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Increasing evidence has shown that overexpression of P-element-induced wimpy-testis (PIWI)-like protein 1 (PIWIL1) was
associated with unfavorable prognosis of patients with various types of cancers. Herein, we conducted this meta-analysis to
identify the clinicopathological and prognostic value of the PIWIL1 expression in cancers. -ree electronic databases (PubMed,
Web of Science, and Embase) were comprehensively retrieved for relevant studies up to August 4th, 2019. RevMan 5.3 and STATA
12.0 statistical software programs were used to explore the relationships between PIWIL1 expression and the prognosis and
clinicopathological features in cancer patients. A total of 13 studies recruiting 2179 patients with 9 types of solid tumors were
finally included in the meta-analysis. -e results indicated that patients with high PIWIL1 expression tended to have a shorter
survival, and additionally deeper tumor invasion, higher clinical stage, and more lymph node metastasis. PIWIL1 could serve as a
biomarker for prognosis and clinicopathological characteristics in various cancers.

1. Introduction

Nowadays, cancer is a major public health problem
worldwide and has become one of the leading causes of
death and the biggest obstacle to improving average life-
time. With rapid population growth and aging worldwide,
the incidence and mortality of cancers have greatly in-
creased [1, 2]. Numerous researches have studied the
mechanisms of the occurrence and development of various
cancers, and great progress has been achieved in the
prevention, diagnosis, and treatment. However, the five-
year overall survival rate is still relatively low in the ma-
jority of cancer patients [1]. -erefore, studying the specific
mechanisms behind tumorigenesis and tumor develop-
ment has become more popular and significant.

Initially, the PIWI gene was found as P-element-induced
wimpy testis mutation which hindered germline stem cell
division in Drosophila melanogaster in 1970 [3]. -e PIWI
proteins, a subfamily of argonaute proteins, have been de-
tected in various species [4, 5]. PIWIL1, also called HIWI, is
one of the four human homologues of the PIWI family, which
is cytogenetically mapped to 12q24.33 [6, 7]. It has been
reported that the PIWI family are evolutionarily conserved
and important in a series of biological processes, such as self-
renewal and division of stem cell, spermiogenesis, RNA si-
lencing, transposon silencing, and posttranscriptional regu-
lation in several different organisms [6, 8–12].

-e first report of PIWI expression in tumor tissue was
in seminomas, in which Qiao et al. [7] found that PIWIL1
expression was positive in the tumor tissues but negative in
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the normal tissues; in addition, aberrant PIWIL1 expression
might contribute to the occurrence and development of
seminoma. PIWIL1 is the most studied protein among the
PIWI family, which could regulate gene expression func-
tioning in DNA damage response, cell cycle reentry, apo-
ptosis, cell proliferation, and tight junctions [13–16].

Furthermore, the expression level of PIWIL1 has been
found to be positively related to cell proliferation in several
cancer cell lines [17]. Moreover, silencing PIWIL1 by siRNA
could inhibit the expression of BCL2 and cyclin D1 and
suppress cell proliferation by facilitating apoptosis in glioma
cells [18]. Afterwards, emerging clinical evidences indicated
that overexpression of PIWIL1 could be detected in different
tumors including breast, colon, oesophageal, gastric, pan-
creatic, and hepatocellular carcinoma, and the expression of
PIWIL1 was correlated with histological grade of tumor,
clinical stage, and poorer clinical outcome of patients
[19–22]. Positivity for PIWIL1 predicted chemoresistance in
cervical cancer patients [23]. In pancreatic cancer, PIWIL1
facilitated metastasis via reducing cell-cell adhesion [24].
PIWIL1 maintains self-renewal and survival of glioma stem
cells by regulating expression of related genes [25].

It is greatly urgent to determine novel molecular markers
about cancers, which can contribute to more accurate risk
stratification for cancer patients and better predicting tumor
progression and the prognosis, as well as the prediction of
the outcome of therapy and the development of personalized
treatment based on the biological knowledge. Numerous
studies have identified the overexpression of PIWIL1 gene/
protein in various cancer types, suggesting that PIWIL1
might be involved in tumorigenesis or tumor progress
[26, 27]. Given that the PIWIL1 is mostly expressed in the
testis and broadly elevated in different cancers, PIWIL1 has
the potential to be an ideal target for cancer diagnosis and
therapy [7]. However, the universal adaptability of PIWIL1
to predict prognosis for cancers is still unclear. -erefore, a
meta-analysis and systematic review was conducted to
synthetically confirm the association between PIWIL1 ex-
pression and prognosis in various cancers.

