org/10.1016/j.patcog.2013.06.014
http://dx.doi.org/10.1007/BF02289263
http://dx.doi.org/10.3390/agriculture8050070


Sensors 2020, 20, 4802 18 of 18

51. Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of ultrasonic and spectral sensor
data for improving the estimation of biomass in grasslands with heterogeneous sward structure. Remote Sens.
2017, 9, 98. [CrossRef]

52. Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure,
quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [CrossRef]

53. Marabel, M.; Alvarez-Taboada, F. Spectroscopic determination of aboveground biomass in grasslands
using spectral transformations, support vector machine and partial least squares regression. Sensors 2013,
13, 10027–10051. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs9010098
http://dx.doi.org/10.1111/gfs.12312
http://dx.doi.org/10.3390/s130810027
http://www.ncbi.nlm.nih.gov/pubmed/23925082
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods 
	Study Area and Dataset
	Deep Learning Approach and Experimental Setup

	Experimental Results Evaluation
	Standard Evaluation: MAE, MAPE, R, and Graph of Predicted Versus Real
	ROC Regression
	Histograms
	Visual Inspection
	Training and Test Time

	Discussion
	Conclusions
	References

