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Abstract

There is a growing interest in examining the wealth of data generated by fusing func-

tional and structural imaging information sources. These approaches may have clinical

utility in identifying disruptions in the brain networks that underlie major depressive

disorder (MDD). We combined an existing software toolbox with a mathematically

dense statistical method to produce a novel processing pipeline for the fast and easy
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implementation of data fusion analysis (FATCAT-awFC). The novel FATCAT-awFC

pipeline was then utilized to identify connectivity (conventional functional, conven-

tional structural and anatomically weighted functional connectivy) changes in MDD

patients compared to healthy comparison participants (HC). Data were acquired from

the Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study.

Large-scale resting-state networks were assessed. We found statistically significant

anatomically-weighted functional connectivity (awFC) group differences in the

default mode network and the ventral attention network, with a modest effect size

(d < 0.4). Functional and structural connectivity seemed to overlap in significance

between one region-pair within the default mode network. By combining structural

and functional data, awFC served to heighten or reduce the magnitude of connectiv-

ity differences in various regions distinguishing MDD from HC. This method can help

us more fully understand the interconnected nature of structural and functional con-

nectivity as it relates to depression.
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data fusion, functional connectivity, major depressive disorder, neuroimaging, resting brain
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1 | INTRODUCTION

Increasing interest in brain connectivity patterns in illness and in

health has given rise to the development of multimodal imaging analy-

sis approaches, utilized to combine functional magnetic resonance

imaging (fMRI) data with diffusion tensor imaging (DTI) data

(Reddi, 2017; Zhu et al., 2014). Multimodal imaging analysis methods

aim to capture the complex interactions between structural and func-

tional connectivity in brain networks and provide new insights into

brain connectivity. Complex and heterogeneous disorders such as

major depressive disorder (MDD) can benefit from multimodal imag-

ing analysis, which offers a better understanding of the joint structural

and functional changes in human brain connectivity patterns (Zhu

et al., 2014).

MDD is associated with both structural and functional abnor-

malities between brain regions within a number of resting-state net-

works (Coloigner et al., 2019; Kaiser, Andrews-Hanna, Wager, &

Pizzagalli, 2015). Functional connectivity analyses use resting state

fMRI (rsfMRI) to identify synchronous inter-regional temporal corre-

lations in blood oxygen level dependent signals (Biswal, Van Kylen, &

Hyde, 1997). Common approaches to identify these functionally

connected brain networks utilize independent component analysis

(ICA) or Pearson-r correlations to isolate and index the connectivity

between regions in anatomically segregated brain networks (Yoo

et al., 2018). Group ICA has been widely used for multi-participant

studies to identify a set of commonly replicable, temporally syn-

chronized resting-state networks (RSNs) (Beckmann, DeLuca,

Devlin, & Smith, 2005; Damoiseaux et al., 2006; Esposito et al., 2005).

Typically, these networks include the visual, somatomotor, default

mode (DMN), frontoparietal (FPN), dorsal attention (DAN), ventral

attention (VAN), and limbic networks (LIM) (Yeo et al., 2011). From dif-

fusion tensor imaging (DTI), a wide range of metrics, including frac-

tional anisotropy, mean diffusivity, tract density, tract volume and

number of tracts, can be used to represent structural connectivity in

MDD (Klooster et al., 2020). However, edge weight (which includes a

combination of number of tracts, tract length and region of interest

(ROI) size) may be a more suitable metric for the measurement of

structural connectivity in relation to functional connectivity (Huang &

Ding, 2016). While previous studies have reported significant alter-

ations in structural connectivity in MDD, these findings have shown

considerable variability, and depending on the network and/or tracts

examined, have pointed to increases (de Kwaasteniet et al., 2013),

decreases (Davis et al., 2019; Wu et al., 2020), or both increases and

decreases (Wu et al., 2011) in connectivity. Supplementing the struc-

tural connectivity data with functional indices may provide some clarity

regarding the brain changes that are having the greatest impact in

depression.

Importantly, the above studies do point to a concordance

between the functional brain regions that are dysregulated in MDD

and their associated internodal structural connectivity (Greicius,

Supekar, Menon, & Dougherty, 2009). However, the indices of func-

tional connectivity do not map directly, one to one, with the white

matter connectivity alterations identified by DTI (Greicius

et al., 2009). Indeed, it has been suggested that neither functional

nor structural imaging modalities are reliable enough alone to reflect

the highly interconnected nature of the brain (Kambeitz et al., 2017;

Park & Friston, 2013). Functional connectivity may arise from indi-

rect white-matter pathways (Nth-order structural connections) or

undetectable white matter connections (from DTI imaging tech-

niques) (Koch, Norris, & Hund-Georgiadis, 2002). Moreover, with
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DTI, branching or crossing fibers can make it difficult to resolve

long-range interhemispheric connections and therefore imposes

limits on the mapping of structural connectivity (Behrens, Berg,

Jbabdi, Rushworth, & Woolrich, 2007; Peled, Friman, Jolesz, &

Westin, 2006; Wiegell, Larsson, & Wedeen, 2000). As a conse-

quence, recently there has been considerable interest in the applica-

tion of multimodal approaches that jointly examine the structural

and functional integrity of parallel distributed neural circuits impli-

cated in psychopathology (Reddi, 2017).

Some researchers have argued that multimodal fusion techniques

may provide a better representation for whole brain connectivity and

a better diagnostic classification between groups (Pineda-Pardo

et al., 2014). Instead of inferring structural connectivity from func-

tional connectivity, and vice versa, their interconnected structural-

functional relationship is quantitatively measured.

There are a number of different approaches to combining struc-

tural and functional datasets including: (1) joint analysis (data inte-

gration) which extracts common features from separate data

sources to perform statistical analysis such as correlations (Honey

et al., 2009; van den Heuvel et al., 2013); (2) asymmetric data fusion

which uses one dataset to constrain and analyze another

(i.e., deriving structural connectivity from functional data) (Taylor &

Saad, 2013); (3) symmetric data fusion (data fusion based on higher

order statistics) which performs separate analyses for functional

and structural data but combines them statistically (Bowman, Zhang,

Derado, & Chen, 2012; Zhu et al., 2014) and (4) machine learning

algorithms which utilize computational models that are automated

to improve through iterative optimization (Dyrba et al., 2012; Rosa

et al., 2015). Calhoun and Sui (2016) argued that among all multi-

modal approaches, asymmetric and symmetric data fusion, respec-

tively, provide the most information (Calhoun & Sui, 2016). Data

fusion uses statistical methods to combine the effects of different

metrics (retrieved from separate complementary modalities) in a sin-

gle measure. It is a more realistic representation of the real biology

of brain networks, instead of studying brain networks from one

angle alone (from a single modality).