2. Materials and Methods

2.1. Literature Search. -ree electronic databases (PubMed,
Web of Science, and Embase) were comprehensively re-
trieved up to August 4th, 2019. -e combination of the
following keywords was used in the literature search:
(“PIWIL1” or “HIWI” or “Piwi-Like Protein 1” or “Piwi Like
RNA-Mediated Gene Silencing 1”) and (“cancer” or “tumor”
or “carcinoma”). In addition, the reference lists were also
manually reviewed to obtain potential articles.

2.2. Inclusion Criteria. -e included articles must meet the
following inclusion criteria: (1) investigation based on hu-
man cancer; (2) studies reporting the associations of PIWIL1
expression with clinical outcomes (overall survival (OS),
cancer-specific survival (CSS), disease-free survival (DFS),
and recurrence-free survival (RFS)) and clinicopathological
characteristics; (3) studies directly providing hazard ratios

(HRs) with corresponding 95% confidence intervals (CIs) for
survival information, or survival curves to extract these data
using the method described by Tierney et al. [28]; (4) cancer
patients divided into “high/positive” group or “low/negative”
group. -e following studies were excluded: (1) reviews,
letters, or comments; (2) animal or cell experiment studies; (3)
studies without sufficient information.

2.3. Data Extraction and Quality Assessment. Two authors
carefully reviewed the full-text and independently extracted
data following a previously designed form. Controversy was
settled via discussion with a third author. -e following
information was extracted: first author, country, cancer type,
number of patients analyzed, specimen type, method of
measurement, cutoff value, HR estimated method and HR
for survival (OS, CSS, or DFS/RFS), and clinicopathological
characteristics (such as age, gender, tumor size, differenti-
ation, tumor invasion, clinical stage, lymph node metastasis
(LNM), and distant metastasis (DM)).

Besides, the quality of included studies was determined
by Newcastle-Ottawa Scale (NOS) containing a total of 9
scores [29]. Study with more than 6 score was considered
high quality.

2.4. Statistical Analysis. -e prognostic value of PIWIL1
overexpression in cancer patients was appraised by com-
bined HRs and corresponding 95% CIs. Combined HRs for
OS, CSS, and DFS/RFS were calculated separately. -e
relationship between PIWIL1 overexpression and clini-
copathological characteristics was assessed by pooled es-
timates of odds ratios (ORs) and 95% CIs. -e statistical
analyses were conducted using the RevMan5.3 and STATA
12.0 statistical software programs. Heterogeneity across
publications was evaluated by Q test and I-squared test. P

value<0.1 and I2>50% indicated significant heterogeneity,
and a random-effect model would be used; otherwise, a
fixed-effect model was preferred for the analysis. Begg’s
linear regression test was conducted to identify the po-
tential heterogeneity factors. Sensitivity analysis was also
conducted to check the stability of our results. P values less
than 0.05 indicated statistical significance except for het-
erogeneity analysis.

3. Results

3.1. Search Results. After systematic retrieval of the three
previously mentioned databases, a total of 462 records were
identified. -e selecting process is detailed in Figure 1. Next,
132 duplicate articles were excluded, and 330 records
remained for further assessment. After screening the title
and abstracts, 309 irrelevant articles were eliminated, and the
21 potential studies were further checked by screening full
texts. Finally, 13 studies were qualified for our meta-analysis
[19, 21, 22, 30–39]. Significantly, study of Stöhr et al. [36]
reported results of two independent cohorts of renal cell
carcinoma patients, and in the subsequent analysis process,
the two results were regarded as two studies.
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3.2. Characteristics of Included Studies. A total of 2179 pa-
tients with 9 types of solid tumors including colorectal
cancer (CRC), breast cancer, glioma, esophageal squamous
cell carcinoma (ESCC), hepatocellular carcinoma (HCC),
bladder cancer, renal cell carcinoma (RCC), gastric cancer
(GC), and non-small cell lung cancer (NSCLC) from 13
eligible studies with concerned clinical outcomes were fi-
nally included in our meta-analysis. -ese articles were
published between 2009 and 2019. Eight of the thirteen
studies were conducted in China, two in Germany, one in
Iran, one in Poland, and one in Spain. -e number of the
sample size ranged from 46 to 345, and seven studies
enrolled more than 150 participants. All studies detected
the PIWIL1 expression levels in tissue samples, and based
on the expression levels, which were mainly detected by
immunohistochemistry (IHC), these cancer patients were
categorized into high/positive and low/negative expression
groups in the included studies. Newcastle-Ottawa Scale
(NOS) was used to evaluate the quality of these studies, and
all eligible studies scored highly (>6). Twelve studies
provided survival information, and eight studies reported

clinicopathological characteristics. -e main characteris-
tics are summarized in Table 1.

