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Abstract: This study evaluated the novel application of a mineral-rich biochar derived from a spent
Agaricus bisporus substrate (SAS). Biochars with various pyrolysis temperatures (350–750 ◦C) were
used to remove Cu(II), Zn(II), and Cd(II) from aqueous solutions. The adsorption characteristics and
removal mechanisms of the biochars were investigated. The adsorption kinetics and isotherm data
were fitted well by pseudo-second-order and Freundlich models. The Langmuir maximum removal
capacity (Qmax) values of Cu(II), Zn(II), and Cd(II) were ordered as SAS750 > SAS350 > SAS550,
and the Qmax values of SAS750 were 68.1, 55.2, and 64.8 mg·g−1, respectively. Overall, the removal
mechanisms of biochar at a low production temperature (350 ◦C) to Cu(II), Zn(II), and Cd(II) were
mainly via ion exchange (54.0, 56.0, and 43.0%), and at a moderate production temperature (550 ◦C),
removal mechanisms were mainly via coordination with π electrons (38.3, 45.9, and 55.0%), while
mineral precipitation (65.2, 44.4, and 76.3%, respectively) was the dominant mechanism at a high
produced temperature (750 ◦C). The variation of the mutual effect of minerals and heavy metals was
the predominant factor in the sorption mechanism of mineral precipitation and ion exchange. The
results demonstrated that spent Agaricus bisporus substrate biochar is a potential candidate for the
efficient removal of heavy metals, which provides a utilization route for spent mushroom substrates.

Keywords: spent mushroom substrate; biochar; pyrolysis temperature; mineral; heavy metal; sorp-
tion characteristic; mechanisms

1. Introduction

Edible fungi are organic, green, and healthy foods. As one of the most promising food
industries, the edible fungus industry has developed rapidly in recent decades. However,
approximately 5 kg of spent mushroom substrate is generated during the production
process of 1 kg of edible fungi [1,2]. In 2018, approximately 70 million tons of edible fungi
were produced in China; hence, a large amount (approximately 350 million tons) of spent
mushroom substrate had to be treated and utilized. Various methods have been proposed
for the reuse of spent mushroom substrates, such as conventional treatment methods,
e.g., as compost [3,4] or feed [5]; however, these methods are only suitable for treating
small amounts of substrate. Most spent mushroom substrates are not effectively disposed
of and are randomly stacked or burned in open air [6]. Therefore, the development of an
economical and environmentally friendly treatment method for spent mushroom substrates
is necessary.

Biochar is a carbon-rich solid material that is produced from biomass in an oxygen-
limited atmosphere and can adsorb a variety of pollutants [7], especially in aqueous
solutions that are polluted by heavy metals [8,9]. A variety of agricultural by-products
have been converted into biochar and used as environmental adsorbents to remove heavy
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metals. Previous studies have reported that biochars derived from feedstock materials
such as peanut shells [10,11], wood chips [12,13], corn straw [14,15], and rice straw [16,17]
can remove Cu(II), Zn(II), and Cd(II) effectively from aqueous solutions. Recent reports
have highlighted the indispensable role of mineral components in biochar sorption [18,19],
and mineral-rich biochar has excellent removal ability for heavy metals. Biochar with
a high mineral content can remove heavy metals through complex mechanisms, which
may involve (1) mineral precipitation, (2) cation exchange, (3) complexation of surface
functional groups, and (4) interaction of π electrons with heavy metals [20–22]. In summary,
mineral-rich biochar may be an effective material for removing a variety of heavy metals
from water and is more economical than other materials.

Mineral-rich biochar can be produced from spent Agaricus bisporus substrates. As
a delicious mushroom, Agaricus bisporus is grown worldwide and loved by consumers.
In the cultivation of Agaricus bisporus, in addition to composting and fermentation with
chicken manure and rice straw, calcium-containing minerals are applied as nutrients and in
surface-covering soil. These processes form a culture medium that is suitable for mycelial
growth [5], which renders the spent Agaricus bisporus substrate rich in minerals and po-
tentially suitable for the preparation of biochar. Few reports have been published on
the production of biochar from spent Agaricus bisporus substrates. The properties of the
prepared biochar, its performance, and its mechanism of adsorbing heavy metals have
yet to be elucidated. Meanwhile, the contribution to the biochar removal mechanism of
heavy metals is attributed to the constraints of the biochar source and the pyrolysis tem-
perature [23]. The properties of biochar differ according to the pyrolysis temperature [24],
thereby resulting in differences in importance among the mechanisms in the sorption
process. Few current studies have clarified the relationship between the differences in
physicochemical properties among biochars that were synthesized at different pyrolysis
temperatures and the relative contributions of various mechanisms to the sorption of heavy
metals. In addition, excessive heavy metals, namely, copper (Cu) and zinc (Zn), are present
in livestock and poultry breeding wastewater due to feeding addition, and highly toxic
cadmium (Cd) is also considered a potential environmental threat.