To date only two studies have been published that combine

functional and structural neuroimaging data in a symmetric data

fusion approach for the study of MDD, both of which used a joint-

ICA fusion approach. Choi and associates conducted a preliminary

study with a small sample size of four MDD participants and nine

healthy comparison participants (HC) employed a joint ICA

approach for combining functional and structural connectivity (Choi

et al., 2008). These researchers reported changes in fractional

anisotropy (FA) white matter values and changes in the strength of

functional connectivity in MDD patients compared with HC (Choi

et al., 2008). Furthermore, there were detectable differences in both

the functional and structural connectivity in the “subgenual anterior
cingulate cortex (sACC) and perigenual ACC, anterior midcingulate

cortex, caudate, thalamus, medial frontal cortex, amygdala, hippo-

campus, insula, and lateral temporal lobe” (Choi et al., 2008).

Ramezani et al. (2015), also reported a joint analysis approach with

a small sample size of 25 participants (11 MDD, 14 HC). Their

results indicated no detectable differences between MDD and

healthy control participants when examining either fMRI or DTI in

isolation, but when employing the joint-ICA fusion approach,

detectable differences in hippocampal volume loss were identified

(Ramezani et al., 2015). This illustrates the added value of utilizing a

combined fMRI and DTI approach for the study of MDD connectiv-

ity in a symmetric data fusion approach. Another joint-model, which

has not yet been applied to MDD data in the literature, is the “ana-
tomically-weighted functional connectivity” (awFC) (Bowman

et al., 2012). This approach combines structural and functional con-

nectivity in a mathematically dense approach.

Software packages for the analysis of functional and structural con-

nectivity can substantially speed up processing time and reduce the

likelihood of human error (Man et al., 2015). Presently available tool-

boxes designed to combine functional and structural data include:

Graph Analysis Toolbox (GAT) (Hosseini, Hoeft, & Kesler, 2012), Brain

Connectivity Analysis Toolbox (BrainCAT) (Marques, Soares, Alves, &

Sousa, 2013), Multimodal Imaging Brain Connectivity Analysis (MIBCA)

(Ribeiro, Lacerda, & Ferreira, 2015) and Brain Connectivity Toolbox

(BCT) (Rubinov & Sporns, 2010). Another toolbox is the “Functional and
Tractographic Analysis Toolbox” (FATCAT) (Taylor & Saad, 2013) which

extracts functional connectivity (Pearson correlation) and corresponding

tractography metrics (i.e., FA, tract count) between functionally-derived

ROI-pairs. However, it does not combine these two modalities in a

fusion approach. A processing toolbox consists of a set of software

tools and a recommended (or definitive) pipeline. Some of these tool-

boxes are overly simplified (fully automated with no control over

parameters), while others are highly specialized (i.e., only used for task-

based or only rsfMRI), computationally demanding (i.e., nonlinear fitting

of DTI) or have complex workflows (Cusack et al., 2015).

Here, for the first time, we combine a connectivity toolbox

(FATCAT) (Taylor & Saad, 2013) and a data fusion method (awFC)

(Bowman et al., 2012), into a novel single pipeline known as “FATCAT-
awFC.” This yields a single powerful hybrid pipeline that combines

functional and structural connectivity information into a single index,

known as anatomically weighted functional connectivity (awFC).

While FATCAT uses functionally derived ROIs to extract DTI parame-

ters, awFC fuses both datasets together in a complex approach. The

FATCAT-awFC pipeline preserves the complexity of the relationship

between structural and functional connectivity and provides maximal

information, while allowing for simple implementation. To the best of

our knowledge, this article is the first to design, explore, and compare

a unique multimodal fusion approach with unimodal approaches in a

large sample of patients with MDD. Using the FATCAT-awFC pipeline,

we expect to find differences between MDD patients and HC in com-

monly identified RSNs, including the DMN, FPN, DAN, VAN, and LIM

(Yeo et al., 2011). We hypothesized that performing a joint functional-

structural connectivity analysis using the FATCAT-awFC approach may

allow us to better discriminate connectivity changes between MDD

and HC groups compared to analyzing these changes using a single

modality.
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2 | MATERIALS AND METHODS

This study was executed as part of the Canadian Biomarker Integra-

tion Network in Depression (CAN-BIND-1) (Kennedy et al., 2019;

Lam et al., 2016; MacQueen et al., 2019).

2.1 | Participants

The CAN-BIND-1 study enlisted a total of 267 participants

(164 MDD and 103 Healthy Comparison participants), which were

available. Of these, 17 participants were excluded due to high levels

of motion in rsfMRI data (Jenkinson, Bannister, Brady, &

Smith, 2002), 4 participants were excluded following a visual inspec-

tion of fMRI data for artifacts paired with a Jaccard similarity index,

and 7 participants were excluded due to missing DTI data. This left

a total of 239 participants, 143 MDD and 96 HC (excluded partici-

pants = 21 MDD: 7 HC). Data was collected in unmedicated MDD

patients prior to the initiation of the selective serotonin reuptake

inhibitor (SSRI) escitalopram. Participants were recruited from six

sites across Canada: Calgary (Hotchkiss Brain Institute), Hamilton

(St. Joseph's Healthcare Hamilton), and Kingston (Providence Care

Mental Health Services) (Kennedy et al., 2019; Lam et al., 2016;

MacQueen et al., 2019), Toronto (2 sites: University Health Net-

work, and Centre for Addiction and Mental Health), Vancouver

(Djavad Mowafaghian Centre for Brain Health). Research ethics

approval for the study was obtained from the local ethics boards at

each site. Study group demographic information can be found in

Table 1. The demographic data was analyzed using gtsummary pack-

ages (Sjoberg, 2021) in R software (R Core Team, 2018). The

Bonferroni method was applied to correct for of multiple compari-

sons where appropriate.

TABLE 1 Demographic and clinical characteristics of the study group

Characteristic
Healthy control
participants, N = 96a

Patients with
MDD, N = 143a

Group

comparison
p-valueb

Sex .9

Female n (%) 62 (64.6%) 94 (65.7%)

Male n (%) 34 (35.4%) 49 (34.3%)

Age, years mean (SD) 32 (10) 33 (12) .8

Education, years, mean (SD) 18.5 (2) 16.9 (2) <.001d

MADRS mean (SD) 1 (2) 29 (6) <.001d

Age of onset of MDD, years, mean (SD) NA 19 (8)

Number of MDE's mean (SD) NA 4 (3)

Duration of current MDE n (%)

≤1 year NA 77 (53.8%)

1–2 years NA 14 (9.8%)

>2 years NA 42 (29.4%)

Unknown/unreported NA 10 (7.0%)

Antidepressants n (%)

Drug naïve 0 73 (51.0%)

Past history of antidepressants 0 70 (49.0%)

Comorbiditiesc n (%)

Social anxiety disorder 0 31 (21.7%)

Generalized anxiety disorder 0 32 (22.4%)

Panic disorder 0 23 (16.1%)

Agoraphobia 0 14 (9.8%)

Posttraumatic stress disorder 0 10 (7.0%)

Bulimia nervosa 0 3 (2.1%)

Alcohol abuse (past 12 months) 0 2 (1.4%)

Non-alcohol substance abuse (past 12 months) 0 2 (1.4%)

Abbreviations: MDE, major depressive episode; MADRS, Montgomery Åsberg Depression Rating Scale; NA, not applicable; n, the number of participants.
an (%); mean (SD).
bPearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test.
cThe Mini-International Neuropsychiatric Interview was used to diagnose the DSM-IV-TR disorders (Diagnostic and Statistical Manual).
dSignificant after Bonferroni correction.
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2.2 | Inclusion and exclusion criteria

Inclusion criteria for HC included: 18–60 years of age with no history

of psychiatric disorder or unstable medical diagnosis, and able to

understand instructions in English. The inclusion criteria for MDD

were: 18–60 years of age, currently experiencing a major depressive

episode with a duration of three or more months as defined in the

Diagnostic and Statistical Manual IV-TR (American Psychiatric Associ-

ation, 2000) and as identified by the Mini International Neuropsychi-

atric Interview (MINI; Sheehan et al., 1998), with a Montgomery-

Åsberg Depression Rating Scale (MADRS) (Montgomery &

Åsberg, 1979) score equal to or greater than 24 and sufficient fluency

in English to complete study procedures. In addition, MDD partici-

pants were required to have been free of psychotropic medications

for at least 5 half-lives prior to baseline testing, and able to compre-

hend instructions in English.