3.3. Association between PIWIL1 Overexpression and
Prognosis. Among the twelve studies evaluating the prog-
nostic value of PIWIL1 overexpression in solid tumors, ten
focused on OS, four on CSS, and three on DFS/RFS. As
shown in Figure 2, a fixed-effect model was used to evaluate
the pooled HRs with their 95% CIs due to no observation of
significant heterogeneity. -e pooled HRs were 1.80 (95%
CIs: 1.52–2.14, p< 0.00001) for OS, indicating that PIWIL1
overexpression was significantly correlated with the reduced
OS periods. Next, a meta-analysis for CSS was conducted,
and the result revealed that higher PIWIL1 expression group
was subjected to a shorter CSS outcome (HR� 1.94, 95% CIs:
1.47–2.55, p< 0.00001). We finally conducted a subgroup
analysis based on OS, CSS, and DFS/RFS; the pooled HRs
were 2.22 (95% CIs: 1.52–3.24, p< 0.00001). -ese results
demonstrated that elevated PIWIL1 expression could pre-
dict unfavorable prognosis for patients with various cancers.
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Figure 1: Flow diagram of literature research and selection process.
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Additionally, we performed subgroup analyses for OS
according to region, sample size, HRs extract method, and
cancer type. Ultimately, similar results were obtained as
regard to the effects of PIWIL1 overexpression on OS
(Table 2).

3.4. Association of PIWIL1 Overexpression with Clinico-
pathological characteristics. Eight studies with 951 cancer
patients were analyzed for the association of PIWIL1
overexpression with various clinicopathological character-
istics; the pooled ORs are shown in Figures 3 and 4. -e
results suggested that PIWIL1 positive expression had no
obvious relationship with age (n� 4, OR� 0.77, 95% CI:
0.51–1.16, p � 0.21), gender (n� 5, OR� 1.16, 95% CI:
0.77–1.76, p � 0.47), tumor size (n� 2, OR� 1.41, 95% CI:
0.73–2.72, p � 0.30), differentiation (n� 6, OR� 1.66, 95%
CI: 0.76–3.62, p � 0.20), and distant metastasis (n� 2,
OR� 0.67, 95% CI: 0.23–1.95). However, PIWIL1 positive
expression was significantly associated with deeper tumor
invasion (n� 5, OR� 2.26, 95% CI: 1.09–4.70, p � 0.03),
higher clinical stage (n� 6, OR� 1.53, 95% CI: 1.09–2.14,
p � 0.01), and more lymph node metastasis (n� 4,
OR� 1.90, 95% CI: 1.25–2.88, p � 0.003).

3.5. Analyses of Sensitivity and Publication Bias for PIWIL1
Expression and OS. Sensitivity analysis was used to evaluate
the outcome stability of PIWIL1 expression and OS, and the
result indicated that the pooled HRs were stable and credible
(Figure 5). Begg’s funnel plot was used to evaluate the

publication bias, and no significant publication bias for OS
was identified (p � 0.21) (Figure 6).

4. Discussion

Overexpression of PIWIL1 had been discovered to facilitate
cancer progression and predict poor prognosis of patients
with various cancers. Plenty of clinical researches have
explored the value of PIWIL1 overexpression to predict
prognosis. However, almost all these researches, which in-
cluded limited number of subjects of specific cancer, have
come to incomprehensive conclusions.

-is current meta-analysis is the first comprehensive
review of all published clinical research in regard of the
influence of PIWIL1 expression level on prognosis of 9 types
of solid tumors. Survival data of 2179 cancer patients in-
cluded in 13 different studies were systematically estimated.
In summary, the overall results specifically suggested that
high PIWIL1 expression was associated with poor prognosis
in cancers, with results of poor OS (pooled HR� 1.80, 95%
CIs: 1.52–2.14, p< 0.00001), poor CSS (pooled HR� 1.94,
95% CIs: 1.47–2.55, p< 0.00001), and poor DFS/RFS (pooled
HR� 2.22, 95% CIs: 1.52–3.24, p< 0.00001). Additionally,
subgroup analyses, according to region, sample size, HRs
extract method, and cancer type, suggested that the rela-
tionship between high PIWIL1 expression and poor OS was
significant. As for clinicopathological characteristics, the re-
sults suggested that PIWIL1 overexpression had no obvious
relationship with age, gender, tumor size, differentiation,
and distant metastasis, but was significantly associated with

Table 1: Main characteristics of the included studies in this meta-analysis.

