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Sensory systems face the challenge to represent sensory inputs in a way to allow easy
readout of sensory information by higher brain areas. In the olfactory system of the fly
drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert
a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon
cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the
olfactory system of drosophila in regard to the capabilities to discriminate odor quality
from the MB representation and its robustness to different types of noise. We focus on
understanding the role of highly correlated homotypic projection neurons (“sister cells”)
found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost
identical sensory inputs, but target randomly different KCs in MB. We show that sister
cells might play a crucial role in increasing the robustness of the MB odor representation
to noise. Computationally, sister cells thus might help the system to improve the
generalization capabilities in face of noise without impairing the discriminability of odor
quality at the same time.
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divergent projection, sparse coding

1. INTRODUCTION
Sparse coding is a common computational strategy in neural sys-
tems (Olshausen and Field, 2004; Barak et al., 2013). For instance,
it was shown that maximizing sparseness results in the emer-
gence of receptive fields in model simulations which are strikingly
similar in structure to that found in the visual system of pri-
mates (Olshausen, 1996; Olshausen and Field, 1997). Moreover,
sparse codes were suggested to be important for memory [in
the hippocampal CA3 region (Thompson and Best, 1989)], the
auditory system (DeWeese et al., 2003), or the vocal tract of song-
birds (Hahnloser et al., 2002). In insects, olfactory representations
in the mushroom body (MB) by Kenyon cells (KCs) are also
sparse (Perez-Orive et al., 2002; Heisenberg, 2003; Huerta et al.,
2004; Jortner et al., 2007; Wessnitzer et al., 2007; Turner et al.,
2008).

Sparse codes help to separate or decorrelate similar sensory
input patterns, so that the discrimination of distinct sensory
inputs becomes easier for a subsequent neural system process-
ing sensory information. However, the capacity becomes limited
in very sparse representation. For instance, in an ultimate sparse
code, where a binary activation of a single neuron represents
a distinct sensory input, at most N representations can be dis-
tinguished. In consequence, very sparse codes become sensitive
to noise, because a random activation is easily misinterpreted
as another odor quality. Thus, the ability to generalize to noisy
sensory inputs can be poor for very sparse codes.

To overcome some of these limitations, sparse codes in
neural systems are typically combined with divergent projections

from lower sensory areas to higher areas to increase capacity
through the number of neurons. For instance, in the human visual
system, the ratio of LGN to V1 cells is 1:40 (Wandell, 1995).
Similarly, the ratio of the number of glomeruli in the antennal
lobe (AL) to the number of KCs in the mushroom body (MB) is
also 1:40 (Hallem and Carlson, 2006). However, while increasing
the number of neurons increases the capacity of sparse represen-
tations, additional mechanism might have to be implemented to
improve the generalization capabilities of the network to noisy
sensory inputs.

One way to investigate these constraints in a model network
is to investigate whether the MB activation patterns change in
response to noise and compute a measure whether two patterns
can generally be discriminated with a given sparsity and connec-
tion structure. A previous study examined the constraints of the
connection structure on discriminability in the locust olfactory
system (García-Sanchez and Huerta, 2003). The authors proposed
an interesting mathematical framework and found a number of
constraints on the design of the AL to MB projection in locusts.
We here adapt and expand this framework to the particularities
of the olfactory system of the fly drosophila melanogaster to derive
its constraints on good discriminability of odor qualities and fur-
ther use the network model to investigate the robustness of the
olfactory system to noise.

In flies, when stimulated with a particular odor, a number of
different types of olfactory receptor neurons (ORN) are activated
(Hallem and Carlson, 2006). Because axons from ORNs con-
verge into just one dedicated glomerulus in AL for each receptor
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type (Wilson and Mainen, 2006), a given odor will activate a
certain number of glomeruli. Although there exist mechanisms
for decorrelation of the ORN activity patterns to different odors,
such as lateral processing and divisive normalization (Olsen and
Wilson, 2008; Olsen et al., 2010), an odor representation in the
antennal lobe can still be regarded as relatively dense. Typically, a
rather large proportion of neurons fire when processing a single
odor quality. It was found that 30–50% glomeruli are activated
per odor (Hallem and Carlson, 2006). In contrast, when pro-
jection neurons (PN) project sensory inputs further from the
glomeruli to the KCs of the mushroom body (Wilson and Mainen,
2006), only a small percentage of the ca. 2000 (Turner et al., 2008;
Aso et al., 2009) KCs are active, resulting in a sparse representation
of odor quality in MB.

While the general architecture of the olfactory system of the
fly is similar to that of the locust, there also exist important
differences. First, in flies the number of glomeruli is relatively
small [50 compared to e.g., 830 in locust (Leitch and Laurent,
1996; Chou et al., 2010)]. More importantly, in contrast to the
locust, each glomerulus in flies contains on average about 3 [2–5
(Stocker et al., 1990)] homotypical PNs that show almost iden-
tical activity pattern caused by shared input and gap junction
coupling (Kazama and Wilson, 2009; Huang et al., 2010; Yaksi
and Wilson, 2010). Because of their high correlation, we here call
these PNs “sister cells.” Despite almost identical firing behavior,
these homotypic PNs project randomly to different target KCs in
the mushroom body (Masuda-Nakagawa et al., 2005; Kazama and
Wilson, 2009). Similar types of sister cells have been character-
ized in other species such as frog (Chen et al., 2009) and mice
(Dhawale et al., 2010; Padmanabhan and Urban, 2010; Tan et al.,
2010). However, their function in general, or their usefulness to
each individual species in particular, remains unclear.

We here put forward the hypothesis that sister cells in flies help
the olfactory system to increase the robustness to noise and there-
fore help to stabilize the odor representation of the KCs in MB. We
show that strong gap junction coupling between sister cells is cru-
cial for their influence on the robustness of the system. Depending
on the assumed noise strength and tolerance thresholds of the sys-
tem, we found that already a few sister cells per glomeruli increase
the system’s robustness to noise considerably.

By calculating the probability of the expected similarity of
representations of distinct odors in MB, we further derived ana-
lytical equations for the discrimination capabilities without the
explicit use of classifiers or readouts, and give constraints on the
connectivity for a given sparseness level in MB.

2. RESULTS
The Result section is structured as follows. After introducing
our network model of the olfactory system of drosophila, we
first investigate the robustness of the MB odor representation to
noise and highlight the role of sister cells. Then we analyze con-
straints on network parameters resulting from requiring a good
discrimination ability of odors in MB.

2.1. NETWORK MODEL
During stimulation by an odor, a number of different types of
olfactory receptor neurons (ORN) are activated. Because axons
from ORNs of particular type converge into just one dedicated

glomerulus in the antennal lobe (Wilson and Mainen, 2006),
a given odor will activate a certain number of glomeruli. In
our mathematical derivation, we assume that activity levels of
glomeruli are binary, they are either activated by an odor or
not. In simulations of Section 4.3, we consider graded neural
responses.

In each of the NG glomeruli, M highly correlated PNs (sis-
ter cells) receive the ORN’s input and project to several of the
NK KCs in the mushroom body. We assume that all sister cells
of a glomerulus behave identically to an odor, but may project
to different KCs. The projection targets KCs randomly (Masuda-
Nakagawa et al., 2005; Kazama and Wilson, 2009; Caron et al.,
2013) in an independent fashion with a connection probability pc.
Thus the probability of having C synaptic connections to a KC is
given by the binomial distribution

p(C) =
(

MNG

C

)
pC

c

(
1 − pc

)MNG−C
(1)

Therefore, each KC receives on average 〈C〉 = pcNGM synaptic
connections from PNs.