The exclusion criteria for MDD patients excluded patients with

any axis I (aside from MDD) diagnosis which would be considered a

primary disorder that could interfere with the study, or bipolar I/II dis-

order. Additional exclusion criteria included high suicide risk or height-

ened risk of hypomanic switch, and previous failure to respond to

more than four pharmacological interventions. Participants were also

excluded if they previously failed to respond to aripiprazole or

escitalopram treatments, and/or received psychological treatment

within the past 3 months from baseline and planned to continue psy-

chological treatment.

Exclusion criteria common to both groups (HC and MDD)

involved individuals with: a history of substance abuse within the past

six months, neurological disorders, head trauma, pregnant or

breastfeeding, and/or have any other contraindications to MRI. Every

participant in the study provided informed written consent and was

compensated for their participation. MDD patient comorbidities are

listed in Table 1.

2.3 | Data acquisition

Cognitive Testing: A computerized cognitive test battery, the CNS-

Vital Signs (CNS-VS) was used to assess participants’ level of cogni-
tive functioning (Gualtieri & Johnson, 2006). Five cognitive subscales

of the CNS-VS were administered: memory, cognitive flexibility, com-

plex attention, processing speed and neurocognitive index (a summary

score that consists of the mean of five cognitive variables: complex

attention, memory, psychomotor speed, reaction time, and cognitive

flexibility) (Iverson et al., 2009).

Images were acquired using receiver head coils on six 3T MR

scanners: (One Signa HDxt from GE Healthcare, USA; Three Discov-

ery MR750 from GE Healthcare, USA; One Intera from Phillips, Neth-

erlands; One Trio Tim from Siemens, Germany) [see (MacQueen

et al., 2019) for more details].

Functional images were acquired using a whole-brain T2*-

sensitive blood oxygen level dependent (BOLD) echo planar imaging

series with the following parameters: repetition time (TR)/echo time

(TE)/flip angle = 2000 ms/30 ms/75�, voxel size = 4 � 4 � 4 mm3,

field of view (FOV) = 256 mm for all sites, matrix size = 64 � 64 and,

slices = 34–40 for full brain coverage. During rsfMRI acquisition, par-

ticipants were required to lie still, and keep their gaze on a fixation

cross for a scanning time of 10 minutes, with 300 volumes recorded

in total.

Anatomical reference scans were acquired across sites following

a similar acquisition protocol, although Siemens scanners reported dif-

ferent repetition times from their MPRAGE sequence. The parameters

were visually optimized to produce similar image contrast levels

across sites. The 3D T1-weighted scans were acquired using a whole-

brain magnetization-prepared gradient echo sequence with the fol-

lowing parameters: TR/TE/flip angle: 6.4–7.5 ms/2.7–3.5 ms/8–15�

(Exception: Siemens Scanners TR = 1760, 1840 ms), inversion time:

450–950 ms, voxel size: 1 � 1 � 1 mm3, matrix dimensions

240 � 240 and 256 � 256, slice thickness: 1 mm, number of slices:

155–192. A vitamin E pill was taped on the right side of the partici-

pants' heads as a fiducial marker. Acquisition time for anatomical data

ranged from 3:30 to 9:53 minutes [see (Lam et al., 2016) and

(MacQueen et al., 2019) for more details].

The DTI acquisition used single-shot spin-echo echo-planar imag-

ing (EPI) with the following parameters: TR/TE/flip angle: 8000–

9000 ms/94 ms/90�, voxel size: 2.5 � 2.5 � 2.5 mm3, FOV = 240 �
240 mm, matrix dimensions 96 � 96, 155–192 slices at 2.5 mm

thickness, axial slices = 52–58. A single b-value (b = 1000 s/mm2)

was applied to 30–31 noncollinear gradient directions. Image

space reconstruction was completed with an acceleration factor of

2 at individual sites including: GE ASSET, Philips SENSE, or the

GRAPPA k-space method. Acquisition time for DTI data was approxi-

mately 5 min [see (Lam et al., 2016) and (MacQueen et al., 2019) for

more details].

2.4 | Data preprocessing

To begin, dicom images were converted to nifti using MRIcron

(Rorden & Brett, 2000). An optimized preprocessing pipeline, OPPNI

(Churchill, Raamana, Spring, & Strother, 2017; Churchill, Spring,

Afshin-Pour, Dong, & Strother, 2015), was used to perform the fol-

lowing resting-state preprocessing steps. Principle component analy-

sis (PCA) was used to identify the centroid of the data and measure

the Euclidean distance of each volume to the centroid of all volumes.

The volume with the least amount of head displacement was chosen

based on the smallest Euclidean distance to the centroid. This was

considered the reference volume from which the mean distance for all

other volumes was calculated. Data was motion corrected using

AFNI's 3dVolreg (Cox, 1996), by matching each volume displacement

to the reference volume. Basic Censoring (CENSOR—from the OPPNI

pipeline) was applied, to remove outlier volumes and replace them

with interpolated values from neighboring volumes (Churchill &

Strother, 2013). Slice timing offsets were corrected (TIMECOR—from

the OPPNI pipeline) for the interleaved acquisition by using AFNI's

3dTshift (Cox, 1996) using Fourier interpolation. This was followed by
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AFNIs 3dBlurtoFWHM (Cox, 1996), which was used to spatially

smooth fMRI images with a 6 mm full width at half maximum smooth-

ing kernel along three directions (x,y,z). A binary mask was created for

each functional run using AFNIs 3dAutomask in which non-brain

voxels were excluded and only voxels corresponding to brain areas

remained. Afterwards, a neuronal tissue mask (to exclude non-

neuronal tissues such as ventricles and sinuses) was obtained using

the PHYCAA+ (first part) algorithm (Churchill & Strother, 2013). In the

next few steps, nuisance regressors were calculated using linear

regression. A general linear model using second order Legendre poly-

nomial was applied to the functional data to regress low frequency

fluctuations, in the range of 0.01–0.1 Hz. Next, the motion parame-

ters (derived from 3dvolreg) were used as motion parameter estimates

for PCA, and were regressed from the data. PCA was performed on

the six motion parameter estimates (pitch, yaw, rol l, x, y, z), whereby

the PC with the largest variance (accounting for 85% variance) was

taken to be the first PC (of the six PCs) and regressed out. PCA

was able to correct for the maximum variance caused by head motion

while simultaneously reducing multicollinearity and preserving power.

