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,e steady-state motion visual evoked potential (SSMVEP) collected from the scalp suffers from strong noise and is contaminated
by artifacts such as the electrooculogram (EOG) and the electromyogram (EMG). Spatial filtering methods can fuse the in-
formation of different brain regions, which is beneficial for the enhancement of the active components of the SSMVEP. Traditional
spatial filtering methods fuse electroencephalogram (EEG) in the time domain. Based on the idea of image fusion, this study
proposed an SSMVEP enhancement method based on time-frequency (T-F) image fusion. ,e purpose is to fuse SSMVEP in the
T-F domain and improve the enhancement effect of the traditional spatial filtering method on SSMVEP active components.
Firstly, two electrode signals were transformed from the time domain to the T-F domain via short-time Fourier transform (STFT).
,e transformed T-F signals can be regarded as T-F images. ,en, two T-F images were decomposed via two-dimensional
multiscale wavelet decomposition, and both the high-frequency coefficients and low-frequency coefficients of the wavelet were
fused by specific fusion rules. ,e two images were fused into one image via two-dimensional wavelet reconstruction. ,e fused
image was subjected to mean filtering, and finally, the fused time-domain signal was obtained by inverse STFT (ISTFT). ,e
experimental results show that the proposed method has better enhancement effect on SSMVEP active components than the
traditional spatial filtering methods. ,is study indicates that it is feasible to fuse SSMVEP in the T-F domain, which provides a
new idea for SSMVEP analysis.

1. Introduction

To improve the comfort of light-flashing stimulation, we
proposed a steady-state motion visual evoked potential
(SSMVEP) method to replace light-flashing stimulation with
motion stimulation in the previous study [1]. In this study,
the SSMVEP signal was selected as a research object. ,e
SSMVEP collected from the scalp will be contaminated by a
variety of artifacts, such as the electrooculogram (EOG) and
electromyogram (EMG). Consequently, the requirements
for subsequent signal processing are high. In electroen-
cephalogram (EEG) signal processing, using multichannel
EEG is beneficial and effective [2, 3]. In the EEG literature,
the method for linearly fusing the multilead signals into
single-channel or multichannel signals is called spatial fil-
tering. Spatial filtering combines the EEG information of

different brain regions, which enhances the active compo-
nents of the EEG [4, 5].

At present, the main methods used in EEG spatial fil-
tering are average fusion, native fusion, bipolar fusion,
Laplacian fusion, common average reference (CAR) fusion,
canonical correlation analysis (CCA) fusion, minimum
energy fusion, and maximum contrast fusion [4–6]. Average
fusion is obtained by averaging all electrode signals, and a
bipolar fusion signal is obtained by subtracting the two
electrode signals [7, 8]. It is called native fusion if only one of
the electrode signals is analyzed. Laplacian fusion is a
centered electrode signal minus the sum of four electrodes at
the same distance from their surroundings. CAR fusion is
another commonly used EEG spatial filtering method that
enhances the signal-to-noise ratio (SNR) of the selected
electrode signal by subtracting the mean of all electrode
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signals from the selected electrode signal. Dennis et al. studied
the enhancement effects of standard ear reference, CAR fu-
sion, and Laplacian fusion on the active components of EEG.
,e results show that the Laplacian fusion achieved the best
fusion effects on EEG active components [9]. Friman et al.
proposed theminimum energy fusion andmaximum contrast
fusion methods [5]. ,e minimum energy fusion was
achieved by minimizing the noise energy, and the maximum
contrast fusion was achieved by maximizing the EEG SNR. In
the study, Friman et al. compared the effects of average fusion,
native fusion, bipolar fusion, Laplacian fusion, minimum
energy fusion, and maximum contrast fusion on steady-state
visual evoked potential (SSVEP) signals. Among these, the
enhancement effect of average fusion was worst, and the
enhancement effect of minimum energy fusion was best. CCA
fusion is used to study the linear relationship between two
groups of multidimensional variables and is also a commonly
used spatial filtering method [6].