Study (year) Country Disease Sample
size

PIWIL1
Specimens Method Cutoff value Outcome Hazard

ratios Nos.
High Low

Raeisossadati,
2014 Iran CRC 46 16 30 Tissue qRT-PCR 2 folds CP NR 7

Litwin, 2018 Poland Breast
cancer 101 26 75 Tissue IHC Score >8 OS, CP SC 8

Sun, 2010 China Glioma 66 34 32 Tissue IHC Score >3 OS, CP SC 8
He, 2009 China ESCC 153 28 125 Tissue IHC Score >4 CP NR 8

Sun, 2017 China CRC 110 64 46 Tissue IHC Intensity >1 OS, DFS,
CP MA 9

Cao, 2016 China Breast
cancer 187 89 98 Tissue qRT-PCR EI> 5 CSS, CP SC 8

Yan, 2011 China CRC 270 69 201 Tissue IHC >10% OS MA 9

Zhao, 2012 China HCC 168 44 124 Tissue IHC Score >3 OS, RFS,
CP MA 9

Eckstein, 2018 Germany Bladder
cancer 95 37 58 Tissue IHC Score >2 CSS MA 8

Stöhr, 2019 (1) Germany RCC 265 75 190 Tissue IHC Score >0 OS, CSS MA 9
Stöhr, 2019 (2) Germany RCC 345 51 294 Tissue IHC Score >0 OS, CSS MA 9

Gao, 2018 China GC 120 80 40 Tissue IHC Positive cells
>40% OS, CP MA 8

Wang, 2012 China GC 182 NA NA Tissue IHC Score >3 OS MA 7
Navarro, 2015 Spain NSCLC 71 11 60 Tissue qRT-PCR Ct< 35 OS, RFS MA 7
RC: colorectal cancer; ESCC: esophageal squamous cell carcinoma; HCC: hepatocellular carcinoma; RCC: renal cell carcinoma; GC: gastric cancer; NSCLC:
non-small cell lung cancer; qRT-PCR: quantitative real-time polymerase chain reaction; IHC: immunohistochemistry; EI: expression index; Ct: cycle
threshold; CP: clinical parameter; OS: overall survival; CSS: cancer-specific survival; DFS: disease-free survival; RFS: recurrence-free survival; NR: not
reported; SC: survival curve; MA: multivariate analysis.
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deeper tumor invasion (n� 5, OR� 2.26, 95% CI: 1.09–4.70,
p � 0.03), higher clinical stage (n� 6, OR� 1.53, 95% CI:
1.09–2.14, p � 0.01), and more lymph node metastasis
(n� 4, OR� 1.90, 95% CI: 1.25–2.88, p � 0.003).

For now, this study is the most full-scale meta-analysis
and systematic review which scientifically revealed the
possible prognostic role of PIWIL1 expression level in
cancers. -e results convincingly confirmed the present

Study or Subgroup

1.1.1 OS
Gao, 2018
Litwin, 2018
Navarro, 2015
Stöhr, 2019 (1)
Stöhr, 2019 (2)
Sun, 2010
Sun, 2017
Wang, 2012
Yan, 2011
Zhao, 2012
Subtotal (95% CI)

Heterogeneity: chi2 = 10.04, df = 9 (P = 0.35); I2 = 10%
Test for overall effect: Z = 6.74 (P < 0.00001)

1.1.2 CSS
Cao, 2016
Eckstein, 2018
Stöhr, 2019 (1)
Stöhr, 2019 (2)
Subtotal (95% CI)

Heterogeneity: chi2 = 3.60, df = 3 (P = 0.31); I2 = 17%
Test for overall effect: Z = 4.72 (P < 0.00001)

1.1.3 DFS & RFS
Navarro, 2015
Sun, 2017
Zhao, 2012
Subtotal (95% CI)

Heterogeneity: chi2 = 2.32, df = 2 (P = 0.31); I2 = 14%
Test for overall effect: Z = 4.13 (P < 0.0001)