A global signal removal step was performed that regressed out the

first PC (highly correlated with global signal effects) of the fMRI data

(Carbonell, Bellec, & Shmuel, 2011). Physiological (i.e., cardiac and/or

respiratory) noise was corrected using the PHYLUS, PHYCAA+ (second

part) algorithm. A low-pass filter was then applied (LOWPASS) to

remove BOLD frequencies above 0.10 Hz. FSL's FLIRT tool was then

applied: first, functional data was aligned to the structural image in

native space, second, functional data was transformed to register the

structural image to the Montreal Neurological Institute (MNI) tem-

plate (4 mm resolution). The first 5 functional volumes were discarded

to avoid relaxation effects at scan start. The remaining 295 consecu-

tive volumes were used for data analysis.

Motion artifacts (i.e., physiological motion causing ghosting), inho-

mogeneity (signal intensity changes and image distortions), digital

imaging artifacts (i.e., phase wrap-around artifacts) and hardware

related artifacts (radio frequency inferences and spike noise) are con-

founding factors that affect connectivity (Maknojia, Churchill,

Schweizer, & Graham, 2019; McRobbie, Moore, Graves, &

Prince, 2017). However, head motion is the most problematic con-

founding factor that can significantly impact resting state functional

connectivity (rsFC), as each voxel relies on the spatial correspondence

over a time course. Sub-millimeter motion may distort functional con-

nectivity estimates (Maknojia et al., 2019). Motion-related artifacts

are also strongly correlated with framewise displacement (FD) mea-

sures (Dosenbach et al., 2017). Censoring the data was achieved

based on the Jenkinson mean framewise displacement criteria (FDjenk).

Volumes were marked as motion contaminated if FDjenk > 0.20 mm. If

125 volumes of data (�5 min or more) were retained, participants were

not excluded, otherwise the participant was removed from the sample

for not having enough data for the stable estimation of rsFC (Lanka &

Deshpande, 2019). Thus, seventeen participants were removed due to

gross motion. The Jenkinson volume-based FD formula was calculated

as follows (Jenkinson, 1999; Jenkinson et al., 2002):

FDvol tð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5
R2Trace ATA

� �þ bþAcð ÞT bþAcð Þ
r

where R is the radius of the head (R = 80 mm), c represents the coor-

dinates for the center of the volume, and A and b are defined as:

A b

0 0

� �
¼ TtT

�1
t�1� I

In addition, the correspondence between the functional data trans-

formed to MNI space and the MNI 152 template was calculated using

the Jaccard similarity index to evaluate the accuracy of registration.

When acquiring DTI data, rapid switching of applied diffusion gra-

dients can introduce eddy currents, which warp the DTI image in the

phase encoding direction (Hecke, Emsell, & Sunaert, 2016). Each par-

ticipants diffusion-weighted volumes was aligned to the b = 0 images

using an affine transformation (eddy_correct) (Hecke et al., 2016;

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) to minimize

distortion by eddy currents, reduce head motion effects, and improve

the signal to noise ratio (SNR). The diffusion tensor model was fit with

the weighted least-squares technique to minimize the influence of

outlier volumes. In addition, the brain tissues types (gray matter, white

matter and cerebrospinal fluid) were extracted using the FSL

(Jenkinson et al., 2012) Brain Extraction Tool (BET) to improve co-reg-

istration. Afterwards, the diffusion data was registered to the standard

space FA atlas (1 � 1 � 1 mm resolution; average of 58 FA images)

FMRIB58 (Webster, 2012).

2.5 | Modifications in the awFC approach

Building on the awFC approach proposed by Bowman et al. (2012),

our current study utilized independent component analysis (ICA)

and FATCAT to extract networks of regions of interest, rather than

performing cluster analysis as outlined in Bowman et al. (2012). The

singular value decomposition (SVD) clustering process implemented

by Bowman et al. (2012) is computationally expensive for a matrix

of size n � m and becomes increasingly more complex between

each region pair as the number of ROIs increases (Vasudevan &

Ramakrishna, 2019). ICA, on the other hand, reveals distinct spatial

maps, across healthy and clinical study populations (Juneja, Rana, &

Agrawal, 2016; Vergun et al., 2016). ICA is a powerful methodology,

and is straightforward to apply with FATCAT's recommended pipeline

involving FSL's MELODIC (Griffanti, 2019; Nascimento et al., 2017).

2.6 | Generated resting-state networks (RSNs)

In our study, we used an ICA (data-driven) approach to identify RSNs,

which were then thresholded to generate ROIs. It has been suggested

that data-driven approaches are more accurate and more sensitive at
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detecting the greatest effects between groups (Ma, Wang, Chen, &

Xiong, 2007; van de Ven, Formisano, Prvulovic, Roeder, &

Linden, 2004). Group ICA (gICA) was used to derive standard RSNs

from 239 participants (143 MDD, 96 HC). The rsfMRI data of MDD

and HC groups was concatenated in time for each session across par-

ticipants into a single 4D dataset and decomposed into 20 indepen-

dent component (IC) maps using the MELODIC gICA in FSL (Smith

et al., 2004). Twenty ICs is the typical dimensionality in rsfMRI studies

(Taylor & Saad, 2013). Matching is performed based on spatial correla-

tion; to match ICs to the Yeo 7-network template (Yeo et al., 2011).

This was performed using FATCAT's 3dMatch tool (Taylor &

Saad, 2013), along with visual inspection. Binarized maps were

created for the selected ICs that best matched the standard functional

RSNs template. 3dMatch identified and extracted a total of five ICs

that matched the five of the standard functional networks, which

included the DMN, FPN, LIM, VAN, and DAN. However, through

visual inspection, we were able to identify that gICA split the LIM into

two distinct components. Consequently, to better match the LIM, we

combined the ROIs of both of these components into one network by

applying the fslmaths function. These combined ROIs were then

defined as the LIM (see Figure 1). The remaining 14 ICA components

were not included in the study because they contained non-gray mat-

ter regions, motion artifacts, edge alignment artifacts and other net-

works that were not of interest.