Since Friman et al. demonstrated that minimum energy
fusion and maximum contrast fusion had better fusion ef-
fects and did not compare minimum energy fusion and
maximum contrast fusion with CCA fusion, this study only
compared the enhancement effects of minimum energy
fusion, maximum contrast fusion, CCA fusion, and the
proposed method on the active components of the SSMVEP.
Minimum energy fusion, maximum contrast fusion, and
CCA fusion are used to analyze multidimensional EEG
signals in the time domain. ,is study aims to investigate
whether electrode signals can be fused in the time-frequency
(T-F) domain.,emethod of image fusion can fuse multiple
images into one, thus improving the image quality [10–12].
,is study transformed EEG from the time domain to the
T-F domain and analyzed multidimensional EEG with the
idea of image fusion, to improve the enhancement effect of
existing spatial filtering methods on SSMVEP active com-
ponents. Firstly, two electrode signals were transformed
from the time domain to the T-F domain via short-time
Fourier transform (STFT). ,en, two T-F images were
decomposed by two-dimensional multiscale wavelet de-
composition, and both the high-frequency coefficients and
low-frequency coefficients of the wavelet were fused by
specific fusion rules. After two-dimensional wavelet re-
construction, two images could be fused into one image.,e
fused image was filtered via mean filter, and the fused time-
domain signal could be obtained by inverse STFT (ISTFT).
,e experimental results show that the proposed method
based on T-F image fusion can enhance the SSMVEP better
than the traditional time-domain analysis method.

2. Methods

2.1. Subjects. Six males and four females (20–28 years
old) were recruited as subjects for this study. ,e partici-
pants were healthy and had normal colour and visual
perception.

2.2. Experimental Equipment. g.USBamp (g.tec, Austria)
was used to collect the EEG. ,e sampling frequency of the

equipment is 1200Hz. A g.USBamp EEG amplifier and
g.GAMMAbox active electrode system were combined to
form the experimental platform. Prior to the experiment, the
reference electrode was placed at the left ear of the subjects,
and the ground electrode Fpz was placed at the forehead.
EEGs were collected from the following six channels: PO7,
Oz, PO8, PO3, POz, and PO4.

2.3. Experimental Step. A checkerboard of radial
contraction-expansion motion was used as a stimulation
paradigm, and the details of the paradigm can be found in
Reference [1]. ,e stimulus paradigms were presented on
a screen at a refresh rate of 144 Hz, and the subjects were
positioned 0.6–0.8m from the screen. ,e experiment
included six blocks, each containing 20 trials corre-
sponding to all 20 targets. ,e stimuli were arranged in a
5×4 matrix, and the horizontal and vertical intervals
between two neighboring stimuli were 4 cm and 3 cm,
respectively. ,e stimulus frequencies were 7–10.8 Hz
with a frequency interval of 0.2 Hz, and the radius of the
stimuli was 60 pixels. Each trial lasted 5 s, separated by an
interval of 2 s. Between two blocks, the subjects were
allowed to rest properly. Twenty targets were simulta-
neously presented on the screen and numbered 1 to 20.
Before the stimulus began, one of the 20 serial numbers
appeared below the corresponding target, indicating the
focus target.

2.4. Preprocessing of EEG Data. ,e corresponding EEG
data segments were extracted in accordance with the trial
start and end times. ,e MATLAB library function detrend
was used to remove the linear trends for each channel.
Chebyshev bandpass filtering of 0.5–50Hz was used to re-
move low-frequency drifts and high-frequency interferences.

2.5. Significance Test. ,e data were expressed as mean
values. A paired-sample t-test was used to determine the
significance. Statistical significance was defined as p< 0.05.

2.6. Spatial Filtering Methods: Minimum Energy Fusion,
Maximum Contrast Fusion, and CCA Fusion. For EEG data
Y recorded frommultiple electrode leads, the spatial filtering
method obtains new data by linearly summing each of the
electrode signals with spatial filter coefficientsW. A spatially
filtered signal can be expressed as

Z � W
T
Y. (1)

,e spatial filter coefficients W for minimum energy
fusion, maximum contrast fusion, and CCA fusion are
described below.