In this study, biochars were prepared from a spent Agaricus bisporus substrate at vari-
ous pyrolysis temperatures (350–750 ◦C), and their physical and chemical properties were
characterized via various techniques (1) to determine the ability of biochar to adsorb Cu(II),
Zn(II), and Cd(II) in aqueous solutions; (2) to determine the effects of the pyrolysis temper-
ature on the sorption capacity of the biochar; and (3) to qualitatively and quantitatively
investigate the mechanism via which the biochar removes Cu(II), Zn(II) and Cd(II) from
aqueous solutions.

2. Materials and Methods
2.1. Biochar Preparation

The feedstock of a spent Agaricus bisporus substrate (SAS) was provided by the Edible
Fungus Center of Shanxi Agricultural University, Taigu County, China. The fresh feedstock
was placed in a ventilated environment to air-dry for a week, and small stones were
manually removed at this time. After air-drying, the SAS was crushed to a particle size of
>0.5 cm using a crusher and dried at 60 ◦C until it reached a constant weight. Approximately
55–60 g of the dried SAS was placed in a porcelain crucible and compacted (with a volume
of 100 mL), and the crucible was put in a muffle furnace with a limited oxygen environment.
Then, the temperature was increased at a rate of 20 ◦C·min−1 to the specified temperature
(350, 450, 550, 650, and 750 ◦C), and the sample was pyrolyzed at the peak temperature for
3 h. The spent Agaricus bisporus substrate biochars (SASCs) (the remaining solid substances
after pyrolysis) were labeled as SAS350, SAS450, SAS550, SAS650, and SAS750 according
to the pyrolysis temperature. All SASCs were ground to particle sizes of > 0.15 mm prior to
use. Demineralized biochar samples were obtained by eluting the biochar with 1 mol·L−1

HCl and washed with distilled water until the pH of the solution no longer changed.
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2.2. Characterization of SASCs That Were Obtained at Various Pyrolysis Temperatures

The pH values of all samples were determined using a pH meter (Lei-ci PHS-3Ct,
Shanghai, China) with a water/sample ratio of 10:1 after shaking for 30 min. The con-
centrations of elements (C, N, H, and S) were determined via elemental analyses (Vario
Macrocube Elementar, Langenselbold, Germany). The surface areas were determined from
Brunauer-Emmett-Teller (BET) isotherms with N2 sorption at 77 K that were obtained using
a surface area analyzer (ASAP2020, Micromeritics, Norcross, GA, USA). The ash contents
of the SASCs were determined by heating the samples at 700 ◦C for 2 h, and the metal
contents were determined via inductively coupled plasma optical emission spectrometer
(ICP-OES, Optima 5300 DV, PerkinElmer, Waltham, MA, USA). The morphologies and
elemental species of the biochars were analyzed using scanning electron microscopy and
energy dispersive X-ray (SEM/EDS, JEOL JSM-6510, Tokyo, Japan). The surface functional
groups in the biochars were identified via Fourier Transform Infrared Spectroscopy (FTIR,
Tensor 27 Bruker Germany) spectrometer using the KBr tablet method in the 4000–400 cm−1

wavelength range. The surface mineral compositions were determined via X-ray diffraction
(XRD) (D8 Advance, Bruker, Germany).

2.3. Batch Sorption Experiments

All sorption experiments used 0.01 mol·L−1 NaNO3 as the background electrolyte,
and a 0.1 mol·L−1 HNO3 or NaOH solution was used to adjust the initial pH value of the
required solution to 5.0 ± 0.05 (except for experiments with different initial pH values).
Single-solute sorption experiments were conducted by adding 30 mg of SASC (w/v, 1 g·L−1)
to 30 mL of a Cd(II) or Cu(II) or Zn(II) solution at 25 ◦C and 200 rpm. The initial pH of the
solution was adjusted to 2.0–6.0 to determine the effects of various initial pH values on the
sorption of heavy metals by the biochars.

To investigate the sorption kinetics, the initial concentration of the solution was
100 mg·L−1, and samples were obtained at various time intervals that ranged between
0.17 and 48 h. To obtain the sorption isotherm, the concentration of the initial solution
was 0–250 mg·L−1, and it was shaken for 24 h. According to the kinetic experiment, when
the adsorption reached 24 h, the adsorption capacity did not change apparently, and the
adsorption basically reached equilibrium. After oscillation, the adsorptive solution was
collected and filtered with a 0.22-micron-aperture filter. The amount of remnant heavy
metal ions in the filtrates was determined via ICP-OES. All adsorption experiments were
performed in triplicate, and the average value was taken as the result, while the value for
a blank without an added sample was used as a correction to eliminate possible errors.
For the FTIR, XRD, SEM, and EDS analyses, 100 mL of a heavy metal solution with a
concentration of 1000 mg·L−1 was added to 1 g of SASC at pH 5.0 ± 0.05 to prepare a
biochar that was loaded with Cu(II), Zn(II), or Cd(II).