F IGURE 1 The resting state
networks and corresponding regions
of interest (ROIs) derived through
group independent component
analyses of RS fMRI data. CANBIND-1
resting-state fMRI data was used to
extract ROIs. Five resting-state
networks were identified and
extracted from the components
(DMN, default mode network; DAN,
dorsal attention network; FPN, fronto-
parietal network; Limbic, limbic
network; VAN, ventral attention
network). Z-score maps were
thresholded and binarized using
FATCATs 3dROIMaker to generate
network masks (DMN, Z = 5.5; FPN,
Z = 9; Limbic, Z =6; DAN, Z = 5.5;
VAN, Z = 11). The colored regions
depicted represent different ROIs
within each network
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2.7 | ROI selection

The binarized spatial maps (derived from ICs) that were identified as

RSNs, were stacked in a 4D image file. The 4D stacked image file was

then separated out so that each network had its own 4D file (using

fslsplit). This step was necessary to set an appropriate threshold for

each individual network. Functional connectivity should not be set to

the same unified threshold across all networks since this would inac-

curately define network ROIs, as each network may vary significantly

in noise level (Wang, Adeli, Wang, Shi, & Suk, 2016). Therefore, a dif-

ferent threshold was applied for each component: DMN (Z > 6), FPN

(Z > 9), DAN (Z > 5.5), VAN (Z > 11), LIM (Z > 6), with a minimum ROI

size restriction of 30 voxels (see Table 2). The levels of thresholding

were selected to qualitatively and visually capture the networks

observed in Yeo et al. (2011) and in line with commonly identified

RSNs in the literature (Sala-Llonch, Bartrés-Faz, & Junqué, 2015). The

FATCAT tool 3dNetCorr (Taylor & Saad, 2013) was used to generate

a functional connectivity matrix using Pearson's correlation for each

participant's five RSNs.

2.8 | DTI image processing

Raw DTI dicom images from the scanner were converted into a single

4-D nifti file using dcm2nii. Tensors were estimated from diffusion

data using AFNI's 3dDWItoDT (Taylor & Saad, 2013) using nonlinear

fits and a scheme file containing both the b-value and b-vectors. The

following indices were estimated from the diffusion tensor: Eigen-

values (L1, L2, L3), eigenvectors (V1, V2, V3), FA, mean diffusivity

(MD), axial diffusivity (AD) and radial diffusivity (average of two radial

eigenvalues; RD), all of which were done in the participant's native

space. All parameter estimates have some noise and errors included in

their values. Thus, an advantage of probabilistic tractography is its

ability to incorporate confidence intervals and uncertainty parameters

into the calculation. Uncertainty of the diffusion tensor parameter

was calculated using Monte-Carlo simulation with nonparametric

resampling (i.e., bootstrap and direct variants). The variance of the FA

and the primary eigenvector (e1) was estimated with FATCATs

3dDWUncert (Taylor & Saad, 2013) using 300 jackknife-resampling

iterations. Together, the DTI parameters and uncertainty measures

with target ROIs were used to perform probabilistic tractography.

The 3dROIMaker step (outlined above) (Taylor & Saad, 2013), also

returned inflated ROIs for use with the DTI data. The inflated ROIs

were necessary to allow regions to maintain contact with the mean

FA tract skeleton (defined as FA > 0.2) (Nugent et al., 2019). The ROIs

were transformed to each individuals' DTI space, from MNI standard

space, using nonlinear transformations (Bowman et al., 2012;

Yeatman, Dougherty, Myall, Wandell, & Feldman, 2012). 3dTrackID

(Taylor & Saad, 2013) was applied to perform probabilistic tracking

between each region pair with the following settings: tract length

> 20 mm; turning angle < 60�; Nseed = 5 tract seeds per voxel;

Nmc = 1000 Monte Carlo iterations; and a fractional threshold (ftr)

= 0.05 (to calculate the number of tracts per voxel, included in the

final white matter (WM) ROI: ftr � Nseed � Nmc = 250 tracts/voxel).

An FA threshold of 0.2 was set to reduce partial volume effects after

warping (Yeatman et al., 2012). The 3dTrackID (Taylor & Saad, 2013)

step returned DTI metrics including: white matter volume (physical

volume and number of voxels), counts of tracts, FA, MD, L1, RD and

AD. Number of tracts and tract length are used later along the

FATCAT-awFC pipeline.

2.9 | Generating structural connectivity matrix

A Poisson-regression based adjustment was applied (to reduce the like-

lihood of false positives due to distance bias): log μ Sij gij
�� �¼ α0þα1gij

��
,

where gij is the distance between each region pair, Sij is the unbiased

number of tracts (Bowman et al., 2012). We estimated and adjusted

for the bias that exists between the number of tracts and physical

distance with the effect α1 to more accurately represent structural

connectivity strength. To account for indirect structural connectivity,

we relied on the awFC approach to calculate all possible second-order

connections (indirect connections) with the following equation:

πij = max[πij, maxm(πimπmj)], where π is the probabilities of structural

connectivity, i is the starting ROI, j is target ROI, and m is the third

connection. This equation calculated the structural connectivity prob-

abilities of direct connections and indirect connections, taking the

higher connectivity value to be the neural pathway. For instance, if

the connectivity is such that the structural connectivity is higher for

indirect connections versus direct connections, we took the indirect

connection to be the pathway used to connect the functional regions

(see Supplemental for more information).

2.10 | Functional and structural connectivity
combined into one unit (awFC)

Once structural connection probabilities, distance bias, direct/indirect

structural pathways were calculated and factored into structural con-

nectivity using the awFC approach, the structural connectivity was

ready to be integrated into the functional connectivity (Figure 2). In

this study, a multiplicative combination technique was used to derive

TABLE 2 Z-threshold values for 3dROIMaker and number of ROIs
per network

Network Threshold, Z Number of ROIs

DMN 6 5

FPN 9 7

VAN 11 5

DAN 5.5 4

LIM 6 3

Abbreviations: DAN, dorsal attention network; DMN, default mode

network; FPN, front parietal network; LIM, limbic network; ROIs, region of

interest; VAN, ventral attention network.
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the fused model, whereby the dissimilarity between region pairs (for

connectivity) were multiplied together to generate the fused dissimi-

larity matrix (Liu, Li, Xu, & Natarajan, 2018). We first computed func-

tional dissimilarity (1 � functional connectivity) and the structural

dissimilarity (1 � structural connectivity) between each region pair. To

transform the fused dissimilarity metric back to a correlational value

(awFC), we performed a simple subtraction: 1� awFdj j. The dissimilar-

ity metric (which emphasized correlations and differences) was

transformed back to a connectivity metric; the awFC (Bowman

et al., 2012) (see Supplemental for more information).

2.11 | Correction for multiple comparisons

To test the hypothesis that the awFC underlying the RSNs varies

between groups, we performed a Mann–Whitney test between each

region pair within each RSN and within-group contrasts between

MDD and HC groups. Unless otherwise noted, all reported p-values

for the statistical tests of functional connectivity, structural connectiv-

ity, and awFC were corrected for multiple comparisons using the false

discovery rate (FDR) criterion proposed by Benjamini and Hochberg

(Waite & Campbell, 2006). The significance level was set to p (FDR

corrected) < .05. Effect sizes were generated using Cohen's d in the

statistics package R (R Core Team, 2018).

2.12 | Statistical analysis

To evaluate the association between awFC within RSNs and cognitive

changes in the MDD group compared to HC, a post-hoc test was per-

formed on regions with significant associations. First, multicollinearity

was assessed using Pearson correlation pair plots, among the cogni-

tive variables (neurocognitive index, memory domain, complex atten-

tion, cognitive flexibility, processing speed). Pearson correlation

pairwise comparisons were produced using the function ggpairs from

the GGally package (Schloerke et al., 2018) in R. Since multicollinearity

exists among variables (see Figure S1a), PCA can be applied to reduce

information redundancy and preserve important information

(Kassambara, 2017; Refaat, 2010). PCA was performed with the R

package (R Core Team, 2018) using the princomp function, in which a

set of orthogonal PCs were produced corresponding to a linear combi-

nation of the original variables (Hair, Black, Babin, & Anderson, 2009).