Due to divisive normalization by the total amount of ORN
input, it was found that the total activity of all PNs to a given
odor is approximately constant (Olsen and Wilson, 2008; Olsen
et al., 2010; Luo et al., 2010). In the case of binary activation lev-
els, constant total PN activity amounts to a constant number of
activated glomeruli for a given odor. We thus assume that each
odor activates exactly A glomeruli.

Following an early study investigating the olfactory system of
locusts (García-Sanchez and Huerta, 2003; Huerta et al., 2004),
we emphasize the analysis of the anatomical structure of the olfac-
tory system and therefore simplify dynamical aspects. All PNs
project their activation state to their targeted KCs. If the num-
ber of synaptic inputs reaches a firing threshold θ, a KC will fire.
For simplicity, we assume that a KC has only one of two states:
quiescent (0) or firing (1).

With these assumptions, we can write the response yi of the ith
KC in the following form [McCulloch-Pitts neuron (McCulloch
and Pitts, 1943)]:

yi =
{

1,
∑

j wijxj ≥ θ

0, otherwise
(2)

where xj ∈ {0, 1} denotes the jth PN’s response state to an odorant
stimulus. In our framework, connections do either exist, wij = 1,
or not, wij = 0. If the number of connections received by a KC
is C, it is

∑
j wij = C.

The model network is illustrated in Figure 1A. In the cartoon,
A = 2 glomeruli (dashed circles) of the antennal lobe (AL) got
activated by an odor. Thus, all sister cells (here M = 3) of the
activated glomeruli changed into the firing state (red circles). All
sister cells project randomly into the mushroom body (MB). For
illustration purposes, each KC receives exactly C = 3 connections
here (solid lines; connections are only plotted for every fifth KC).
The firing threshold in Figure 1 is arbitrarily set to θ = 2, so
that those KCs which receive two or more activated connections
(red lines) activate in turn, resulting in an corresponding odor
representation in MB (red circles in MB).
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A B C D

FIGURE 1 | Illustration of the olfactory network structure. (A) An odorant
pattern is represented by A randomly activated glomeruli in AL (red circles
indicate activated PNs). All sister cells in activated glomeruli project to
random KCs in the mushroom body (MB). The firing threshold of KCs is set to
θ = 2 in this example. Two KCs get activated (red circles). (B) Two odors (red
and green activations) overlap in the glomeruli activation, but the

representation in MB might still be distinct. (C) Extrinsic noise is modeled as
random activation of silent PNs (gray circle in AL). This synaptic input noise
might induce a change in the activity pattern of KCs (gray circle in MB). (D)

Faithful information transmission. Two odors (blue and red) might differ in
glomeruli activation, but this information is lost in MB because the same
selection of KCs are activated by chance.

2.2. FIRING PROBABILITY OF KENYON CELLS
We start by deriving the KC firing probability from combinatorial
arguments. Since all incoming connections are from random PNs,
the probability of the amount of synaptic inputs received by any
KC is identically distributed and uncorrelated to others.

According to our assumptions, there are exactly MA active PNs
in the AL a KC could receive input from. For a KC cell to receive
exactly n active presynaptic inputs, the KC should have a con-
nection from exactly n of the MA cells. Because there are

(MA
n

)
combinations of connections to receive n connections from MA
cells and the probability for a connection is pc = 〈C〉/(NGM),
we can write the synaptic input distribution p(n) as the binomial
distribution

p(n) =
(

MA

n

)
pn

c (1 − pc)
MA−n (3)

In other words, p(n) is the probability of a KC having exactly
n activated presynaptic neurons during presentation of an arbi-
trary odor. Since each activated presynaptic neuron delivers an
input of size 1 to the postsynaptic neuron and inputs are simply
added in our neuron model (see Eq. 2), p(n) describes the prob-
ability of a KC to have exactly n synaptic inputs in response to
an odor.

Figure 2A plots the synaptic input distribution p(n) for a num-
ber of parameter settings. Naturally, if the average number of
connections 〈C〉 is increased, the mean synaptic input increases
as well. Note, however, that even if 〈C〉 is fixed, the shape of
the distribution broadens slightly for increasing number of sister
cells M.

In response to synaptic inputs, a KC will activate if the amount
of input exceeds a threshold θ. Therefore, the KC firing probability
pK is given as

pK(θ) =
∑
n≥θ

p(n). (4)
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FIGURE 2 | (A) Synaptic input distribution p(n). The distribution shifts and
gets broader for increasing connectivity (〈C〉). Note that in case of multiple
sister cells per glomerulus (red lines; M = 5) and fixed connectivity 〈C〉, its
variance increases as well. The binomial distribution approximates a
Gaussian for larger 〈C〉. (B) KC firing probability pK vs. firing threshold θ.
Note that the slope changes for different parameter. The threshold θ is
usually set so that the KC firing probability is fixed at 0.05 (dotted line).
Parameter: NG = 50, A = 20.

See Figure 2B for a plot of pK(θ). Generally, the firing thresh-
old should be set large enough to ensure a low firing probability
and a sparse activation pattern in KCs (dashed line in Figure 2B
corresponds to pK = 0.05).

2.3. ROBUSTNESS TO INTRINSIC NOISE
Noise is ubiquitous in neural systems. If the firing probability is
very low in the MB to achieve a sparse representation of odors,
a noise induced change of the firing state of even a few neurons
might have a large impact. We wondered how the odor represen-
tation of KCs is affected by noise and whether the sister cells could
promote robustness to some forms of noise.

In the following two sections, we consider two types of noise,
intrinsic and extrinsic noise, respectively. Intrinsic noise refers to
an accidental perturbation of an internal parameter, for instance
a change in the firing mechanism. Extrinsic noise refers to fluctu-
ations of the synaptic inputs. To be able to compare noise effects
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for different parameter values we will assume that the KC firing
probability is given and maintained while changing parameters.

Let us first consider intrinsic noise. We model intrinsic noise
by perturbing the firing threshold of a KC neuron. If the fir-
ing threshold is reduced by �θ, a KC will fire more likely. The
noise induced change of the firing probability �pintr−

K is given by
summing up the probabilities of the additional synaptic inputs
n = θ − �θ, . . . , θ − 1 which result in a spike after perturbation:

�pintr−
K = pK(θ − �θ) − pK(θ) =

θ−1∑
n = θ−�θ

p(n). (5)

Analogously, if the threshold is increased by an amount �θ, the
firing probability of KCs is lowered and can be calculated as

�pintr+
K = pK(θ + �θ) − pK(θ) = −

θ+�θ−1∑
n = θ

p(n). (6)

To get a better intuition of the involvement of parameters in the
intrinsic noise, we approximate the binomial distribution of p(n)

by a Gaussian distribution N(μ, σ) with same mean and variance
(which is a good approximation for larger 〈C〉, see Figure 2A). For
Eq. 5 one finds (Eq. 6 can be approximated in analogous manner):

μ = MA pc (7)

σ2 = MA pc(1 − pc) (8)

with synaptic connection probability pc = 〈C〉/(MNG). When the
sum in Eq. 5 is approximated by an integral, we find

�pintr−
K ≈

∫ θ

θ−�θ

1√
2πσ

e
− (x−μ)2

2σ2 dx (9)

=
∫ α

α− �θ
σ

1√
2π

e− x2
2 dx. (10)

where the firing threshold in Eq. 10 was set in terms of the mean
and the variance of the (assumed Gaussian) synaptic input distri-
bution θ = μ + ασ with α > 0 to ensure constant mean activity
of the KCs. If �θ is small, we can approximate the integral in
Eq. 10 and find

�pintr−
K ≈ �θ

σ

e− α2
2√

2π
(11)

= �θ√
MA pc(1 − pc)

γ (12)

= �θ√
Ac (1 − c/M)

γ (13)

by using the definition Eq. 8, abbreviating a term related to the
mean activity, γ ≡ exp(−α2/2)/

√
2π, and setting c ≡ 〈C〉/NG.