2.4. Contribution of Each Mechanism to the Biochar Sorption

According to the calculation method of Cui [21], the sorption process of heavy metal
ions by the biochar could be attributed to four mechanisms: (1) exchange with cations (Qce),
(2) precipitation with minerals (Qcp), (3) complexation with oxygen functional groups
(OFGs) (Qco), and (4) coordination with π electrons (Qcπ). Other possible sorption mecha-
nisms were not considered in the experiment due to their low contributions.

(1) The contribution of cation exchange (K+, Ca2+, Na+ and Mg2+) depends on the
difference in the concentrations of exchangeable cations in the solution before and after
biochar sorption, which could be calculated from the difference in the amounts of ex-
changeable cations that are released between normal sorption and sorption without heavy
metals.

Qce = QK + QCa + QNa + QMg (1)

where QK, QCa, QNa, and QMg are the net values of K+, Ca2+, Na+ and Mg2+, respectively,
in mg·g−1 that are released into the solution by the SASC sorption process.
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(2) Most minerals in biochar are removed after acid leaching, while the oxygen-
containing functional groups (OFGs) are unchanged; hence, the contributions of mineral
precipitation (Qcp) and ion exchange (Qce) can be calculated from the reduction in biochar
sorption before versus after acid leaching.

Qcp = Qt − Qa × y − Qce (2)

where Qt (mg·g−1) is the total sorption of SASC, Qa is the amount of sorption on acid-
washed biochar, and y is the yield of acid-washed biochar.

(3) The following chemical reaction formula explains the drop in the solution pH after
acid-washed biochar sorption:

−COOH + Cu2+ + H2O→−COOCu+ + H3O+ (3)

−OH + Cu2+ + H2O→−OCu+ + H3O+. (4)

Therefore, the contribution of OFGs could be calculated from the drop in the solution
pH value.

The sorption capacity of the acid-washed biochar is the result of the interactions
between π electrons and OFGs. Therefore, the contribution of π electrons to adsorption
could be calculated from the difference between the adsorptions of the acid-washed biochar
and OFGs.

Qcπ = Qa × y − Qco (5)

The contribution rates of these mechanisms in the sorption process are expressed as
Qcp/Qt, Qco/Qt, Qce/Qt, Qcπ/Qt.

3. Results
3.1. Characteristics of Biochar

The composition of the feedstock has a decisive influence on the characteristics of
the biochar. Compared with other biochar feedstocks, spent Agaricus bisporus substrates
are complex mixtures that are derived from edible fungal cultivation. In the process of
cultivation, straw, chicken manure, and gypsum are used as nutrients, and peat soil is
applied as a cover to provide a growth environment. The yield and ash content of biochars
from spent Agaricus bisporus substrates exceeded those from common feedstock (e.g., wheat
straw [25], halophyte [26], and corn straw [14]).

The high mineral content results in a very high yield of SASC, which is still 64.6%
even at the highest pyrolysis temperature, and such a high yield can be attributed to the
higher ash content in the biochar. The ash content reached a maximum of 82.1% at 750 ◦C,
which supported the presence of large amounts of inorganic minerals in spent Agaricus
bisporus-derived biochars.

The pyrolysis temperature is another key factor that affects the properties of a biochar [27].
The properties of SASC are summarized in Table 1. Element analyses showed that the contents
of C, H, O, and N decreased continuously with the increase of the pyrolysis temperature. The
contents of C, H, N and O are 17.5%, 1.3%, 13.5%, and 1.5%, respectively, after pyrolysis at
350 ◦C, and they decline rapidly to 12.2%, 0.3%, 4.65%, and 0.85%, respectively, at 750 ◦C. The
ratios H/C and O/C also decrease with the pyrolysis temperature. These results demonstrate
that higher-temperature biochar had stronger aromaticity and polarity, which was supported
by the subsequent FTIR results. During pyrolysis, many carbon-containing substances will be
converted into gaseous hydrocarbon compounds and aromatic hydrocarbons of tar [28], and
the gradual loss of volatile substances will remove many surface functional group elements
(H, O and N).
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Table 1. Physicochemical properties of biochars at different pyrolysis temperature.

Material Yield (%) pH Ash (%)
Elemental Contents (%)

H/C O/C
BET

(m2 g−1)

Total Pore
Volume

(cm3 g−1)C H O N Ca Mg K Na

SAS - 6.87 53.15 19.03 2.33 23.82 1.67 5.13 1.48 0.60 0.35 0.12 1.25 24.13 0.029
SAS350 78.96 8.83 66.50 17.53 1.32 13.49 1.48 6.45 1.84 0.64 0.39 0.08 0.77 36.20 0.045
SAS450 73.73 9.37 71.76 15.91 0.82 11.73 1.20 7.13 1.97 0.68 0.42 0.05 0.78 48.74 0.065
SAS550 70.98 9.51 74.08 15.22 0.54 9.87 1.06 7.30 2.11 0.69 0.43 0.04 0.65 64.19 0.110
SAS650 68.13 11.38 77.23 14.53 0.37 7.87 0.88 7.45 2.21 0.70 0.44 0.03 0.54 101.39 0.156
SAS750 64.60 11.82 82.12 12.17 0.26 4.65 0.85 7.77 2.41 0.76 0.45 0.02 0.38 37.08 0.091