Test for subgroup differences: chi2 = 1.01, df = 2 (P = 0.60), I2 = 0%

log[Hazard Ratio]

0.723
-0.511
1.04

0.231
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0.77
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0.372
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SE
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16.3
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2.83 [1.04, 7.69]
1.26 [0.83, 1.91]
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2.16 [1.38, 3.38]
2.80 [1.37, 5.73]
2.66 [1.10, 6.44]
1.68 [1.13, 2.49]
1.88 [1.19, 2.96]
1.80 [1.52, 2.14]
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2.16 [1.20, 3.88]
1.45 [0.94, 2.23]
3.09 [1.48, 6.44]
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Figure 2: Forest plots of the association of PIWIL1 expression with OS, CSS, and DFS/RFS in various cancers.

Table 2: Subgroup meta-analysis of pooled HRs for overall survival.

Variables Studies (n) Number of patients HR (95% CIs) p value I2 (%) Ph
(1) Overall survival 10 1698 1.80 (1.52–2.14) <0.00001 10 0.35
(2) Region
China 6 916 2.01 (1.63–2.48) <0.00001 0 0.82
Europe 4 782 1.46 (1.09–1.97) 0.01 39 0.18
(3) Sample size
≤150 5 468 2.12 (1.58–2.83) <0.00001 22 0.28
>150 5 1230 1.66 (1.34–2.05) <0.00001 0 0.53
(4) Extract method
Survival curve 2 211 1.85 (1.21–2.82) 0.004 74 0.05
Multivariate analysis 8 1487 1.80 (1.49–2.17) <0.00001 10 0.35
(5) Cancer type
Gastrointestinal cancer 5 850 1.97 (1.55–2.49) <0.00001 0 0.72
Other 5 848 1.97 (1.55–2.49) <0.0001 42 0.14
HR: hazard ratios; CIs: confidence intervals.
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Study or Subgroup

Gao, 2018
He, 2009
Litwin, 2018
Sun, 2017

Total (95% CI)
Total events
Heterogeneity: chi2 = 0.33, df = 3 (P = 0.95); I2 = 0%
Test for overall effect: Z = 1.25 (P = 0.21)

Events
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29

95
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53

276

Events
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103
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33
57

208

Weight
(%)
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19.8
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29.8

100.0
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0.96 [0.40, 2.31]
0.71 [0.28, 1.79]
0.76 [0.36, 1.62]

0.77 [0.51,1.16]

old young Odds Ratio
M-H, Fixed, 95% CI

Odds Ratio
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(a)

Study or Subgroup

Gao, 2018
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Raeisossadati, 2014
Sun, 2017
Zhao, 2012

Total (95% CI)
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Heterogeneity: chi2 = 1.91, df = 4 (P = 0.75); I2 = 0%
Test for overall effect: Z = 0.72 (P = 0.47)
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54
19
10
35
40
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93
26
56
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4
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9.9
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0.79 [0.34, 1.82]
1.45 [0.61, 3.47]
1.46 [0.42, 5.04]
1.44 [0.67, 3.07]
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M-H, Fixed, 95% CI
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(b)

Study or Subgroup

He,2009
Sun,2017

Total (95% CI)
Total events
Heterogeneity: chi2 = 0.19, df = 1 (P = 0.67); I2 = 0%
Test for overall effect: Z = 1.03 (P = 0.30)

Events

25
40

65

Total

128
66

194

Events

3
24

27

Total

25
44

69

Weight
(%)

26.3
73.7

100.0

1.78 [0.49, 6.42]
1.28 [0.59, 2.77]

1.41 [0.73, 2.72]
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Heterogeneity: tau2 = 0.71; chi2 = 21.10, df = 5 (P = 0.0008); I2 = 76%
Test for overall effect: Z = 1.28 (P = 0.20)
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7
5

29
23
9

125

Total
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40
33
42
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5
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35

151

Total
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113
68
24
78

132

475

Weight
(%)

18.5
16.7
15.5
14.6
17.2
17.5

100.0

3.30 [1.58, 6.91]
0.93 [0.36, 2.39]
0.40 [0.14, 1.18]

8.48 [2.60, 27.66]
2.31 [0.95, 5.61]
0.92 [0.40, 2.16]