Assuming pc < 0.5 and a fixed KCs firing probability, Eq. 12
shows that the variability decreases if the connection probability

pc is increased. Similarly, increasing the number of connections
reduces the variability (see Figure 3B; crosses).

Interestingly, a higher number of sister cells M per glomeruli
reduces the intrinsic noise. When relating the case of M sis-
ter cells to without sister cells, the relative reduction of �pintr−

K
is

√
(1 − c)/(1 − c/M) (assuming constant 〈C〉; see Eq. 13).

This reduction is moderate and saturates for large M. With c =
〈C〉/NG = 10/50 = 1/5, the relative change in �pintr−

K becomes
2/

√
5 − 1/M which goes to 2/

√
5 ≈ 0.9 for large M. Thus, while

the amount of sister cells reduces the effect of intrinsic noise,
the improvement relative to the case without sister cells does not
exceed 10%.

In Figure 3A, the noise induced variability of the firing prob-
ability is plotted for varying M. For better comparison, we fixed
the average number of synaptic inputs 〈C〉. Noise reduction with
increasing numbers of M is slightly higher than the 10% estimated
from the approximation (Eq. 12), however, the effect of sister cells
on intrinsic noise remains small and saturates as predicted.

Note that we modeled intrinsic noise by changing the firing
threshold in a single KC and looked at its change of firing prob-
ability. How frequent such threshold fluctuation occurs in indi-
vidual cells of the large population of KCs in MB is not known.
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FIGURE 3 | Robustness to noise. (A) Intrinsic noise modeled by varying
the firing threshold of KCs by �θ. Relative change in firing probability of
KCs is plotted vs. the number of sister cells M. The Gaussian
approximation Eq. 10 in dashed lines. (B) Relative noise induced variability
with average number of connections 〈C〉. Varying 〈C〉 has opposite effects
for extrinsic (m = 1 see panel C) and intrinsic noise. (C) Extrinsic noise. The
effect of activating a single quiescent PN (blue curve) or deactivating an
active PN (red curve) on the firing probability of KCs. Dashed curve shows
the Gaussian approximation Eq. 20. General extrinsic noise where some
PNs activate and others deactivates simultaneously (green curves). If gap
junctions are included (that is the noise strength remains constant with M,
i.e., m1 = 1 and m2 = 1) the induced KC variability reduced quickly (solid
line), whereas if gap junctions are not considered (and thus the noise
strength grows with M, i.e., m1 = M, m2 = M) the variability only slightly
decreases (dotted line). (D) Variability of pK induced by extrinsic noise
(m1 = 1 and m2 = 1) depends on pK . Parameters (if not varied): NG = 50,
A = 20, 〈C〉 = 10, M = 3, and pK ≈ 0.05.
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However, the qualitative behavior and the effect of parameters on
robustness to noise should not change when regarding the whole
population or only a single cell.

2.4. ROBUSTNESS TO EXTRINSIC NOISE
Extrinsic noise in our model describes the situation when synap-
tic inputs to KCs have been perturbed: noise changes the activa-
tion level of some PNs. Since synaptic inputs might differ due to
noise, KCs in turn might change their firing (see Figure 1C for an
illustration).

To compute the effect of extrinsic noise, we randomly assign
m quiescent PNs in the antennal lobe to be active. We will later
analyze the case where both possibilities, activation of quiescent
PNs and deactivation of active PNs, are present.

How would the activation of m quiescent PNs affect a KC in its
firing? For that, one has to calculate the probability p(l|m) that l of
the m randomly activated PNs project to a given KC. This problem
is the same as for Eq. 3 and is given by a binomial distribution

p (l|m) =
(

m

l

)
pl

c(1 − pc)
m−l (14)

Having l noise inputs to the KC will increase the total synaptic
input of previously n by l. However, only if these additional noise
inputs push the KC above threshold, i.e., n + l ≥ θ, will the firing
probability be affected. Taking this into account, one finds

�pextr+
K =

θ−1∑
n = θ−m

p(n)

m∑
l = θ−n

p(l|m) (15)

Analogous to the case of intrinsic noise, we approximate Eq. 15
to get a better intuition of the involvement of parameters. Using
again a Gaussian distribution to approximate p(n), and set (anal-
ogous to above) θ = μ + ασ, one first finds

pK(μ + ασ) ≈
∫ ∞

α

1√
2π

e− x2
2 dx. (16)

Now suppose that m quiescent PNs are activated as a result of a
noise perturbation. This will cause the synaptic input distribution
to change slightly as the total amount of active PNs is increased,
i.e., MA → MA + m. Hence,

μ′ = MApc + mpc, (17)

σ′2 = MApc(1 − pc) + mpc(1 − pc). (18)

Computing the difference between the firing probability with and
without noise yields the change of the firing probability caused by
extrinsic noise. Using Eq. 16

�pextr+
K ≈

∫ ∞

θ

1√
2πσ′ e

− (x −μ′)2

2σ′2 dx −
∫ ∞

α

1√
2π

e− x2
2 dx(19)

=
∫ α

β

1√
2π

e− x2
2 dx (20)

with β = α

√
MA

MA+m − mpc√
MA pc(1−pc)+mpc(1−pc)

. Since m is small,

the integral can again be approximated resulting in

�pextr+
K ≈ (α − β) γ (21)

≈
(

α −
√

MA

MA + m
α + mpc√

MA pc(1 − pc) + mpc(1 − pc)

)
γ(22)

=
(

α −
√

MA

MA + m
α + m√

(M/c − 1)(MA + m)

)
γ (23)

with the same c ≡ 〈C〉/NG and γ as defined above.
Note first that the noise perturbation grows with the mean

activity of the KCs (see also Figure 3D). From Eq. 22, we fur-
ther find that, in contrast to intrinsic noise, reducing—instead
of increasing—the average input connection 〈C〉 (or pc) results
in a more robust noise response, if the firing activity in KCs is
maintained (see Figure 3B).

Introducing sister cells, on the other hand, has again a pos-
itive effect on the robustness to noise. If we assume for the
moment that m stays constant if M is changed (see Section 2.5),
set 〈C〉 constant, and further assume A � m (so that MA/(MA +
m) ≈ 1), we find that the relative change of �pextr+

K with M in
respect to without sister cells is given by

√
(1 − c)/(M(M − c)),

which is approximately 1/M as c is relatively small (c = 1/5).
Thus, the improvement of the robustness to noise is consid-
erable with increasing number of sister cells and indeed does
not saturate for larger M in contrast to the case of intrinsic
noise.

So far we have analyzed the case where m quiescent PNs acti-
vate in response to noise. In a similar manner we can derive
the noise induced probability change when noise causes previ-
ously active PNs to turn off, and when both cases are combined
(see Method section 4.2). The qualitative results are similar. The
change in noise induced firing probability when activating or
deactivating a single PN is plotted in Figure 3C for different
values of sister cells M. Note that the approximation with a
Gaussian, Eq. 20 (dashed line), is close to the exact values (solid
lines). Note that the effect of sister cells on the robustness of the
system to extrinsic noise is considerably, approximately halving
the noise induced variations of the firing probability when M is
doubled.

In conclusion, our results suggest that incorporating highly
correlated sister cells into glomeruli enhances the robustness of
the firing pattern in the mushroom body to both, extrinsic and
intrinsic noise. On the other hand, connectivity structure has
opposite effects on both noise types.