Mineral element analyses of ICP showed that SASC included calcium (Ca), magnesium
(Mg), potassium (K), and sodium (Na) (Table 1, Table S1), which were controlled mainly
by the production temperature. The total content of Ca, Mg, K, and Na increased from
10.41% to 11.39% as the production temperature was increased from 350 to 750 ◦C. During
pyrolysis, these inorganic minerals were not easily volatilized [29] and were retained
and enriched in the biochars, while organic substances (such as hemicellulose, lignin and
cellulose (220–400 ◦C) and lignin (~500 ◦C) [30]) were gradually volatilized and lost, thereby
resulting in an increase in the mineral element content in the biochars with increasing
temperature.

Minerals are also key factors that affect the acidity or alkalinity of biochars. When not
pyrolyzed, the pH of the raw material of SASC was 6.87, which was slightly acidic. As the
pyrolysis temperature was increased from 350 to 750 ◦C, the pH of the biochar increased
from 8.83 to 11.82. The alkaline earth metals (Ca and Mg) in biochars are converted into
carbonate forms during pyrolysis [31] (such as CaMg(CO3)2 and CaCO3), which render
the pH alkaline and gradually increase it. Meanwhile, SASC had a higher Ca content
(5.13~7.77%); hence, more alkaline minerals can be released to cause the alkaline elevation
of SASC.

The specific surface area and pore volume of the biochars varied substantially with the
pyrolysis temperature. Due to the formation of micropore structures in the biochars during
pyrolysis, the specific surface area and porosity of the biochars increased significantly with
the pyrolysis temperature [32]. As the temperature was increased from 350 to 650 ◦C, the
total pore volume of the biochars increased from 0.045 to 0.156 cm3·g−1, and the surface
area increased from 36.20 to 101.39 m2·g−1. However, when the temperature was 750 ◦C,
the pore volume and surface area decreased to 0.091 and 37.08 m2·g−1, respectively. The
surface area of SAS750 is lower than that of the common straw biochar [33,34]. The pores
of the biochar were blocked by excessive ash [35], which decreased the specific surface area
and pore volume. In addition, the pore structure of the biochar collapsed at high pyrolysis
temperatures [36] (>700 ◦C), which further reduced the surface area of SAS750. SEM images
(Figure S1) show that the surface of the biochar was rough and contained complex networks
and porous structures, which further supported the lower specific surface area of SASC.
These structures became more complex and disordered as the pyrolysis temperature was
increased.

3.2. Effect of the Initial pH on the Sorption Performance

The pH of the solution is an important factor that affects the sorption performance. It
affects the forms of the ions and the protonation or deprotonation state of the biochar [37].
To explore the influence of the pH on the sorption of Cu(II), Zn(II), and Cd(II) by SASC,
a range of initial pH values from 2.0 to 6.0 was selected for sorption experiments.

The results are presented in Figure 1. The sorption capacity of each biochar for heavy
metals increased gradually with the initial pH value of the solution. When the pH value
of the solution was low (pH = 2.0), a large amount of H+ was present in the solution,
and the biochar was protonated and electrostatically repulsed with positively charged
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heavy metal ions. Simultaneously, the biochar released many cations (such as Ca2+, Mg2+,
and K+) in the low pH solution (e.g., Zn(II) adsorption, Figure S2), which competed with
heavy metals for sorption sites and, thus, reduced the adsorption capacity [38]. As the pH
value was increased to 3.0, the H+ content in the solution decreased, and the biochar was
deprotonated. The unfavorable conditions that are described above for biochar sorption
weakened; consequently, the adsorption capacity substantially increased.

After sorption, the pH value of the solution showed an upward trend compared with
the initial value, which was attributed to the alkalinity of the biochar: the stronger the
alkalinity of the biochar, the larger the pH increase (Figure 2a–c). However, for a blank
without heavy metals (with the same volume of NaNO3 solution), the pH value of the
solution after shaking exceeded that of the solution with heavy metals. Thus, the interaction
of biochar with heavy metals reduced the pH value of the solution, which is consistent with
the results of Wang et al. [39]. When metal ions are complexed with functional groups in the
biochar, H+ will be released in the solution, which will reduce the pH value of the solution
after sorption; this will also be reflected in the sorption performance of the acid-washed
biochar. In addition, the decrease in the pH value after sorption may also be due to the
formation of precipitates with alkaline ions (CO3

2−) during the sorption process [21]. With
increasing pyrolysis temperature, the ash (inorganic component) content of the biochar
increased gradually; however, the amounts of adsorbed Cu(II), Cd(II) and Zn(II) initially
decreased and subsequently increased (SAS750 > SAS350 > SAS550) (Figure 2e).