1.66 [0.76, 3.62]

poor good/moderate Odds Ratio
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Odds Ratio
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Sun, 2017
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Test for overall effect: Z = 2.18 (P = 0.03)
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5
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Total
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10
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5
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8
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(%)
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19.6
16.5
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2.82 [0.92, 8.68]

3.33 [0.88, 12.63]
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2.26 [1.09, 4.70]
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(e)

Figure 3: Forest plots of the association of PIWIL1 expression with(a) age, (b) gender, (c) tumor size, (d) differentiation, and (e) tumor
invasion.
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main viewpoint that overexpression of PIWIL1 was asso-
ciated with the OS, CSS, DFS/RFS, tumor invasion, clinical
stage, and lymph node metastasis. What is more, two im-
portant implications were put forward in this study. Firstly,
PIWIL1 overexpression could be a common poor prognostic
biomarker in cancers. In this study, we involved 9 types of
cancers, including breast cancer, CRC, glioma, ESCC, HCC,
RCC, bladder cancer, GC, and NSCLC, which meant that the
results were universal and this finding could be applied to at
least these 9 types of solid tumors. Secondly, it signified the
potential to exploit PIWIL1 as a worthy treatment target for
solid tumors.

A lot of research has explored the action mechanisms of
PIWIL1 on tumorigenesis and tumor progression in dif-
ferent cancers. It was widely confirmed that the PIWI

proteins could bind to Piwi-interacting RNAs (piRNAs),
which are 24–32 nt long, single stranded gonad-specific
small interfering RNAs [40]. So, PIWIL1 could exhibit
important roles in self-renewal and division of stem cell,
gametogenesis, and regulating gene expression via RNA
interfering mechanism [9, 12, 20]. piRNAs and PIWIL1
protein function as a Piwi-ribonucleoprotein complex to
suppress transposon through target degradation and epi-
genetic silencing [41, 42]. In various cancer cells, high ex-
pressions of PIWIL1 and piRNAs lead to aberrant DNA
methylation, tumor-suppressor genes silencing, and an
abnormal “stem-like” state of cancer cells [43, 44]. Specif-
ically, in human HCC, PIWIL1 expression was significantly
higher in HCC tissue [45], and PIWIL1 played a critical role
in HCC proliferation and metastasis by being mediated by

Study or Subgroup

Cao, 2016
Gao, 2018
He, 2009
Raeisossadati, 2014
Sun, 2017
Zhao, 2012

Total (95% CI)

Total events
Heterogeneity: chi2 = 9.98, df = 5 (P = 0.08); I2 = 50%
Test for overall effect: Z = 2.48 (P = 0.01)

Events

11
42
9
5

32
22

121

Total

29
54
53
12
45
65

258

Events

78
38
19
11
32
19

197

Total

158
66

100
34
65
95

518

Weight
(%)

27.5
13.9
20.0
6.1

13.8
18.7

100.0

0.63 [0.28, 1.41]
2.58 [1.15, 5.77]
0.87 [0.36, 2.09]
1.49 [0.39, 5.78]
2.54 [1.13, 5.69]
2.05 [1.00, 4.20]

1.53 [1.09, 2.14]

stage III/IV stage I/II Odds Ratio
M-H, Fixed, 95% CI

Odds Ratio
M-H, Fixed, 95% CI

0.1 1 10 1000.01

(a)

Study or Subgroup

Gao, 2018
He, 2009
Litwin, 2018
Sun, 2017

Total (95% CI)

Total events
Heterogeneity: chi2 = 4.81, df = 3 (P = 0.19); I2 = 38%
Test for overall effect: Z = 3.01(P = 0.003)

Events

61
9

15
28

113

Total

82
54
45
39

220

Events

19
19
11
36

85

Total

38
99
56
71

264

Weight
(%)

21.1
35.4
20.7
22.8

100.0

2.90 [1.30, 6.51]
0.84 [0.35, 2.02]
2.05 [0.83, 5.06]
2.47 [1.07, 5.72]

1.90 [1.25, 2.88]

LNM No LNM Odds Ratio
M-H, Fixed, 95% CI

Odds Ratio
M-H, Fixed, 95% CI

0.1 1 10 1000.01

(b)

Study or Subgroup

Litwin, 2018
Raeisossadati, 2014

Total (95% CI)

Total events
Heterogeneity: chi2 = 0.09, df = 1 (P = 0.76); I2 = 0%
Test for overall effect: Z = 0.73 (P = 0.46)