PCs were retained based on two criteria: if they had an eigenvalues

>1.0 (Kaiser, 1960) and visually from the “first elbow” of the scree

plot. A scree plot was created using the fviz_eig function from the

factoextra package (Kassambara, 2017) in R. The PCs that met this cri-

terion were taken to be independent variables in a PC regression

model with awFC as the dependent variable. PC regression was per-

formed using lme function in R's nlme package (R Core Team, 2018).

PC regression (PCR) was used to evaluate any potential PC effects. If

the PC showed a significant effect, it was evaluated further to inter-

pret the results in terms of the original cognitive variables. This was

done in order to interpret the data in a more meaningful manner. Only

factor loadings greater than 0.40 were considered. Multiple regression

analysis was performed to investigate whether cognitive variables

interacted with the connectivity pattern within RSNs. They were con-

ducted using the lme function in R's lme package R (R Core

Team, 2018), whereby the awFC was taken as the dependent variable

and each loadings > 0.40 as the independent variable. The regression

was evaluated using the participant within site as a random effect.

Age and sex were added as covariates in each statistical model. All the

F IGURE 2 The FATCAT-awFC analysis pipeline. awFC,
anatomically weighted functional connectivity; FATCAT, functional
and tractographic connectivity analysis toolbox
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index scores were standard scores, which were mean centered. Multi-

ple comparisons were corrected for using FDR.

3 | RESULTS

3.1 | Regions of interest

See Table 2 for ROI thresholds selected and resultant number of ROIs.

Table 3 presents information on ROIs MNI coordinates of peak voxel

and size of ROIs per network.

3.2 | Functional connectivity group differences

Compared to HC, the MDD group showed less functional connectivity

in the DMN between the posterior cingulate cortex (ROI 1) and cere-

bellum/occipital regions (ROI 2), (W = 8406.5, padj = .0332). In addi-

tion, reduced functional connectivity in MDD compared to HC within

the VAN was found between the left temporal lobe (ROI 16) and the

right dorsolateral prefrontal cortex (DLPFC) (ROI 19) (W = 8365, padj

= .0211). We did not find significant functional connectivity differ-

ences between MDD and HC groups within the LIM, FPN, or the

DAN (see Table 4).

TABLE 3 Regions of interest (ROIs) defined within the five resting state networks

MNI coordinates
Volume
(# of voxels)ROI # Anatomical location x y z

Default mode network

1 Cerebellum/lateral occipital cortex 34 �86 �40 726

2 Posterior cingulate cortex (PCC) �2 �54 24 559

3 Medial prefrontal lobe �6 42 12 1200

4 Middle temporal gyrus �58 �22 �20 168

5 Left inferior parietal lobe �50 �70 28 278

Frontoparietal network

6 Middle and inferior temporal gyrus 62 �42 �16 182

7 Right parietal lobe and lateral occipital cortex 50 �58 44 703

8 Right frontal lobe �42 46 �4 43

9 Left frontal lobe 46 22 36 1200

10 Left parietal lobe �50 �54 44 145

11 Cerebellum �46 �70 �36 394

12 Frontal pole 46 14 20 127

Limbic network

13 Left cerebral cortex and temporal lobe �30 �6 �36 400

14 Right cerebral cortex/right temporal lobe 30 �10 �36 400

15 Frontal pole, frontal medial pole 30 42 �12 850

Ventral attention network

16 Left temporal lobe �38 �18 �8 1169

17 Cingulate gyrus 14 �34 40 962

18 Left DLPFC (frontal lobe) �30 34 24 215

19 Right DLPFC (frontal lobe) 46 42 0 241

20 Right temporal lobe 46 �10 �16 1293

Dorsal attention network

21 Right superior parietal lobule 50 �30 40 1339

22 Right lateral occipital cortex, inferior temporal gyrus 54 �62 �12 100

23 Left lateral occipital cortex, inferior temporal gyrus �50 �66 �8 112

24 Left superior parietal lobule �50 �30 36 1454

Note: All ROIs were derived from FATCAT's “3dROIMaker” command. MNI coordinates and volume of each individual ROI were identified. The functionally

defined ROIs covered a number of anatomical structures that were reported.

Abbreviations: ROI, region of interest; RSNs, resting state networks.
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3.3 | Structural connectivity group differences

Between-group comparisons of structural connectivity between HC

and MDD patients, are presented in Table 4. There were significant

differences in all 5 RSNs for MDD compared with HC groups (see

Table 4). These were characterized by lower connectivity values for

MDD compared to HC for all networks. See Table 4, for a compara-

tive summary of SC, FC, and awFC.

3.4 | Anatomically weighted functional
connectivity group differences

Exploratory analysis of the five RSNs awFC connectivity revealed

reduced correlation differences between ROI pairs for MDD groups

compared with HC in three regions: one in the DMN and two region

pairs in the VAN (see Table 5). Figure 3a,b illustrates the group ROIs

that demonstrated significant connectivity differences between MDD

and HC groups. Lower awFC connectivity was found in the DMN

between the PCC (ROI 1) and cerebellum/occipital regions (ROI 2),

(W = 7917, padj = .0322) for the MDD group compared with the HC

(see Table 5). In addition, MDD patients demonstrated lower awFC in

the VAN, between the left temporal lobe (ROI 16) and the right

DLPFC (ROI 19) (W = 8274, padj = .0421) compared with HC (see

Table 5). Reduced connectivity in MDD compared with HC within the

VAN was observed between the right temporal lobe (ROI 20) and

the right DLPFC (ROI 19) (W = 8366, padj = .0361). No other signifi-

cant differences were found within the remaining RSNs. A summary

of the significant regions and p-values is presented in Table 5, and a

summary of the mean and standard deviations of connectivity values

are presented in Table 5. In addition, Figure 4 displays boxplots of

awFC values between ROI-pairs within RSNs.

3.5 | Post hoc analysis

Performing PCA on the cognitive variables resulted in five PCs (each

PC is a linear combination of the original variables). Applying the

Kaiser-Guttman rule (Guttman, 1954; Kaiser, 1961), of extracting only

PCs with an eigenvalue >1, revealed the first PC had an eigenvalue >1

TABLE 4 A Wilcoxon test was used to identify significant connectivity (structural, functional and anatomically weighted functional
connectivity) differences between MDD and HC participants between regions of interest (ROIs).