We further tested in simulations whether our theoreti-
cally derived results on the robustness to noise are appli-
cable also when the assumption of binary activation in AL
is relaxed to allow graded firing rate responses (see Method
section 4.3). We found that the qualitative behavior of the
reduction of noise with increasing number of sister cells as
well as the effect of connectivity are very similar (compare to
Figure 8).
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2.5. STRONG GAP JUNCTION COUPLING BETWEEN SISTER CELLS
REDUCES THE EXTRINSIC NOISE

We found in the last section that the effects of extrinsic noise are
reduced approximately by 1/M if sister cells are introduced.

However, we silently assumed that the number of PNs affected
by the noise stays constant at m. However, if the number of sister
cells is changed, the total number of PNs gets implicitly multiplied
by M because additional PNs are introduced. In a larger pool of
PNs, it is more likely to find a fixed number of m cells affected by
noise; in fact m should be a certain fraction f of the total number
of PNs, thus m = fMNG.

Thus m should be enlarged when adding sister cells. However,
as described in the introduction, sister cells are highly correlated
with each other by gap junction coupling. What would be the
effect of noise on a system of strongly coupled sister cells?

To analyze this we built a simple rate model of M mutual con-
nected sister cells and compared the variance of each cell’s output
rate to the variance of an injected independent Gaussian noise.
As described in the following, we show that the variance of the
noise gets reduced by a factor of 1/M for strong mutual coupling.
Thus, gap junctions effectively reduce the risk of a sister cell to
accidentally change its state.

We investigate the effect of the electrical gap-junction coupling
of sister cells on extrinsic (added) noise. Within one glomeru-
lus, we consider a group of M neurons receiving random external
inputs with and without gap junctions between each other. In a
stochastic differential equation formulation (Øksendal, 2003), the
dynamics of an ith neuron’s firing rate ri can be written as

τ
dri

dt
= −ri + f (Ii) + w

M∑
j = 1

(rj − ri) + σξi (24)

where τ is the time constant of the neuronal firing rate. Ii is the
input that is applied to the neuron, and f is the neuron’s IO-
function which concrete shape is not important for the discussion
here. The strength of the gap-junction coupling between neurons
is given by w and assumed equal for all neurons for simplicity.
Extrinsic noise is modeled as a Gaussian process with zero mean
and standard deviation σ. In Eq. 24, ξi is thus a Gaussian white
noise variable with zero mean and unit variance.

In this rate model, we describe gap junctions as depending
on the neuronal firing rate difference between neurons. This
is a reasonable assumption because gap junctions are typically
modeled as resistive connections dependent on the difference of
somatic voltage between connected cells (e.g., Moortgat et al.,
2000).

In the following, we compute the mean and the variance of the
stochastic differential equation for the rate of the coupled neu-
rons. Reorganizing the neural dynamics Eq. 24 into matrix form,
we have

τdr = −(Ur − b)dt + σdW (25)

where r is a vector of length M, W is a M-dimensional Gaussian
noise term (zero mean and unit variance matrix). The input term
is bi = f (Ii) and the matrix U is defined as

U = (1 + Mw) IM − w 11T (26)

where 1 is the vector of only ones and IM the identity matrix.
We note that Eq. 25 is a system of (inhomogeneous) lin-

ear stochastic differential equations (SDE) with independent
Gaussian noise terms (having zero mean), symmetric U , and
time-independent U and b. The evolution of the mean and vari-
ance of such a system of linear SDEs is well known (Øksendal,
2003; Jimenez, 2012) and the stationary solution for the mean and
co-variance matrix of Eq. 25 is given by

E(r) = b (27)

Var(r) = σ2

2τ
U−1.

Since the matrix U is a rank-1 update of a diagonal matrix, it turns
out that its inverse can be written as

U−1 = 1

1 + Mw
IM + w

1 + Mw
11T . (28)

Altogether, we thus find for the variance

Var(r) = σ2

2τ

(
1

1 + Mw
IM + w

1 + Mw
11T

)
(29)

From Eq. 29, we can see that, when there is no electrical cou-
pling, w = 0, the variance of the neuronal firing rate is σ2/(2τ)

and the covariance of the neuronal firing rate is 0. When elec-
trical coupling is extremely large, w → ∞, all variance and co-
variance terms become equal and are given by σ2/(2Mτ). Note
that the variance is exactly reduced by 1/M as a result of electri-
cal coupling. The variance and covariance terms are compared
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FIGURE 4 | Variance and covariance of the neuronal firing rate as a

function of the electrical coupling strength. Values are normalized by the
expected variance without coupling, that is σ2/(2τ). Simulation and
theoretical estimation show that the variance decays with coupling strength
while covariance increases. In the limit of large coupling, variance and
covariance are both equal to 1/M of the magnitude of the variance when
there is no electrical coupling (dashed line). Parameters (since the variables
can be scaled arbitrarily the units are omitted): I = 5; M = 5; σ = 0.2;
τ = 10. IO-function f (x) = αx + β with α = 3, β = 5.
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in Figure 4. The simulated values fit very well the theoretical
calculations.

Taken together, the number of noise activated PNs m stays
indeed constant if M is increased, because the gap-junction cou-
pling reduces the likelihood of the noise induced changes by 1/M.
In consequence, the number of accidentally activated PNs, m, is
not dependent on M anymore. With strong gap junction cou-
pling, m is thus a constant when varying M. In this sense, our
calculation in the last paragraph indeed modeled extrinsic noise
in a realistic setting.

Note that if one would increase the number of PNs M-fold
(while keeping the fraction of activated glomeruli constant), but
without having highly correlated sister cells in the system, the
reduction of extrinsic noise would be much less effective since the
probability of having a noise event would grow with the number
of PNs, e.g., m ∝ M. This situation is plotted in Figure 3C in case
of extrinsic noise with both silencing and activation events (dot-
ted green line). On the other hand, including sister cells would
mean m constant (regardless of M), so that the relative change
in the firing probability of KCs decreases much more rapidly
(Figure 3C; solid green line).

2.6. SPARSE CODES REDUCE OVERLAPS IN MB
In the previous sections, we examined the robustness to noise.
From a computational perspective, robustness of the MB odor
representation to noise improves the performance of a hypothet-
ical readout of the sensory information. For instance, if a higher
brain area has to decide whether two noisy patterns in MB result
from an activation to the same odor, a more noise robust KC
activation would make this generalization task easier.

Another mechanism to increase the generalization capabili-
ties while maintaining discrimination performance at the same
time is to require that odor representations do not share too
many common activations for different odors. For instance, if
two odor representations would be required to differ by the acti-
vation of at least three neurons, an incoming odor pattern with
an accidental change in a single neuron would be still correctly
classified (assuming that the margin of the classifier would be set
accordingly). In contrast, if two odor representations differed by
only one neuron, a pattern with an accidental change in a single
neuron could instead be misclassified.

In this sense it should thus be beneficial to reduce the risk of
large overlaps of odor representations when designing the olfac-
tory system. In divergent projections, such as the AL to MB
projection, it is well known that patterns in MB become generally
less overlapping if activations are sparse. To investigate this prop-
erty in our framework in a quantitative way, we compute the exact
probability of finding shared neurons in two odor representations
in MB for a given amount of shared activations in AL. Thus, we
ask: for individual activation patterns, if we have a certain overlap
in AL, what is the expected overlap in MB?