Compared with SAS550, SAS750 has a higher pH, ash content, mineral content, and
aromaticity and is more suitable for precipitation and cation exchange, while SAS350
contains more abundant oxygen-containing functional groups and is more conducive
to oxygen functional group complexation. Therefore, SAS350, SAS550, and SAS750 are
selected as representatives for the next kinetic and isothermal sorption experiments.

3.3. Sorption Kinetics and Isotherms

The results of the sorption amounts of the SASCs on Cu(II), Zn(II), and Cd(II) as
functions of the sorption time are presented in Figure 3. With increasing sorption time, the
sorption capacities of the SASCs gradually increased until equilibrium. At the initial
sorption time (0–4 h), all three SASCs showed rapid sorption. As the sorption time
progressed, the solute difference of the solution decreased, the remaining sorption sites on
the SASCs gradually became saturated, with little change in the sorption capacity, and the
sorption reached equilibrium. Although SAS750 exhibited the best sorption performance
for each heavy metal, it exhibited a lower sorption rate and did not reach equilibrium
until nearly 24 h, which may be attributed to differences in the sorption mechanisms. The
sorption rates differ among the sorption mechanisms. According to the result of LU H [40],
the interactions between oxygen-containing functional groups and heavy metal ions in
biochars are extremely rapid, and equilibrium can usually be reached in a short time.
During the sorption process, anions that are released from biochars (e.g., CO3

2−, SO4
2−,

and OH−) can precipitate with heavy metals, while the rate of mineral precipitation is
affected by the release of anions [41]. Biochars under high-temperature pyrolysis have few
oxygen-containing functional groups and high mineral content, which is more conducive
to the removal of heavy metals through precipitation mechanisms; thus, the sorption rate
is strongly affected by minerals.
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Figure 1. The effects of different solution pH on the sorption capacity of Cu(II) (a), Zn(II) (b), and Cd(II) (c), respectively.
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Figure 2. The pH changes of Cu(II) (a), Zn(II) (b), and Cd(II) (c) solutions after adsorption equilibrium, respectively.
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Figure 3. Kinetics of sorption of Cu(II) (a), Zn(II) (b), and Cd(II) (c) on biochars at 350, 550, and 750 ◦C.

Minerals in biochars at low temperatures are amorphous and more easily released
to bind to heavy metals [42]. Increasing the pyrolysis temperature (>550 ◦C) causes
the minerals in biochars to become more crystalline, which decreases the release rate
and limits the corresponding sorption rate. SAS750 requires the longest time to reach
equilibrium, which may be due to the lower contribution of functional groups and the
higher contribution of minerals in the sorption process (Figure S4).

Pseudo-first-order [43] and pseudo-second-order [44] kinetic models were used to
explore the adsorption process of biochars (Figure 3 and Table S2). According to the fitted
regression coefficient (R2), the pseudo-second-order model of the sorption processes of
SASCs with various pyrolysis temperatures better described the sorption of Cu(II), Zn(II),
and Cd(II) than the pseudo-first-order. The pseudo-second-order model assumes that
the rate-limiting step involves chemical interactions leading to the binding of the ions to
the surface by strong covalent bonding [45]. As the reaction kinetics-based models are
applicable in the adsorption process, the basic assumption of these models is that the
mass transfer is fast enough to be ignored. Accordingly, these models are applied on the
chemisorption of solids that are porous, exhibiting high solid-phase diffusion coefficients,
in this way, that are appropriate for biochar [45].

The Langmuir and Freundlich models were used to fit the sorption data. The fitting
results are presented in Figure 4 and Table S3. The fitting results of the Freundlich model
better describe the equilibrium data than those of the Langmuir model; thus, the sorption
of SASC was heterogeneous adsorption [46]. All n values exceeded 1.0; hence, SASC had
substantial heterogeneity in sorption affinity for Cu(II), Zn(II), and Cd(II). The Langmuir
maximum sorption capacity (Qmax) followed the order SAS750 > SAS350 > SAS550, and
the sorption capacity of SAS750 exceeded those of biochars from other feedstocks that were
reported in many studies (Table S3). Overall, for Cu(II) sorption: 68.1 mg·g−1 > 28.9 mg·g−1

> 11.6 mg·g−1; for Zn(II) sorption: 55.2 mg·g−1 > 25.6 mg·g−1 > 16.9 mg·g−1; and for Cd(II)
sorption: 64.8 mg·g−1 > 47.2 mg·g−1 > 17.2 mg·g−1. These results demonstrate that SAS750
has a higher removal capacity for Cu(II), Zn(II), and Cd(II).
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Figure 4. Isotherm model of sorption of Cu(II) (a), Zn(II), (b) and Cd(II) (c) on biochars at 350, 550,
and 750 ◦C.

3.4. Sorption Mechanism Analysis

To investigate the sorption mechanisms of Cu(II), Zn(II), and Cd(II) on SASC, samples
were scanned via FTIR, XRD, and SEM/EDS before and after sorption.