2.6.1. Minimum Energy Fusion. For a visual stimulus fre-
quency f, the SSMVEP signal recorded by the ith electrode
can be expressed as follows:
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yi � 
n

j�1
ai,j sin 2jπft + ϕi,j  + ei(t), (2)

where n represents the number of harmonics and ai,j and ϕi,j

represent the amplitude and phase of the jth harmonic
component, respectively. ,e model decomposes the signal
into the sum of the SSMVEP induced by the visual stimulus
and the noise ei(t) generated by the electromyogram (EMG),
electrooculogram (EOG), and other components. ,us,
equation (2) can be expressed as

yi � Si + ei, (3)

where

Si � aiX,

X � X1, X2, . . . , Xn .
(4)

,e submatrix Xn is composed of sin(2nπft) and
cos(2nπft), and ai represents the amplitude of SSMVEP at its
stimulus frequency and harmonics. We assume that the
signal matrix recorded by N electrodes is Y� [Y1 Y2 . . . YN],
where each column corresponds to an electrode channel. Y
can be projected to the SSMVEP space through a projection
matrix Q, namely,

S � QY. (5)

Reference [13] gives the solution of Q as

Q � X X
T
X 
−1

X
T

. (6)

,us, the noise signal can be expressed as

Y′ � Y−QY. (7)

,e minimum energy fusion obtains the spatial filter
coefficients W by minimizing the noise energy, namely,

min
W

Y′W
����

����
2

� min
W

W
T
Y′Y′W. (8)

,e above minimization problem can be obtained by
decomposing the eigenvalues of the positive definite matrix
Y′

T
Y′. After decomposition, N eigenvalues and corre-

sponding eigenvectors can be obtained. ,e spatial filter
coefficient W is the eigenvector corresponding to the
smallest eigenvalue (MATLAB code for minimum energy
fusion and test data is provided in Supplementary Materials
(available here)).

2.6.2. Maximum Contrast Fusion. ,e goal of maximum
contrast fusion is to maximize SSMVEP energy while
minimizing noise energy. ,e SSMVEP energy can be ap-
proximated as WTYTYW. ,erefore, the maximum contrast
fusion can be achieved by the following maximizing
equation:

max
W

‖YW‖2

Y′W
����

����
2 � max

W

WTYTYW

WTY′TY′W
. (9)

Here, Y and Y′ are the same as in Section 2.6.1. Equation (9)
can be solved by generalized eigenvalue decomposition of

YTY and Y′
T
Y′. ,e spatial filter coefficient W is the ei-

genvector corresponding to the largest eigenvalue (MAT-
LAB code for maximum contrast fusion and test data is
provided in Supplementary Materials (available here)).

2.6.3. Canonical Correlation Analysis Fusion. CCA fusion is
used to study the linear relationship between two groups of
multidimensional variables. Using two sets of signals Y and
X, the goal is to find two linear projection vectors wY and wX

so that the two groups of linear combination signals wT
YY

and wT
XX have the largest correlation coefficients:

max
wY,wX

p �
E wT

YYXTwX( 
������������

E wT
YYYTwY( 



E wT
XXXTwX( 

. (10)

,e reference signals were constructed at the stimulation
frequency fd:

X �

cos 2πfdt( 

sin 2πfdt( 

⋮

cos 2kπfdt( 

sin 2kπfdt( 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, t �
1
fs

, . . . ,
l

fs

, (11)

where k is the number of harmonics, which is dependent on
the number of frequency harmonics existing in SSMVEP; fs
is the sampling rate; and l represents the number of sample
points. ,e optimization problem of equation (10) can be
transformed into the eigenvalue decomposition problem,
and the spatial filter coefficient W is the eigenvector cor-
responding to the largest eigenvalue (MATLAB code for
CCA fusion and test data is provided in Supplementary
Materials (available here)).