Assume that X1 = (x1
1, . . . , xMNG

1 ) and X2 = (x1
2, . . . , xMNG

2 )

are two {0, 1}-vectors with MNG elements representing the PN
activation patterns in response to two odors. Each odor activates
exactly A glomeruli (thus MA PNs). However, some of the acti-
vated glomeruli might be identical (Wilson and Mainen, 2006)
that is both odors potentially have an overlapping representation

in AL. This situation is illustrated in Figure 1B (green and red
circles). Let the number of commonly activated glomeruli be X1 ·
X2 = Mo. Since |X1| = |X2| = MA PNs are always activated, the
overlap normalized by the expected number of activated PNs is

OVAL(o) = o

A
. (30)

The PNs project to the KCs which in turn fire according to their
synaptic input from the PNs. Let Y1 = (y1

1, . . . , yNK
1 ) and Y2 =

(y1
2, . . . , yNK

2 ) be the activation patterns corresponding to X1 and
X2 in MB. Note that Y1 and Y2 are {0, 1}-vectors with NK ele-
ments (the number of KC cells). On average, according to the
firing probability of KCs (pK ; see Eq. 4), odors will activate pK NK

neurons in the mushroom body.
We asked how large the induced overlap of two odor represen-

tation in MB will be on average if the overlap between two odor
representations in AL is known to be o.

Since the connectivity structure is independent for each KC,
it is enough to consider a single KC. The probability of having
a common activation of a single KC for both odors given an
overlap o of their AL representations is p(y1 = y2 = 1|o). Thus,
NK p(y1 = y2 = 1|o) is the expected number of shared KCs in
the representation of the two odors in MB. Since pK NK is the
expected number of activated KCs in response to any odor, the
(normalized) overlap in MB for a given AL overlap o is

OVMB(o) = p(y1 = y2 = 1|o)
pK

. (31)

The probability p(y1 = y2 = 1|o) can indeed be exactly calcu-
lated by using a combinatorial approach. We give the derivations
in the Method Section 4.1 (Eq. 39).
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FIGURE 5 | The projection from antennal lobe to the mushroom body

reduces the overlap of two odor representations for sparse codes.

Overlap in the mushroom body ovMB is plotted as a function of the overlap
of representations in the antennal lobe ovAL. Colors indicate different levels
of KC firing probability pK (related to the sparseness of the MB
representations). Note that for low pK even highly overlapping
representations in the AL are very likely to be non-overlapping in MB.
However, for higher firing probabilities pK , this effect diminishes.
Parameters: M = 3, NG = 50, A = 20, 〈C〉 = 10 (Note that with these
parameters the firing probability in the AL is 40%).
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In Figure 5, the relation of the overlap of the representation in
MB is plotted as a function of the overlap in AL. Note that the
function is highly sub-linear, showing that the overlaps of repre-
sentations are reduced as long as the firing in MB is sparse (low
firing probability pK ; colors in Figure 5).

2.7. PROBABILITY OF HAVING DISTINCT ODOR REPRESENTATIONS
IN MB

A challenge for the olfactory system is to ensure that sensory
information can still be read out from the MB after projecting
the AL odor representations to the MB. In particular, information
about odor identity should not be lost. For instance, consider the
situation illustrated in Figure 1D. Two odors, odor 1 (red), and
odor 2 (blue), have different representations in AL, X1 and X2,
with X1 �= X2. However, there is a chance that due to the partic-
ular structure of the connections, the corresponding activation
patterns in the mushroom body, say Y1 and Y2, happen to be
identical, i.e., Y1 = Y2. This situation will result in the loss of the
information about odor identity, since the two odors cannot be
distinguished based on the KC activation pattern alone even if the
decoding would be perfect.

In fact, a hypothetical decoder of the odor identity from the
MB representation usually should generalize for patterns that are
very similar. If a classification is to be made whether Y1 and
Y2 are representations of different odors or noisy version of the
same odor, classifiers would usually make a decision based on the
similarity of Y1 and Y2. If one defined the similarity by count-
ing the amount of KCs responding differently, i.e., D(Y1, Y2) ≡
|Y1 − Y2|2, the classifier might decide that both odors are differ-
ent if at least k KCs response differently, D(Y1, Y2) ≥ k, otherwise
the classifier might assume that odors are identical and the minor
difference of Y1 and Y2 is a result of noise.

How k should be chosen depends on the distribution of odors
which has to be detected as well as the classifier used for dis-
tinguishing odor representations in MB and is thus unknown.
However, to enable the readout of the information from the
MB representation, the olfactory system should be designed to
minimize the probability that AL activations to distinct odors,
X1 �= X2, result in MB representations that are very similar, e.g.,
D(Y1, Y2) < k.

Such faithful transmission of the odor identity will set con-
straints on the design of the network, e.g., on the sparsity of
the MB activation and on the connectivity structure (〈C〉). For
example, if the firing threshold θ is small or the number of input
connections large, many KCs fire regardless of the pattern in AL.
Thus, MB would lose its selectivity to odors: the probability of
having two similar KC patterns in response to two distinct odors
in AL becomes large. Conversely, if the firing is too sparse, KCs
may not respond at all, regardless of the odor. The information
about the odor identity would equally be lost.

In the following, we compute the probability that two distinct
patterns in AL, X1 �= X2, result in MB activations, Y1 and Y2,
that are far apart, D(Y1, Y2) ≥ k. This probability p(D(Y1, Y2) ≥
k|X1 �= X2) is equal to 1 minus the probability that the MB
activations are very similar:

p (D(Y1, Y2) ≥ k|X1 �= X2)=1 − p(D(Y1, Y2) < k|X1 �= X2) (32)

Because exactly A glomeruli in the AL are activated in response
to an odor, and since each glomerulus contains M sister cells
(with identical responses), the condition X1 �= X2 is equivalent
to requiring that the number of commonly activated glomeruli is
less then A. We call these glomeruli the “overlapping” glomeruli
between X1 and X2 and write p(o) for the probability of having o
overlaps. It is

p(D(Y1, Y2) < k|X1 �= X2) =
A − 1∑
o = 0

p(D(Y1, Y2) < k|o) p(o).(33)

The probability p(o) can be computed as follows. An odor
activates A glomeruli. There exist

(NG
A

)
ways to select those

out of the altogether NG glomeruli. Assume that o of the A
glomeruli are shared between the two odors. Since there are(A

o

)(NG−A
A−o

)
ways to choose exactly o common glomeruli and

A − o non-shared glomeruli, the probability of finding exactly o
commonly activated glomeruli in both odors is therefore

p(o) =
(A

o

)(NG−A
A−o

)
(NG

A

) . (34)

Because each KC receives uncorrelated synaptic connections from
PNs, the probability p(D(Y1, Y2) < k|o) in Eq. 33 can be further
decomposed in terms of individual KCs

p(D(Y1, Y2) < k|o) =
∑
l<k

p(D(Y1, Y2) = l|o) (35)

=
∑
l<k

(
NK

l

)
(1 − p(y1 = y2|o))l

p(y1 = y2|o)NK−l (36)

It is thus enough to compute the probability that one KC is
commonly activated by two odors, p(y1 = y2|o). This probability
is given by adding the probability that two odors both evoke
firing, y1 = y2 = 1, and the probability that both do not evoke
firing, y1 = y2 = 0. Hence

p(y1 = y2|o) = p(y1 = 1, y2 = 1|o) + p(y1 = 0, y2 = 0|o).(37)

In the Method Section 4.1, we show how p(y1 = 1, y2 = 1|o)
can be calculated. p(y1 = 0, y2 = 0|o) is computed analogously
(by changing the range of summation in Eq. 42 accordingly).

Taken together, we have found an expression for the probabil-
ity that two odor representations differ by at least k KC activations
in MB, conditioned on whether they are distinct in AL, namely
p(D(Y1, Y2) ≥ k|X1 �= X2).