3.4.1. Metal Cation Exchange

Cations on the surface of biochars (e.g., Ca2+, K+, Mg2+, and Na+) can exchange
with heavy metal ions in solution. To investigate this phenomenon, the release of these
cations into solutions that contained and did not contain heavy metals was measured. The
results are presented in Figures 5 and 6. In the blank experiment (without heavy metals),
many cations were released from the biochar into the solution, especially Ca2+. When the
pyrolysis temperature was increased, the total amount of cations that were released from
the biochar gradually decreased and reached the lowest value at 650 ◦C, whereas when the
temperature increased to 750 ◦C, the amount of cations that were released from the biochar
increased (Figure 5).
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Figure 5. The amount of total cation released from spent Agaricus bisporus substrate biochars (SABCs)
into solution (initial pH of 5, 24 h, adsorbent dosage of 1 g·L−1).
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Figure 6. The amount of Ca2+, K+, and Mg2+ released from spent Agaricus bisporus substrate biochars (SABCs) into solution
before and after Cu(II) (a), Zn(II) (b), and Cd(II) (c) adsorption (pH of 5, 24 h, initial concentration of 100 mg·L−1 and
adsorbent dosage of 1 g·L−1).

Compared with the blank experiment, the released amounts of Ca2+ and K+ in the
solution after SASC sorption (containing heavy metals) increased, while the released
amount of Mg2+ changed substantially only in SAS750. (Figure 6) In most cases [47], the
cation exchange during the sorption of low-temperature biochar (~550 ◦C) was stronger
than that at high-temperature (≈750 ◦C). In this study, it was found that the increment
of cation release from the solution after the pyrolyzed biochar adsorbed heavy metals at
550 ◦C was apparently lower than those at other pyrolysis temperatures. For example, for
the sorption of Cu(II), the samples are ordered according to the total amount of cations
that were released as follows: SAS550 (3.23 mg·g−1) < SAS650 < (9.49 mg·g−1) < SAS450
(9.61 mg·g−1) SAS750 < (11.59 mg·g−1) < SAS350 (18.09 mg·g−1). The reasons for this
could be mainly attributed to the structure of crystalline minerals at 550 ◦C [21]. These
results demonstrate that the pyrolysis temperature affects the process of cation exchange in
the sorption of heavy metals by spent mushroom substrate biochar.

3.4.2. Precipitation with Minerals

Anions that are released from biochar (e.g., OH−, CO3
2−, PO4

3−, and SO4
2−) can

precipitate with heavy metal ions. According to a previous prediction, mineral precipitation
will play an important role in the sorption process of SASCs, especially for biochars under
high-temperature pyrolysis. To evaluate the role of precipitation in the sorption process,
biochars before and after sorption were scanned using XRD (Figure 7a). The calcium-
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containing minerals that were added into the culture medium of Agaricus bisporus as the
calcium source were not completely absorbed by Agaricus bisporus, and calcium sulfate
(CaSO4), dolomite (CaMg(CO3)2), and calcite (CaCO3) were detected after pyrolysis via
XRD (Figure 7a). With increasing temperature, CaSO4 peaks disappeared, while CaCO3
peaks were newly formed in SAS650 and SAS750. Meanwhile, the peak of CaMg(CO3)2
weakened until it disappeared at 750 ◦C. Consistent with the results of the EDS spectra
(Figure S1), there were strong peaks that were attributed to SiO2 in the XRD patterns of
each biochar; hence, SiO2 was abundant in SASC.Materials 2021, 14, x FOR PEER REVIEW 12 of 18  
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Figure 7. X-ray diffraction (XRD) patterns of biochars before (a) and after adsorbed with
metal of Cu(II) (b), Zn(II) (c), or Cd(II) (d). Minerals with peaks labeled ×, quartz (SiO2); *,
calcite (CaSO4); H, calcium carbonate (CaCO3); :, dolomite (CaMg(CO3)2);5, posnjakite
(Cu4SO4(OH)6H2O); F, Otavite (CdCO3).

Compared with unabsorbed samples, new peaks that represented precipitates were
observed for the samples after Cd(II) and Cu(II) sorption, especially for biochars under high-
temperature pyrolysis (>550 ◦C). After the sorption of Cu(II), posnjakite (Cu4(SO4)(OH)6
(H2O)) was formed (Figure 7b), and the peak intensity increased with the pyrolysis tem-
perature. After the sorption of Cd(II), new peaks of Otavite (CdCO3) were formed in
SAS650 and SAS750 (Figure 7d). No precipitate was readily identified in the XRD spectra
after the sorption of Zn(II). This result suggests that no significant precipitation occurred
during the sorption of Zn(II). Compared with other samples, SAS750 showed the highest
sorption capacity for each heavy metal; hence, it was chosen for the SEM and EDS analyses
(Figure S2). Compared with nonadsorbed biochars, many precipitates were observed in
the SEM images of SAB750 after heavy metal adsorption, which were flocculent for Cd
and flaky for Cu and Zn. The EDS spectra further showed the elemental composition
(Figure S2), and it was found that the presence of Cd, Cu, and Zn elements and the pro-
portion of Ca elements in the samples decreased significantly after sorption. These results



Materials 2021, 14, 35 12 of 17

supported the important roles of mineral precipitation and cation exchange in the sorption
process of high-temperature biochars.