2.7. Two-Dimensional T-F Image Representation and Re-
construction of EEG Signals. ,e T-F analysis can transform
the signal from the time domain to the T-F domain, and
then, the T-F domain signal can be regarded as an image for
analysis. In this study, T-F transform was performed on the
time-domain EEG signal using STFT. Let h(t) be a time
window function with center at τ, a height of 1, and a finite
width. ,e portion of the signal x(t) observed by h(t− τ) is
x(t)h(t − τ). ,e STFT is generated by the fast Fourier
transform (FFT) of the windowed signal x(t)h(t − τ):

STFTx(τ, f) � 
+∞

−∞
x(t)h(t− τ)e

−j2πft
dt. (12)

Equation (12) can map the signal x(t) onto the two-
dimensional T-F plane (τ, f), and f can be regarded as the
frequency in the STFT. After fusing multiple EEG T-F
images, the fused two-dimensional image signals need to be
transformed into one-dimensional time-domain signals for
the subsequent analysis. ,e STFT has an inverse transform
that transforms the T-F domain signal into a time-domain
signal:
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x(t) � 
+∞

−∞


+∞

−∞
STFT(τ, f)h(t− τ)e

j2πft
df dτ. (13)

In this study, the T-F transform of the SSMVEP signal
was conducted by MATLAB’s tfrstft function. After fusing
two T-F images, the T-F signal was inversely transformed
into a one-dimensional time-domain signal by MATLAB’s
tfristft function.

2.8. T-F Image Fusion Based on Two-Dimensional Multiscale
Wavelet Transform. Among the many image fusion tech-
nologies, two-dimensional multiscale wavelet transform-
based image fusion methods have become a research hot-
spot [14–16]. Let f(x, y) denote a two-dimensional signal,
and x and y are its abscissa and ordinate, respectively. Let
ψ(x, y) denote a two-dimensional basic wavelet and
ψa;b1 ,b2

(x, y) denote the scale expansion and two-
dimensional displacement of ψ(x, y):

ψa;b1 ,b2
(x, y) �

1
a
ψ

x− b1

a
,
y− b2

a
 . (14)

,en, the two-dimensional continuous wavelet trans-
form is

WTf a; b1, b2(  �
1
a

  f(x, y)ψ
x− b1

a
,
y− b2

a
 dx dy.

(15)

,e factor 1/a in equation (15) is a normalization factor
that has been introduced to ensure that the energy remains
unchanged before and after wavelet expansion. ,e two-
dimensional multiscale wavelet decomposition and re-
construction process is shown in Figure 1. ,e de-
composition process can be described as follows: First, one-
dimensional discrete wavelet decomposition is performed
on each line of the image, which obtains the low-frequency
component L and the high-frequency component H of the
original image in the horizontal direction. ,e low-
frequency component and high-frequency component are
the low-frequency wavelet coefficients and high-frequency
wavelet coefficients obtained after wavelet decomposition,
respectively. ,en, one-dimensional discrete wavelet de-
composition is performed on each column of the trans-
formed data to obtain the low-frequency components LL in
the horizontal and vertical directions, the high-frequency
components LH in the horizontal and vertical directions, the
low-frequency components HL in the horizontal and vertical
directions, and the high-frequency component HH in the
vertical direction. ,e reconstruction process can be de-
scribed as follows: Firstly, one-dimensional discrete wavelet
reconstruction is performed on each column of the trans-
form result. ,en, one-dimensional discrete wavelet re-
construction is performed on each row of the transformed
data to obtain the reconstructed image.