Events

4
1

5

Total

21
4

25

Events

22
11

33

Total

80
42

122

Weight
(%)

83.8
16.2

100.0

0.62 [0.19, 2.05]
0.94 [0.09, 10.00]

0.67 [0.23, 1.95]

DM No DM Odds Ratio
M-H, Fixed, 95% CI

Odds Ratio
M-H, Fixed, 95% CI

0.1 1 10 1000.01

(c)
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small hairpin RNA [46]. Recently, Wang et al. reported the
critical role of PIWIL1 in mediating the crosstalk of cancer
cell metabolism and immune cell response of HCC, and they
found that overexpression of PIWIL1 promoted the pro-
liferation rate of human HCC; moreover, they revealed that
PIWIL1 increased energy production and oxygen con-
sumption through fatty acid metabolism without altering
aerobic glycolysis, and PIWIL1 attracted myeloid-derived
suppressor cells (MDSCs) into the tumormicroenvironment
(TME) and activated p38-MAPK signaling, which in turn
improved secretion of immunosuppressive cytokine IL10
[47]. Similarly, the mature transcripts were associated with
the PIWIL1-piRNA complex code critical regulatory pro-
teins involved in controlling cell proliferation, differentia-
tion, and survival in CRC cells, which actively contributes to
the establishment and maintenance of clinicopathological
characteristics of CRC [48]. -e PIWIL1 expression in CRC
is positively correlated with the mRNA level of OCT4, a
cancer stem cell marker, suggesting that PIWIL1 may
contribute to the tumor stemless, which in turn strongly

improves its metastatic potential [49]. Although the un-
derlying molecular basis of the oncogenic functions of
PIWIL1 remains largely unknown, PIWIL1 has been re-
cently reported to mediate the occurrence and progression
of human cancers possibly through piRNA-independent
mechanisms [24, 50]. Shi et al. revealed that PIWIL1 reg-
ulates mRNA expression through the UPF1-mediated
nonsense-mediated mRNA decay pathway [51]. -ese
findings have made the oncogenic mechanism mediated by
PIWI proteins more comprehensive than the previously
well-established PIWI-piRNA pathway.

In particular, CRC may develop in patients with distinct
intestinal diseases such as inflammatory bowel diseases
(IBD) and irritable bowel syndrome (IBS), suggesting that
different TME can increase the risks of CRCs in different
ways [52]. TME represents a complex network between
tumor cells and endothelial, stromal, and immune cells [53].
Besides, the inflammatory cells and inflammatory mediators
such as cytokines and chemokines in TME facilitate CRC
progression [54]. Stimuli like inflammatory cytokines and
growth factors play a critical part in cancer development by
abnormally regulating the epithelial-mesenchymal transi-
tion (EMT) of cancer cells [55]. What is more, TME fa-
cilitates CRC progression bymaintaining paracrine crosstalk
signalings between tumor resident adipocytes [56]. Accu-
mulating evidence has shown the critical role of intestinal
barrier function regulated by mucus, IgA, and lipocalin2 in
protecting from bacteria-induced inflammation and tumor
tumorigenesis, and numerous signaling pathways (e.g., Toll-
like receptors), metabolites (e.g., indole, bile acids), and
small non-coding RNAs (e.g., miRNA, piRNA) have been
identified as key regulators mediating interactions between
host and microbe in the intestine [57]. In particular, there is
growing evidence that the role of dysregulation of micro-
RNAs (miRNAs) in the cancer development, progression,
and metastasis is important with the silence effect, acting as
tumor suppressors or oncogenes to posttranscriptionally
regulate expressions of specific mRNA targets [58–60].
Recent evidence indicates that miRNAs are involved in
direct cell-to-cell signaling and paracrine signaling between
TME and tumor cells, acting as secreted molecules in
microvesicles or exosomes [61]. Furthermore, several
miRNA-target therapeutics have developed in clinical level,
including a mimic of the tumor suppressor miR-34, which
have reached phase I clinical trials for cancer treatment,
providing a perspective on achieving safe miRNA therapy
[62]. In CRC, there is mounting evidence indicating there
are crosstalks between miRNAs and the Wnt/β-catenin
signaling pathway [63], EGFR signaling pathways [64], TGF-
β signaling pathway [65], TP53 signaling pathway [66], and
the EMT [67] in progression and metastasis. For example,
amplification of the AKT-PIK3K-PTEN signaling pathway is
mediated by the downregulation of miR-1, miR-126, and
miR-497 or by upregulation of miR-19, miR-19, and miR-96
[68]. In addition, research also has revealed the potential
pathogenic mechanism of miRNAs via regulating apoptosis.
For example, overexpression of miR-195 promoted apo-
ptosis in colorectal cancer cell line via targeting anti-
apoptotic BCL-2 [69].
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Interestingly, CRC screening has already a great impact
on curbing the rising incidence of colorectal cancer [70].
CRC is the third most-commonly diagnosed cancer and the
second in cancer mortality worldwide, and the incidence
rates show wide geographical variations, with a 3-times
higher rate in developed countries than in developing
countries [2]. -e pathogenesis of CRC follows a regular
progression from benign adenomas to malignant adeno-
carcinomas and usually lasts more than 10 years. It is usually
asymptomatic in the early stages and diagnosed until late
stages with unfavourable prognosis and huge financial
burdens [71].-e introduction of CRC population screening
programs worldwide has significantly reduced CRC mor-
tality in developed countries [72]. Colonoscopy is the cur-
rent reference method for CRC screening and gold standard
for CRC, and studies have shown that the sensitivity for
detecting CRC is >95% [72] and a 53%–72% reduction in the
CRC incidence and a 31% reduction in CRC-related mor-
tality [73]. What is more, as for noninvasive CRC screening,
faecal immunochemical test (FIT), with higher sensitivity
and participation rate, is gradually replacing guaiac faecal
occult blood test (G-FOBT) and has become the most-
commonly used method for the global screening program.
Multitarget stool DNA test (Cologuard) and plasma SEPT9
DNA methylation test (Epi proColon) are approved non-
invasive tools but are not cost-effective with unsatisfactory
accuracy [74]. In addition, the noninvasively detectable
biomarkers such as proteins, DNA, miRNAs, low molecular
weight metabolites, and CRC-related gut microbiome are
being actively developed [75]. Offering various screening
options, even with each patient’s wishes and limitations, may
increase compliance with screening [76]. -ese efforts to
promote CRC screening have great potential to ultimately
reduce CRC morbidity and mortality rate.