Start ROI End ROI SC p-value (FDR corrected) FC p-value (FDR corrected) AwFC p-value (FDR corrected)

Default mode network

1 2 .009** .033* .032*

1 5 .71 .19 .20

1 3 .71 .24 .24

2 4 .43 .23 .23

3 5 .73 .20 .20

5 2 .013* .30 .30

Frontoparietal network

6 7 <.001*** .82 .58

8 9 .040* .47 .47

Limbic network

13 14 <.001*** .76 .76

Ventral attention network

16 17 <.001*** .72 .71

17 18 <.001*** .87 .87

18 16 <.001*** .17 .16

19 17 <.001*** .73 .73

19 16 .64 .021* .042*

20 19 <.001*** .072 .036*

Dorsal attention network

21 22 <.001** .98 .90

23 24 <.001*** .76 .75

24 21 <.001*** .87 .86

Abbreviations: HC, healthy comparison; MDD, major depressive disorder; SC, structural connectivity; FC, functional connectivity; awFC, anatomically

weighted functional connectivity.

*p-value (FDR corrected) < .05. **p-value (FDR corrected) < .01. ***p-value (FDR corrected) < .001.
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(λ¼3:2). In addition, from the scree plot (Figure S1b), we selected one

PC at the marked “elbow,” whereby 62.5% of the variance in the data

was explained. Therefore, based on these two criteria, only the first

PC was retained. PCR was then performed on the first PC, in which a

significant effect was detected. This warranted further analysis to

determine the cognitive variable associated with the awFC. Variables

(loadings > 0.4) were investigated further. The neurocognitive index

(NCI) (loading = 0.40), cognitive flexibility (loading = 0.45), processing

speed (loading = 0.49), and complex attention (loading = 0.52) met

this criterion. Therefore, multiple linear regressions were performed

on each variable individually. Therefore, multiple mixed-effects linear

regressions were performed, separately on each variable.

Applying PCR to the DMN (uncorrected p = .0475) showed sig-

nificant associations between the first PC and the awFC. Multiple

linear regressions revealed that awFC between the PCC and the

cerebellum/occipital lobe was significantly associated with changes

in MADRS (uncorrected p = .02) and complex attention (uncorrected

p = .047). Second, a PCR for the VAN revealed significant associations

between the first PC and awFC (uncorrected p = .02). Therefore, multi-

ple linear regressions were performed for variables with loadings > 0.4.

The VAN, between the right temporal lobe and the right DLPFC rev-

ealed, awFC was significantly associated with complex attention

(uncorrected p = .028). However, none of the cognitive associations

survived correction for multiple comparisons.

4 | DISCUSSION

We developed a novel pipeline for combining functional connectivity

(derived from fMRI) and structural connectivity (derived from DTI)

and used it to study awFC connectivity changes in MDD patients. We

analyzed a total of 24 ROIs (from five resting-state functional

F IGURE 3 ROIs within RSNs with significant brain connectivity group differences (a) VAN, orange = right DLPFC, blue = left temporal lobe,
green = right temporal lobe. (b) DMN, red ROI = cerebellum/lateral occipital cortex, yellow ROI = posterior cingulate cortex (PCC). ROIs, regions
of interest; RSNs, resting state networks; A, anterior; P, posterior; R, right; L, left; S, superior; I, inferior

TABLE 5 A Wilcoxon test was performed whereby significant anatomically weighted functional connectivity differences between MDD and
HC groups, and their associated structural and functional connectivity (significance set to FDR-corrected p < .05) are reported. Mean, standard
error and effect size are also reported for each group.

MDD HC

Start ROI End ROI SC padj FC padj awFC padj Effect size Mean SE Mean SE

Default mode network

1 2 .00905** 0.0331* 0.0320* 0.34 �0.011 0.017 0.061 0.022

Ventral attention network

16 19 0.64 0.021* 0.0421* 0.32 0.36 0.024 0.46 0.027

19 20 <.001*** 0.0722 0.0361* 0.36 0.22 0.023 0.33 0.028

Abbreviations: ROI, region of interest; SC, structural connectivity; FC, functional connectivity; awFC, anatomically weighted functional connectivity; padj,

FDR corrected p-values; MDD, major depressive disorder, HC, healthy comparison; SE, standard error.

*p-value (FDR corrected) <.05. **p-value (FDR corrected) <.01. ***p-value (FDR corrected) <.001.
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networks), three of which revealed statistically significant differences

in awFC between MDD and HC groups using the FATCAT-awFC

approach. For each region pair we also conducted standard functional

and structural connectivity analyses to compare against our novel

combined functional-structural analysis approach (FATCAT-awFC).

As predicted, the multivariate connectivity analysis was capable of

revealing group differences not identified by the univariate analysis

within RSNs. We found reduced awFC connectivity within the DMN

between the PCC and cerebellum/lateral occipital cortex in the MDD

group compared with the HC group. Aberrant connectivity between this

ROI-pair was also found in both the traditional structural and traditional

functional connectivity approaches, which supported the changes we

found in the awFC measure output by the FATCAT-awFC pipeline. In

MDD, similar findings in resting state functional connectivity (rsFC) have

been reported by Liu et al. (2012) who found that rsFC between the

PCC (associated with self-referential processing) and cerebellum was

reduced in MDD groups compared to HC. Negative self-referential

processing, is a common feature of MDD and has been associated with

MDD severity (Lou, Lei, Mei, Leppänen, & Li, 2019). We also observed

decreased awFC between the right DLPFC and the right temporal lobe

(encompassing the right temporo-parietal junction). In this case, when

we examined the functional and structural data independently, we did

not find differences in functional connectivity, but there were detect-

able changes in structural connectivity. Past literature (Hwang

et al., 2015; Penner et al., 2018) has identified that reduced functional

connectivity between the right temporo-parietal junction and right

DLPFC in MDD, is associated with depression severity. Lower connec-

tivity between these regions was associated with more severe depres-

sion symptomology (Hwang et al., 2015). We also observed reduced

awFC between the right DLPFC and the left temporal lobe (includes the

left temporo-parietal junction). It is interesting to note that we observed

significant differences in functional connectivity between this region

pair, but structural connectivity had no detectable changes with MDD

compared to HC. With our FATCAT-awFC approach, it appears that sig-

nificant group differences in the underlying SC do not drive the awFC

connectivity differences as much as FC differences do. Our finding were

F IGURE 4 Boxplots demonstrated lower anatomically weighted
functional connectivity between ROI-pairs for the major depressive
disorder (MDD) and healthy comparison (HC) participants. Boxplots

also quantified the strength of connectivity for MDD and HC groups
(a) AwFC between the left temporal lobe and the right DLPFC within
the VAN (b) AwFC between the right temporal lobe and the right
DLPFC within the VAN (c) AwFC between the occiptial lobe/
cerebellum and the PCC within the DMN. AwFC, anatomically
weighted functional connectivity; DLPFC, dorsolateral prefrontal
cortex; VAN, ventral attention network; DMN, default mode network;
Occ., occipital; Cerr., cerebellum; PCC, posterior cingulate cortex.
Asterisks identify significant between-group differences following
FDR correction (p < .05)
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supported by (Hwang et al., 2015; Penner et al., 2018), who also

detected decreased functional connectivity between the right DLPFC

and the left temporal lobe in MDD patients. According to (Samson,

Apperly, Chiavarino, & Humphreys, 2004) the reduced connectivity

between the frontal lobe and the left temporo-parietal junction may be

associated with difficulty assessing thoughts that another person pos-

sesses. Inaccurately interpreting mental states, often results in reduced

social interactions and may contribute to further social isolation in MDD

(Weightman, Air, & Baune, 2014). Connectivity changes (between these

three region pairs) in MDD reported in our study are well documented

in MDD literature, confirming that our method is effective at detecting

some of the neural changes associated with MDD.