,e T-F image obtained by the STFT is decomposed into
N layers by the two-dimensional multiscale wavelet de-
composition, as shown in Figure 1, and 3N+ 1 frequency
components are obtained. In this study, the LLN

decomposed from the highest level is defined as the low-
frequency component, and the HLM, LHM, and HHM (M� 1,
2, . . ., N) decomposed from each level are defined as high-
frequency components. ,e active components of the EEG
are mainly contained in the low-frequency component. ,e
fusion process of two T-F images based on two-dimensional
multiscale wavelet transform is shown in Figure 2. Firstly,
the T-F images 1 and 2 are decomposed by two-dimensional
wavelet decomposition, and then, the corresponding low-
frequency components and high-frequency components are
fused according to the corresponding fusion rules. Finally,
two-dimensional wavelet reconstruction is performed to
obtain the fused image by fusing low-frequency components
and high-frequency components. In this study, the two-
dimensional wavelet decomposition was performed using
the MATLAB’s wavedec2 function and the two-dimensional
wavelet reconstruction was performed using the MATLAB’s
waverec2 function.

2.9. Image Mean Filtering. For the current pixel to be
processed, a template is selected, which is composed of
several pixels adjacent to the current pixel. ,e method of
replacing the value of the original pixel with the mean of the
template is called mean filtering. Defining f(x, y) as the
pixel value at coordinates (x, y), the current pixel g(x, y)

can be calculated by

g(x, y) �
1
D



D

i�1
f xi, yi( , (16)

where D represents the square of the template size.

2.10. Summary of the ProposedMethod for EEG Enhancement
Based on T-F Image Fusion. Here, the T-F image fusion
method of the electrode signals x1(t) and x2(t) is introduced,
and the fusion process is shown in Figure 3.

(1) STFT is performed on the two electrode signals x1(t)
and x2(t) to obtain T-F images 1 and 2.

(2) ,e low-frequency components LLN,1 and LLN,2 and
the high-frequency components (HLM,1, LHM,1, and
HHM,1) and (HLM,2, LHM,2, and HHM,2) (M� 1, 2, ...,
N) of two T-F images 1 and 2 are obtained byN-layer
two-dimensional multiscale wavelet decomposition.

(3) ,e low-frequency components LLN,1 and LLN,2 and
the high-frequency components (HLM,1, LHM,1, and
HHM,1) and (HLM,2, LHM,2, and HHM,2) (M� 1, 2, ...,
N) of each decomposition layer are fused according
to the following fusion rules:

(a) ,e low-frequency components of the T-F im-
ages 1 and 2 are subtracted to obtain the low-
frequency components of the fused image F:

LLN,F � LLN,1 − LLN,2. (17)

,e low-frequency components represent the active
components of the SSMVEP, and the subtraction of the
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low-frequency components can remove the common
noise in the electrode signals.

(b) ,e magnitudes of the high-frequency components
(HLM,1, LHM,1, andHHM,1) and (HLM,2, LHM,2, and
HHM,2) (M� 1, 2, ..., N) of each decomposition

layer are obtained for the T-F images 1 and 2. ,e
high-frequency component with a large value is
used as the high-frequency component of the fused
image F:

HLi
M,F �

HLi
M,1, real HLi

M,1 > real HLi
M,2 ,

HLi
M,2, real HLi

M,1 < real HLi
M,2 ,

⎧⎪⎨

⎪⎩

LHi
M,F �

LHi
M,1, real LHi

M,1 > real LHi
M,2 ,

LHi
M,2, real LHi

M,1 < real LHi
M,2 ,

⎧⎪⎨

⎪⎩

HHi
M,F �

HHi
M,1, real HHi

M,1 > real HHi
M,2 ,

HHi
M,2, real HHi

M,1 < real HHi
M,2 ,

⎧⎪⎨

⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M � 1, 2, . . . , N. (18)

,e two-dimensional signal after the STFT is a
complex signal; the two-dimensional signal after
two-dimensional wavelet decomposition is still a
complex signal. ,e value used for the comparison is
the real part of the complex signal. Here, i represents
the number of frequency components of the M
decomposition layer (i.e., the number of wavelet
coefficients).

(4) According to both low-frequency components LLN,F
and high-frequency components (HLM,F, LHM,F, and
HHM,F) (M� 1, 2, ..., N) of the fused image F, the
fused image F is generated by two-dimensional
wavelet reconstruction.