Accumulating evidence has shown the important role of
regulatory T cells (Treg cells) in cancers [77, 78]. Immune
cells in the premalignant environment can produce various
cytokines, growth factors, chemokines, and proangiogenic
factors, which contribute to a support environment by ac-
tivating antiapoptotic pathways and neoangiogenesis and
inhibiting immune surveillance [79]. Treg cells are a subset
of T lymphocytes, which mediate the immune response by
suppressing the proliferation and cytokine production of
self-reactive T lymphocytes [80]. Evidence has indicated that
Treg cells are recruited to TME through chemokines pro-
duced by cancer cells and, in particular, HCC cells have been
found to secrete CCL5 and CCL28 chemokines to mediate
accumulation of Treg cells [81]. -en, Treg cells regulate the
activities of antigen presenting cells by expressing inhibitory
costimulatory receptors on their surface to impair signaling
between APCs and T cells [82]. Moreover, they also
downregulate the expressions of CD40, CD80, and CD86 on
dendritic cells and suppress the immune cells activity by
secreting inhibitory cytokines such as IL-10, IL-35, and
TGF-β [83]. Now, manipulation of Treg cells is a promising
anticancer treatment strategy to facilitate Treg cell-targeted
therapies and immune precision medicine [84].

However, our study has several limitations. Firstly, all
included studies are retrospective and published with

positive outcomes. Secondly, among the included studies,
the methods assessing PIWIL1 expression and defining
positive PIWIL1 expression are inconsistent. -irdly, the
sample size in the included studies is relatively small.
Fourthly, data of a specific cancer is insufficient. Finally, the
majority of subjects included in the study are from China,
which may weaken the generalization of the conclusions.

5. Conclusions

To sum up, the association of high PIWIL1 expression in
solid tumor tissues with poor survival was specifically cer-
tified in this meta-analysis. We suggested that high PIWIL1
expression level was a valuable predictor for poor cancer
prognosis in deeper tumor invasion, higher clinical stage,
and more lymph node metastasis. -erefore, PIWIL1 is a
promising biomarker of worse clinical outcomes in cancers.
But whether it would be a promising target for treating solid
tumors still needs to be scientifically studied. Besides, further
larger-scale and high qualified multicenter studies including
different tumor types are required to confirm the clinical
value of PIWIL1 expression in cancers.
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