In Figures 6A, B, the probability of having two similar patterns
in MB when AL patterns are different (termed ploss, “probabil-
ity of information loss” in the following), p(D(Y1, Y2) < k|X1 �=
X2), is plotted in contour plots for different thresholds of k,
respectively. Lines of constant KC firing probability are plotted in
color code. Note that ploss is high (dark areas) if the firing thresh-
old is chosen too large (KCs firing is too sparse). Analogously, if
firing is too strong, ploss is high again.
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FIGURE 6 | Probability that distinct odor patterns in AL project to MB

patterns less than k apart, ploss = p(D(Y1, Y2) < k|X1 �= X2). (A,B)

Contour plots of ploss for k = 1 and k = 50, respectively. Colored lines are
(smoothed) isolines of constant firing probability pK . (C) Probability ploss

evaluated at iso-lines of constant pK = 0.05 (as indicated in B; here k = 50),
but with θ increased by 1. Note that the probability increases above 0.2 if
〈C〉 is too low (dotted line). (D) Sparsest allowable code. Plotted is the
critical 〈C〉 against levels of firing probability pK for different k and M. A
firing probability below the indicated lines would result in a high ploss (when
θ is varied by one). The critical 〈C〉 is determined as the point when crossing
the threshold (as exemplified in C). Colors show different values of k. Sister
cells do not affect much the maximal allowable sparseness (compares solid
to dashed lines). Parameters: NK = 2000, NG = 50, A = 20.

If one gradually decreases the firing threshold for fixed aver-
age synaptic inputs 〈C〉, one reaches an area where the probability
of information loss quickly vanishes (white areas) and remains
near zero. In this area the network can accomplish faithful infor-
mation processing in a sense that distinct patterns in AL are
distinct in MB (from the view point of a readout) with high
probability.

The probability p(D(Y1, Y2) ≥ k|X1 �= X2) yields constraints
if one has requirements on the discriminability of odors in the
MB representation. If the probability is high, distinct odor activa-
tion in AL are likely to project to dissimilar representations in MB,
so that a classifier could well discriminate odors. The larger k the
more dissimilar MB representations are required, and the easier
would a classifier be able to discriminate between odor patterns.
On the other hand, for larger k generalization capabilities improve
as well, because noisy versions of the odor pattern in MB would
generalize to the same odor if less than k KCs fire differently. From
Figure 6B we see that higher k = 50 shifts the probability land-
scape (as compared to k = 1 in Figure 6A) and this sets different
constraints on sparseness.

In the previous section, we showed that sparse codes separate
patterns. What is the sparsest code allowed? To quantify the spars-
est possible firing rate for given k, we fixed pK and looked at ploss

for corresponding θ and 〈C〉. Intuitively, the sparsest code will be
on the edge of the white area in Figure 6B. For instance, the line of
pK = 0.05 is very close too the border (see Figure 6B). However,

if the code is too sparse, then ploss will change dramatically for a
small perturbation in e.g., θ. To find the sparsest code, we thus
evaluated ploss on the line of constant pK and increase the corre-
sponding θ by one. This probability is plotted for different sister
cell numbers in Figure 6C (with pK = 0.05 and k = 50). One
notes that the sparsest allowable code depends on the connectivity
as well. We define the sparsest allowable code as the one where the
probability ploss crosses a threshold, ploss = 0.2 (see dotted line in
Figure 6C). For instance, pK = 0.05 is the sparsest allowable fir-
ing probability when 〈C〉 ≈ 5 with little dependence on the sister
cell number. In other words, if pK = 0.05 the average number of
connection cannot be below 〈C〉 ≈ 5 if the system has to ensure
discriminability with k = 50.

In Figure 6D is shown how k affects the highest allowable
sparsity level as well as the minimal connectivity 〈C〉 (as esti-
mated as described in Figure 6C). If k is increased, denser codes
are required. For instance, if 〈C〉 = 10 and it is required that at
least k = 100 KC cells fire differently for distinct odors, the firing
probability pK should be at least 0.1 to ensure that ploss is low.

3. DISCUSSION
3.1. SISTER CELLS INCREASE ROBUSTNESS
We have built a feed-forward network model to understand the
organization principles of the drosophila olfactory system. By
analyzing the structure of the network and the effect of intrinsic
and extrinsic noise, we found that homotypic projection neurons
(referred to as sister cells in this paper) are particularly helpful in
promoting the robustness of KCs’ sparse code to extrinsic noise.
Extrinsic noise is here modeled as random activations or inactiva-
tion of projection neurons perturbing the mushroom body’s odor
representation. While increasing the sheer number of PNs used
for the odor representation in AL increases the robustness to noise
as well, it turns out that inserting sister cells is much more effi-
cient as the noise vanishes with 1/M (M being the number sister
cells per glomerulus). The crucial mechanism is the strong gap-
junction coupling of sister cells, which increases the correlation
of sister cells and therefore reduces the probability of accidental
activations or inactivation.

Although the strength of noise the system has to cope with, as
well as the level of noise which is still tolerable in the MB represen-
tation, is unknown, our model suggests that a few sister cells per
glomerulus (e.g., 4–5) might be sufficient given the strong 1/M
noise dependence. This result is consistent with the experimen-
tal literature, where typically 2–5 highly correlated sister cells are
found per glomeruli in drosophila (Stocker et al., 1990).

Other species might use different strategies than relying on sis-
ter cells to tackle noise. For instance, in locusts the number of
PNs is large [≈ 830 (Leitch and Laurent, 1996)] and they seem to
lack sister cells similar to those of flies (Martin et al., 2011). As
mentioned, increasing the sheer amount of PNs indeed increases
robustness to noise, although to a lesser degree. Therefore, addi-
tional mechanism might be necessary to reduce noise in the
locust. Indeed, it has been reported that a wild field interneu-
ron in the locust MB can improve the robustness of sparse code
via a feedback modulation (Papadopoulou et al., 2011) sug-
gesting that the locust olfactory system might have a different
strategy.
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Although evidences for sister cells in other insects remain few,
there are, however, species where cells anatomically similar to sis-
ter cells in drosophila have been described. For instance, in frog
similar gap-junction coupled cells in glomeruli have been found
(coherent mitral/tufted cells) (Chen et al., 2009). Interestingly,
each glomeruli only had a few cells (2–7) comparable to the
situation in flies suggesting that these cells might have a simi-
lar functional role in the reduction of extrinsic noise. Another
example are mitral cells in mice, which are also anatomically com-
parable to sister cells in drosophila as they receive inputs from
the same glomeruli and project to an analogous structure to the
KCs (Dhawale et al., 2010; Padmanabhan and Urban, 2010; Tan
et al., 2010). However, in contrast to drosophila, where sister
cells receive almost identical feed-forward input from ORNs and
are additionally electrically coupled, mitral cells in mice have an
intrinsic biophysical diversity (Padmanabhan and Urban, 2010)
and are embedded into an inhibitory network causing more com-
plex temporal dynamics (Dhawale et al., 2010; Tan et al., 2010).
Thus, since mitral cells seem not to be correlated as strongly as
drosophila sister cells, their functional role in the olfactory sys-
tem of mice is likely to be different and not directly comparable
to sister cells in drosophila.

Intrinsic noise variability, on the other hand, is less dependent
on the number of sister cells. Although variability reduces when
introducing sister cells (mainly because of a slight broadening of
the synaptic input distribution) the effect saturates quickly with
increasing sister cell number. We thus conclude that other strate-
gies than increasing sister cell number might be employed to cope
with intrinsic noise.