3.4.3. Oxygen Functional Group and π Electrons

FTIR spectra before and after sorption are shown in Figure 8. Functional groups
(e.g., C=C, -COOH, -OH, and R-OH) in biochar have an important influence on the sorption
process of heavy metals [48]. The typical bands at 3420 cm−1 are attributed to -OH
vibrations, the bands at 2950–2850 cm−1 are attributed to aliphatic C-H stretching [49,50],
the bands at 1620 cm−1 are attributed to C=O vibrations of carboxyl groups, and the bands
at 1319 cm−1 are attributed to C-O peaks. C=C skeleton vibration of the aromatic ring
corresponds to the band at 1427 cm−1, and C-H bending vibration of the aromatic ring
corresponds to the band at 800–600 cm−1 (778, 675, 595 cm−1) [51]. The band at 1110 cm−1

can be attributed to SO4
2−.

After the pyrolysis temperature was increased, the vibration of the corresponding
-OH gradually weakened, the aliphatic C-H stretching weakened and disappeared, the C-O
stretching disappeared at temperatures above 450 ◦C, and the C=O vibration of the carboxyl
group continued to weaken. In addition, the SO4

2− stretching continuously weakened
as the temperature was increased to 550 ◦C. The corresponding vibration of aromatics
was enhanced with increasing temperature, and the enhancement of the aromaticity can
provide more π electrons to bind with heavy metals. In addition, the related vibrations
at 875 cm−1 were assigned to CO3

2− [22], and the vibrations of Si-O-Si at 465 cm−1 and
1030 cm−1 were assigned to SiO2, which was consistent with the XRD analysis results.

After sorption, each functional group changed, and the position of the corresponding
peak shifted (Figure 8b–f). For example, the peaks at 1620, 1319, and 1100 cm−1 (C=O,
C-O, and C-O-C vibrations, respectively) were weakened, while the changes in the oxygen
functional groups of low-temperature biochars were more obvious; thus, more oxygen
functional groups were involved in the sorption of low-temperature pyrolysis biochars. In
addition, the pH value of the solution decreased after the sorption of acid-washed biochar,
which also supported the involvement of the oxygen functional groups in the sorption
process.

In addition to oxygen functional groups, other functional group components (aro-
matic C=C and C-H) have also been demonstrated to be involved in the sorption process,
especially the interactions of π with Cu(II), Zn(II), and Cd(II). It is observed that the C-H
vibration of the peak at 800~600 cm−1 continues to weaken or be displaced. Especially for
Cu(II) and Zn(II) sorption, the C=C change at 1427 cm−1 at high temperatures (≥650 ◦C)
is more drastic, which is attributed to the high degree of graphitization at high pyrolysis
temperatures. At high temperatures (≥650 ◦C), the change that corresponds to the CO3

2−

peak at 875 cm−1 became more obvious; thus, more CO3
2− participated in the precipitation

reaction at high temperatures and less participated at low temperatures.

3.5. Contributions of the Cu(II), Zn(II), and Cd(II) Sorption Mechanisms

The contributions of various mechanisms to the process of heavy metal sorption
by biochars were evaluated according to the method that is described in the Materials
and Methods section. The contribution amounts and contribution proportions of various
sorption mechanisms are presented in Figure 9 and Table S4. In the sorption of the three
considered heavy metals, the contribution of π coordination (Qcπ) gradually increased as
the pyrolysis temperature was increased (350–750 ◦C), while the contribution of oxygen-
containing functional group complexation (Qco) showed the opposite trend. For instance,
in the process of SASC adsorption of Cu(II), Qcπ increased from 5.52 to 6.66 mg·g−1 with
increasing temperature (350–750 ◦C), while Qco and Qco/Qt decreased from 5.81 mg·g−1

and 18.4% to 1.62 mg·g−1 and 2.0%, respectively. This phenomenon may be due to the
reserved amount of oxygen functional groups and the strength of the aromaticity, which
are affected by the pyrolysis temperature. The sorption of Cu(II) and Zn(II) by different
mechanisms showed similar trends.
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Figure 8. (a) Fourier transform infrared spectra (FTIR) spectra of biochar at 350–750 ◦C pyrolysis temperature. FTIR spectra
of SAS350 (b), SAS450 (c), SAS550 (d), SAS650 (e), and SAS750 (f) before and after sorption.

The variation rules of Qco and Qcπ are strongly influenced by the amount of oxygen-
containing functional groups and the aromaticity in biochars. FTIR analysis showed that
pyrolysis enhanced the aromaticity and decomposition of oxygen-containing functional
groups in SASCs, thereby resulting in a gradual decrease in the contribution of oxygen
functional groups to sorption, while the role of π electrons was constantly enhanced.
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Figure 9. The change of contributions of different adsorption mechanisms with temperature during Cu(II) (a), Zn(II) (b), and
Cd(II) (c) adsorption (pH of 5, 24 h, initial concentration of 100 mg·L−1 and adsorbent dosage of 1 g·L−1).