In contrast to our predictions, we did not observe group differ-

ences in awFC network connections of the LIM. These findings may

be a result of our use of relatively large ROIs, which encompassed a

number of brain regions with varying functions. In our analyses, the

LIM that was extracted by 3dMatch consisted of three large ROIs,

where the first two were homotopic ROIs, whereby each ROI included

the parahippocampal gyrus, temporal fusiform gyrus, inferior temporal

gyrus; the third ROI crossed the midline and consisted of the bilateral

amygdala, nucleus accumbens, caudate, paracingulate gyrus, frontal

medial gyrus, and putamen. Consequently, it may be that because

these ROIs were so large, they lacked the specificity necessary to

identify localized group differences. In addition, in contrast

to expected patterns, we did not observe group differences in awFC

network connections in either the FPN, or DAN.

In our study, we conducted a post hoc test that consisted of a PCA

and PCR, to study the association between connectivity and cognitive

data. We found a trend in the association between complex attention

and the awFC within the DMN (PCC to cerebellum/occipital regions).

We also found a trend level association between complex attention and

the awFC between the right temporal lobe to the right DLPFC. The

standard functional Yeo template, classifies the anterior temporo-

parietal junction as a component of the VAN (Yeo et al., 2011). The

VAN is involved in regulating emotional salient events (Korgaonkar,

Goldstein-Piekarski, Fornito, & Williams, 2020) and as such. our obser-

vation of reduced awFC between this ROI-pair may point to connectivty

changes that underlie the mood dysregulation associated with MDD

(American Psychiatric Association, 2013).

Our FATCAT-awFC approach identified region pairs that were

observable in one modality but not the other. The FATCAT-awFC

model identified group differences in connectivity, some of which

were only captured using SC, and others identified through FC. Using

SC alone resulted in many region pairs having detectable differences

in MDD compared to HC. However, this may be a result of false posi-

tive findings in SC (Bowman et al., 2012), whereas FC identified just

two regions with group differences after correction for multiple com-

parisons. Furthermore, our FATCAT-awFC approach revealed a con-

nectivity change in MDD that was undetected using the conventional

FC approach alone. Finally, for most comparisons the FATCAT-awFC

approach resulted in p-values that were lower than those in a single

modality, suggesting that FATCAT-awFC was sensitive to connectivity

changes distinguishing groups.

4.1 | Contributions of the FATCAT-awFC

The FATCAT-awFC pipeline was designed to be a more practical solu-

tion for combining FC and SC together. With our FATCAT-awFC pipe-

line, we hope that researchers will benefit from a faster and more

intuitive approach to combining SC and FC, as opposed to using a

computationally intense method (awFC method) or a toolbox that does

not provide maximal information (FATCAT) alone. The combination of

FATCAT with awFC provides for a unique hybrid pipeline that com-

bines the advantages of an intuitive, rapid and efficient toolbox with a

computationally intense data-fusion approach that provides an abun-

dance of information. By combining FC and SC data we are able to

better represent whole brain connectivity as opposed to studying it

utilizing data from one modality alone. The awFC metric is able to

measure the combined effect of SC and FC and may provide us with a

more accurate connectivity value as it relates to different neuropsy-

chiatric disorders.

There were two main limitations in this study. The first is that

one set of group ROIs (derived from gICA) were generated from the

CAN-BIND participants. This was done to have a consistent number

of ROIs across participants; however applying the same group net-

works across all participant-level networks implies spatial similarity

among all participants (Sohn et al., 2015). However, gICA does not

account for inter-participant variability in functional boundaries, and

does not construct participant-specific spatial maps of networks.

The second limitation was the ambiguity of selecting a cut-off

threshold for ROI creation. There is no standard for selecting ROIs,

although many studies have selected a threshold of Z > 2.3 (Sohn

et al., 2015). ROI selection is a threshold-dependent process and can

have very different effects on the outcomes and conclusions of a

study (Sohn et al., 2015). Our ROIs were fairly large and

encompassed a number of functionally different regions. Tong and

associates (Tong et al., 2016) found that larger ROIs are often

accompanied by greater variance within connectivity data, in com-

parison to smaller ROIs, resulting in a smaller effect size. Conse-

quently, the larger ROI used in this study may have reduced our

capacity to detect group differences.

Hebbian theory is summarized as: “neurons that fire together,

wire together” (Keysers & Perrett, 2004), which suggests that regions

that are functionally connected (temporally synchronous) are in princi-

pal structurally connected through fiber tracts. The complimentary

nature of FC and SC suggests their combination would provide a more

complete picture of connectivity as a whole. Due to the complex

nature of data fusion in neuroimaging, many researchers have not uti-

lized this approach. By integrating a toolbox (FATCAT) with a compu-

tationally intense technique for combining SC and FC (awFC), we

were able to implement a relatively straightforward approach to the

combination of functional and structural data. We also showed that

FATCAT-awFC was capable of identifying ROI-pairs, which would have

been missed when only applying unimodal analyses. Hence, the joint

approach of FATCAT-awFC allows for a more detailed understanding

of the interconnected nature between structural and functional con-

nectivity and how it relates to depression.
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APPENDIX: SUPPLEMENTAL

Generating structural connectivity matrix

In the awFC approach (Bowman et al., 2012), probabilities of struc-

tural connectivity are calculated by dividing the number of tracts run-

ning from ROI-to-ROI, by the total number of streamlines leaving the

starting ROI. This is not a typical step performed for the probabilistic

tractography. According to Zhang, Snyder, Shimony, Fox, and

Raichle (2010) incorporating this step (calculation of structural con-

nectivity probabilities) results in higher overlap of structural and func-

tional connectivity. However, calculating structural probabilities alone

does not capture the true nature of structural connectivity. Structural

connectivity exhibits distance-dependent correlation bias, meaning

that long-range connection (ROI pairs further apart) have weaker

structural connectivity, while short-range connections (pairs of ROIs

closer together) display stronger structural connectivity (Geerligs,

Cam-Can, & Henson, 2016). Bias correction is a necessary step for

adjusting structural connectivity values.

Functional and structural connectivity combined into one

unit (awFC)

When measuring connectivity values using two different imaging

modalities, we expect an overlap in the sampled data. However, each

modality measures connectivity values in different ways (i.e., functional

connectivity measures temporally correlated regions, structural connec-

tivity measures number of tracts) (Kriegeskorte, Mur, & Bandettini,

2008). A modality-independent comparison of connectivity values is

achieved through dissimilarity. The dissimilarity matrix is sensitive to

both activation difference and the correlation (Kriegeskorte

et al., 2008). Liu et al. (2018) suggested that multiplicatively combining

multimodal sources better captures cross-modal signal correlations by

reducing the cost associated with the weaker modality and encouraging

the discovery of truly important patterns from each modality. Therefore,

combining information from different modalities, in theory, is capable of

providing more robust inference on connectivity (Liu et al., 2018).
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