Interestingly, the average number of connections a KC receives,
〈C〉, has opposite influence on intrinsic or extrinsic noise. In prin-
ciple, a trade-off of importance of both types of noises would
thus allow to find an optimal value for the connectivity number.
However, the strengths and importance weightings of the respec-
tive noise types, as well as potential other biological constraints
on the connectivity structure, are unknown, so that calculating
the “most robust” connectivity number remains elusive. However,
different species potentially are exposed to different degrees of
noises and thus might optimize the connectivity number accord-
ing to their requirements. For instance, in contrast to the fly, it
was found that in locust KCs receive inputs from almost 50% of
the PNs (Jortner et al., 2007). This high connectivity would favor
the reduction of intrinsic over extrinsic noise. One might spec-
ulate that the locust with its greater amount of neurons in the
olfactory system (Leitch and Laurent, 1996) is more challenged
by intrinsic noise rather than extrinsic noise and thus might have
evolved a high connectivity.

3.2. COMPUTATIONAL ASPECTS
A well accepted concept from machine learning and reservoir
computing is that a divergent projection enables a system to
improve its computation capabilities as representations are re-
coded into a higher dimensional space, where representations
become well separated, so that the extraction of information often
requires less sophisticated read-outs, e.g., linear instead of non-
linear classifiers (Maass et al., 2002; Bishop and Nasrabadi, 2006;
Jaeger, 2007; Barak et al., 2013). Accordingly, in our model of the

olfactory system, the divergent projection helps to separate AL
representations when projected into the MB: we show that for
sparse KC firing the number of shared activations in two odors
are reduced (see Figure 5).

Taking the connectivity constraints of the drosophila olfactory
system into account, such as a random, sparse, and purely exci-
tatory projection, we further derived the probability of whether
distinct input patterns (in AL) have similar representations in
MB (the “reservoir”). This probability is at the core of a hypo-
thetical read-out trying to discriminate between two odors: the
parameter k regulates how far separated distinct representations
in MB have to be. Any classifier of the neural responses will in
some sense rely on the distance to distinguish responses to two
odor patterns. Thus, higher k potentially improves the discrimi-
nation capabilities. We found that requiring a large separation of
odor patterns puts constraints on the sparseness of the representa-
tion. Too sparse codes will not provide the required distance. For
instance, if fewer than k/2 neurons are activated to two odors,
the number of differently activated neurons is naturally lower
than k, so that two odor patterns become too close. Furthermore,
the lowest allowable firing probability also constrains the con-
nectivity: having too few input connections will not allow the
system to achieve a required firing level for a stable odor
representation.

If one assumes very low level of firing probability pK as sug-
gested by recent evidence (Campbell et al., 2013), for instance
pK = 0.05, one can attempt to make a prediction on the minimal
number of connections 〈C〉. Although this critical number of con-
nections depends on the discrimination requirements (parameter
k), we find that e.g., for k = 50 (that is 2.5% of the KCs have
to be different for distinct odors) the average number of con-
nections cannot be chosen smaller than 〈C〉 ≈ 6 − 8 (depending
somewhat on the number of sister cells; see Figure 6C). This
value agrees with experimental literature, where 10 inputs per
KC (i.e., each KC receives connections from about 6.6% of the
PNs) was measured (Turner et al., 2008) suggesting that the olfac-
tory system might operate close to the maximally allowed sparsity
level.

It is well known that discrimination ability trades-off with gen-
eralization capability (Barak et al., 2013). In this sense, larger k
allow also for better generalization, because nearby patterns in
MB could be assigned as noisy version of the same odor. Apart
from this viewpoint of a classifier extracting the information from
the output network alone, other strategies for better generaliza-
tion capabilities might be implemented in neural systems. Here
we put forward a new hypothesis how better generalization capa-
bilities might be achieved in the specific case of drosophila: by the
insertion of highly correlated sister cells into glomeruli to enhance
noise robustness already at the level of the inputs.

3.3. ASSUMPTION OF THE MODEL FRAMEWORK
We analyzed the design principles of the AL to MB projec-
tion in the drosophila. Our mathematical model is similar to
the mathematical framework developed previously for analyz-
ing the olfactory network in case of locusts (García-Sanchez and
Huerta, 2003). While building on the earlier work, some cru-
cial aspects of the drosophila network are different to the locust.
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In particular, lateral inhibition between glomeruli ensures that
the total activity of PNs to any odor is roughly constant in flies
(Luo et al., 2010; Olsen et al., 2010). Regarding thus the num-
ber of activated glomeruli as fixed (the parameter A) allowed
us to derive analytical expressions and approximations, in con-
trast to the mainly numerical evaluation of the earlier study in
locust (García-Sanchez and Huerta, 2003). Moreover, we here
develop methods for investigating robustness to noise and focus
on the special role of sister cells in the fly which are absent in
locust.

Our network model makes several assumptions. First, we
assumed that the sparse coding in MB is mainly determined
by feedforward synaptic input and not for instance by recur-
rent processing in MB. Experimental evidences suggest that this
assumption is biologically plausible, because the influence of
(potential) recurrent interaction seem to be weak (Turner et al.,
2008). Recently, another study reporting that the KC firing activ-
ity can be described by a linear combination of PN inputs together
with a threshold mechanism points in the same direction (Li et al.,
2013).

Second, sister cells in our model project independently to KCs
in MB, which seem to be well supported by experimental data
(Masuda-Nakagawa et al., 2005; Kazama and Wilson, 2009; Caron
et al., 2013).

Third, the neuron model consists of simple binary neurons
and thus neglects any graded activity (firing rate) or temporal
structure of the odor representation. In simulations, we found
that implementing graded activity in projection neurons does
not have influence on the qualitative results. Moreover, experi-
mental evidence suggests that temporal dynamics seems not to
play a prominent role in the olfactory coding of flies in contrast
to e.g., the locust, where spatio-temporal dynamics might be an
important aspect of the code (Wehr and Laurent, 1996; Mazor
and Laurent, 2005). Thus, at least for drosophila our approach of
coincident spatial coding seems reasonable.

Fourth, we used fixed number of glomeruli to model AL’s
activity pattern to odorant input. This is reasonable because of
the effect of a divisive normalization operation in AL which effec-
tively equalizes the total activity of PNs, regardless of odorant
identity and concentration. In reality, the number of activated
glomeruli may vary somewhat in response to odorant input.
However, this is not likely to affect the main results of our study.

Finally, we did not consider possible variation of the number
of sister cells for some selected glomeruli as suggested exper-
imentally (Stocker et al., 1990). However, a variation in the
number of sister cells per glomeruli would not change our
qualitative results. The prediction of the model would be that
variation of sister cells per glomeruli would indicate a dispropor-
tional sensitivity to noise for those glomeruli having more sister
cells.

4. METHODS
4.1. DERIVATION OF THE KC FIRING PROBABILITY FOR GIVEN

OVERLAP o

Here we derive the probability p(y1 = 1, y2 = 1|o) that a KC
fires in response to each of two odors which share exactly o
glomeruli activations in AL.

To respond similarly to both odors a KC has to receive enough
synaptic inputs to reach the threshold θ for both odors. Since the
input connections are random, one can decompose

p(y1 = 1, y2 = 1|o) =
∑

C

p(C) p(y1 = 1, y2 = 1|o, C), (38)

where the connection structure p(C) is given by the binomial
distribution Eq. 1.

We can decompose further when considering that a KC
receives exactly wc synaptic inputs from the Mo commonly acti-
vated PNs of X1 and X2:

p(y1 = 1, y2 = 1|o, C)=
∑
wc

p(y1 = 1, y2 = 1|o, wc, C) p(wc|o, C)

(39)
The probability p(wc|o, C) can be calculated as follows. Assume
that the KC receives C connections from random PNs. There
exist

(MNG
C

)
ways to connect to C of altogether MNG PNs. Since

there are
(Mo

wc

)(MNG−Mo
C−wc

)
ways that exactly wc of the C connec-

tion come from the overlapping glomeruli and the other C − wc

connections come from the MNG rest PNs, one can write

p(wc|o, C) =
(Mo

wc

)(MNG−Mo
C−wc

)
(MNG

C

) . (40)

Note that p(wc|o, C) follows a hypergeometric distribution, which
describes the probability of wc successes in C draws without
replacement from population size MNG containing Mo wins.