The change in the cation exchange contribution (Qce) with temperature was substantial
in several sorption mechanisms. When the pyrolysis temperature was between 350 and
550 ◦C, the cation exchange (Qce) decreased with the increasing pyrolysis temperature,
whereas when the pyrolysis temperature was increased from 550 to 750 ◦C, Qcp showed
the opposite upward trend. The values of Qce for Cu(II), Zn(II), and Cd(II) sorption were
only 2.23, 1.83, and 4.05 mg·g−1, respectively, for SAS550. The abrupt decrease in Qce in
SAS550 resulted in the weakest sorption performance. Lower pyrolysis temperatures were
conducive to the sorption of heavy metals via cation exchange mechanisms, at which time
biochar had a lower degree of carbonization and could release many available mineral
components (such as Ca+ and K+). When the pyrolysis temperature was increased from 350
to 550 ◦C, the mineral components in SASC became more crystalline [52], and the solubility
decreased, thereby resulting in a decrease in the cation exchange capacity. When the
pyrolysis temperature was further increased (>650 ◦C), the cation exchange capacity did not
continue to decline but began to increase. At this pyrolysis temperature, high-temperature
pyrolysis resulted in a change in the mineral crystals in SASC with the production of new
minerals [41] (Figure 7a; CaMg(CO3)2 is converted to CaCO3), thereby resulting in the
solubility of minerals in the biochar being no longer reduced, which was manifested as
enhanced exchange of Ca2+ and Mg2+ cations with heavy metal ions (Table S3)

Compared with the high pyrolysis temperature, a small amount of precipitation
occurred during the sorption process of the biochar at low temperatures (350–550 ◦C).
The XRD pattern showed a weak representative precipitate peak (for Cu(II)) or no readily
observable precipitate (for Cd(II) and Zn(II)) (Figure 7c,d), especially for SAS350 after
sorption. The mineral precipitation ratios in the sorption of the high-pyrolysis-temperature
biochars (SAS650 and SAS750) increased (as shown in Figure 7c,d); this change was also
demonstrated by the XRD pattern.
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Overall, the pyrolysis temperature affects the ability of biochars to adsorb heavy
metals, and the dominant mechanism of biochar adsorption of heavy metals differs among
pyrolysis temperatures. For the organic components (Qcπ + Qco), the contribution gradually
decreased with increasing temperature, while the inorganic components (Qce + Qcp) were
more substantially affected by the pyrolysis temperature, and the contribution initially
decreased and subsequently increased. The optimal production temperature is 750 ◦C
for pyrolysis. At this temperature, the contribution of the mineral precipitation increased
substantially, the sorption amount reached its maximum value, and the Qcp/Qt values for
Cu(II), Zn(II), and Cd(II) were 63.4%, 44.4%, and 71.2%, respectively.

4. Conclusions

Mineral-rich biochar that was derived from a spent Agaricus bisporus substrate showed
the effective removal of Cu(II), Zn(II), and Cd(II) from aqueous solutions, and the sorption
performance was affected by the pyrolysis temperature and the solution pH value. The
pyrolysis temperature of 750 ◦C yields the best adsorbent. According to mechanistic
investigations, mineral components play a key role in biochar sorption, which is mainly
through cation exchange at low pyrolysis temperatures (e.g., 350 ◦C), whereas mineral
precipitation plays a major role at high temperatures (e.g., 750 ◦C). In conclusion, the results
suggested that the production of a mineral-rich biochar from a spent Agaricus bisporus
substrate for the removal of heavy metals from aqueous solutions is a promising method
for the utilization of abandoned spent mushroom substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/1/35/s1; Mathematical models for adsorption kinetics and isotherm; Table S1: The concentra-
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(PF) order and pseudo-second (PS) order model parameters for the Cd(II), Cu(II), or Zn(II) sorption
onto SAS-derived biochars produced at 350, 550, and 750 ◦C.; Table S3: Langmuir and Freundlich
isotherm parameters for Cd(II), Cu(II), or Zn(II) sorption onto SAS-derived biochars produced at 350,
550, and 750 ◦C; Table S4: Comparison of SASC adsorption capacity of Cd(II), Cu(II), and Zn(II) with
other biochar; Figure S1: The SEM images (3000×) and corresponding EDS spectra of spent Agaricus
bisporus derived biochars at 350–750 ◦C; Figure S2: The SEM images (3000×) and corresponding
EDS spectra of spent Agaricus bisporus derived biochars after adsorption of Cd(II), Cu(II), and Zn(II)
at 750 ◦C; Figure S3: The amount of Ca2+, K+ and Mg2+ released from SABCs into solution after
Zn(II) adsorption at different initial pH values; Figure S4: The contribution percentage of different
mechanisms to Cu(II) (a), Zn(II) (b), and Cd(II) (c) sorption on SASCs.
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