We now look closer at the probability p(y1 = 1, y2 =
1|o, wc, C) in Eq. 39. Apart from the wc active synaptic inputs
from the shared glomeruli, the KC still gets other inputs from
active glomeruli that are not shared. Assume that it receives w1

of the altogether C inputs from the M(A − o) other activated
glomeruli of odor 1 and w2 inputs from the M(A − o) other acti-
vated glomeruli of odor 2, and the rest C − wc − w1 − w2 input
connections from the non-activated PNs, we can compute the
probability p(w1, w2|o, wc, C) as (compare to Figure 7):

p(w1, w2|o, wc, C) =
(MA−Mo

w1

)(MA−Mo
w2

)(MNG−2MA+Mo
C−wc−w1−w2

)
(MNG−Mo

C−wc

) . (41)

Finally, p(y1 = 1, y2 = 1|o, wc, C) can be computed by adding
the probability of all cases where the amount of input reaches the
threshold, namely wc + w1 ≥ θ and wc + w2 ≥ θ:

p(y1 = 1, y2 = 1|o, wc, C) =
∑

w2 ≥ θ−wc

∑
w1 ≥ θ−wc

p(w1, w2|o, wc, C).

(42)
Taken together we have derived the probability p(y1 = 1,

y2 = 1|o).

4.2. RESPONSE VARIABILITY TO GENERAL EXTRINSIC NOISE
In the main text we did only consider that m previously quiescent
PNs are activated as a result of noise. However, in principle, previ-
ously activated cells might also become silent because of the noise
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FIGURE 7 | Schematic diagram of calculating the joint probability

p(w1, w2|o, wc, C). Suppose two input pattern X1 and X2 have o
overlapping activated glomeruli, and the ith KC connects to wc PNs within
these Mo shared PNs. The KC connects altogether to C PNs. It thus
additionally receives w1 and w2 inputs from the rest of the M(A − o)

non-overlapping but activated PNs of pattern X1 and X2, respectively.
Finally, C − wc − w1 − w2 connections come from non-activated PNs.

perturbation. Here we derive this more general case of extrinsic
noise.

Assume that m1 active PNs become silent and m2 quiescent
PNs activate in response to a noise perturbation. We calculate
the change in the firing probability KC. Suppose a KC receives
n inputs without noise. We suppose that as a result of the noise
perturbation, m1 previously activated neurons become silent. The
probability that inputs get reduced by n1 when silencing m1 PNs
is given by the chance that the m1 cells are one of those n which
are connected to the KC (hypergeometric distribution)

p(n1|n) =
(m1

n1

)(MA−m1
n−n1

)
(MA

n

) . (43)

If m2 quiescent neurons become activated, the probability of a
KC receiving n2 additional synaptic inputs from these additionally
activated PNs follows the binomial distribution

p(n2) =
(

m2

n2

)
pn2

c (1 − pc)
m2−n2 . (44)

Finally, to get the total noise induced change in firing probability
�pextr

K , we have to add the probabilities that it was n < θ before
but it is n − n1 + n2 ≥ θ after perturbation (more firing), as well
as the cases when it was n ≥ θ before and n − n1 + n2 < θ after
perturbation (less firing):

�pextr
K =

∑
n < θ

p(n) p (n − n1 + n2 ≥ θ)

+
∑
n≥θ

p(n) p (n − n1 + n2 < θ) (45)

=
∑
n < θ

p(n)
∑

n−n1+n2≥θ

p (n1|n) p (n2)

+
∑
n ≥ θ

p(n)
∑

n−n1+n2<θ

p (n1|n) p (n2) (46)

Note that in our case noise induced silencing or activating cells is
independent, i.e., p(n1, n2|n) = p(n1|n) p(n2).

4.3. SIMULATION OF GRADED RESPONSES IN AL
As we have only considered binary neurons in the main text for
mathematical simplicity, we here analyze in a simulation whether
results can be generalized to neurons with graded activities.

In fact, to use binary neurons is a simplification as PNs
respond with a certain firing rate when presented with an odor.
In this section, we tested whether graded activities would change
the main results on noise robustness as derived for binary cells in
the main text.

Each odor is represented with a subset of activated glomerulus
A. We assume that non-activated PNs are silent, i.e., their firing
rate is 0. Considering that the total sum of rates of all activated
PNs in response to an odor stimulation is approximately constant
[because of lateral divisive normalization (Luo et al., 2010)], we
set the firing rate xi of an activated PN of the ith glomerulus to

xi = R
ξi∑
j ξj

, (47)

where ξi is a random number obeying a binomial distribution
(with parameters N and p), and R is a parameter determining
the response range of the PNs. The normalization by the sum
of all ξi ensures that the total activity to an odor is constant and
equals to MR. Note that all sister cells have the same activation
level. The connectivity structure from AL to MB is identical to
that described in the main text.

As a result of noise, response patterns potentially change. To
quantitative this change, we define the response dissimilarity

E = |Y ′ − Y |2
2|Y |2 (48)

of a KC pattern Y �= 0 with its noise perturbed version Y ′. Note
that E is zero if Y ′ = Y and is smaller than 1 if Y ′ differs by less
than the number of activated KCs in Y . In the numerical sim-
ulations, we randomly apply 1000 input patterns and calculate
the response of KCs in case of noise and without. Then we cal-
culate the sample mean and standard error of the dissimilarities
E. When varying parameters (such as M and 〈C〉), we hold the fir-
ing probability of KCs fixed to 0.05 as done in the case of binary
neurons.

4.3.1. Intrinsic noise
In the simulations, intrinsic noise is a perturbation of the KC fir-
ing threshold, i.e., θ → θ + �θ where �θ is a Gaussian random
number with zero mean and standard deviation σintr. The result
of the simulation is plotted in Figure 8A. Note that for different
sister cell numbers M, the variability decays in a similar manner
as for the binary case (compare Figures 8A and 3A).

4.3.2. Extrinsic noise
We next tested the effect of extrinsic noise on KC firing vari-
ability. Extrinsic noise is introduced by adding Gaussian noise
fluctuations to the activity of PNs. That is, the activity in
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FIGURE 8 | (A,C) Effect of intrinsic noise on KCs dissimilarity with respect to
sister cell number and average input connection number. (B,D) Effect of
extrinsic noise on KCs dissimilarity with respect to sister cell number and
average input connection number. Parameters: NG = 50,A = 20,N = 100,
p = 0.3, pK ≈ 0.05, σintr = 40,σextr = 0.6 in (D),< C > = 10 in (A and C), and
M = 3 in (B,D).

the ith glomeruli in response to odor stimuli is changed to
xi → xi + σextr/

√
Mxiηi, where ηi is a Gaussian random number

(zero mean and unit variance). Note that the standard deviation
of the extrinsic noise term is linearly dependent on the mean
firing activity ξi to ensure a constant coefficient of variation.
Furthermore, the term

√
M ensures that the variation of the noise

decreases in the correct manner if strong gap-junction couplings
are considered (see Section 2.5).

Simulation results are shown in Figure 8B. Note that sister cells
promote the robustness to extrinsic noise in a similar manner as
shown for binary neurons (compare to Figure 3B). Analogous to
the case of binary neurons, increasing the average number of con-
nections 〈C〉 has opposite effects on intrinsic and extrinsic noise:
larger 〈C〉 reduces intrinsic noise while smaller 〈C〉 enhances
robustness to extrinsic noise (compare Figures 8C, D).
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