(5) Mean filtering is performed on the fused image F.
(6) An ISTFT is performed on the mean filtered image to

generate a fused time-domain signal (MATLAB code
for T-F image fusion and test data is provided in
Supplementary Materials (available here)).

3. Results

3.1. Parameter Selection

3.1.1. STFT Parameters. In this study, the EEG time-domain
signals were subjected to STFT and ISTFT, using the
MATLAB library functions tfrstft and tfristft.,e parameters
that need to be set here are the number of frequency bins and
the frequency smoothing window. If the number of fre-
quency bins is too large, the calculation speed of the entire
process will be low. In this study, the value of this parameter
can be set to [32 54 76 98120]. Since the Fourier transform of
the Gaussian function is also a Gaussian function, the
window function of the optimal time localization of the
STFT is a Gaussian function. ,e EEG is a nonstationary
signal [17] and requires a high time resolution of the window
function; that is, the window length should not be too long.
In this paper, a Gaussian window was selected, and the value
of the window length can be set to [37 47 57 67 77 87 97].

3.1.2. Two-Dimensional Multiscale Wavelet Transform
Parameters. In this study, the MATLAB library functions
wavedec2 and waverec2 were used to perform two-
dimensional multiscale wavelet decomposition and re-
construction on T-F images. Here, the number of layers of
wavelet decomposition and the wavelet basis functions need
to be set. ,e sampling frequency of the EEG acquisition
device used in this paper was 1200Hz, and the stimulation
frequency of the SSMVEP was 7–10.8Hz. Considering that
the SSMVEP may contain the second harmonic of the
stimulation frequency, this study sets the number of layers of
wavelet decomposition to 4. ,e dbN wavelet has good reg-
ularity and was chosen as the wavelet basis function. ,e
vanishing momentN of the wavelet function can be set to [2 3
5 7 10 13].

3.1.3. Mean Filtering Parameters. Here, the template size of
themean filtering needs to be set. In this study, the value of the
template size can be set to [2 4 6 8 10 12 14 16 18 20 22 24 26].

3.1.4. Low-Frequency Component of the Fused Image F.
,e values of LLN,F taking LLN,1−LLN,2 or LLN,2−LLN,1 will
affect the experimental results, and the values of LLN,F need
to be determined to optimize the final fusion effect (see
details in Section 2.10 (3)).

3.1.5. Parameter Selection. ,e T-F image fusion method
proposed in this study requires the setting of the following
five parameters: the number of frequency bins, frequency
smoothing window, vanishing moments of dbN wavelet
functions, mean filter template size, and the value of LLN,F.
In this study, the grid search method was used to traverse the
combination of all parameters to find the best combination
of parameters that can enhance the SSMVEP active com-
ponents. In this study, six rounds of experiments were
conducted. ,e first three rounds of experimental data were
used to select the optimal combination of parameters for T-F
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image fusion. According to the selected combination of pa-
rameters, the last three rounds of experimental data were used
to compare the enhancement effect of SSMVEP active com-
ponents by the method of minimum energy fusion, maximum
contrast fusion, CCA fusion, and T-F image fusion. ,e
disadvantage of grid search is that the amount of calculation is
large; however, considering the difficulty of superparameter
selection, grid search is still a more reliable method.

3.2. Electrode Signal Selection for T-F Image Fusion. ,e T-F
image fusion method analyzes two electrode signals. ,us,
two suitable electrodes need to be selected from multiple
electrodes. ,e bipolar fusion signal is obtained by sub-
tracting the two original EEG signals. In equation (17), we
subtracted the wavelet low-frequency components of the two
T-F images to obtain the wavelet low-frequency components
of the fused image. ,e subtraction of the low-frequency
components removes the common noise in the electrode
signals, which is similar to the principle of bipolar fusion.
,erefore, the two electrode signals with the best bipolar
fusion effect were used in the T-F image fusion. For SSVEP
or SSMVEP stimulation, the Oz electrode usually has the
strongest response [18] and is most commonly used to
analyze SSVEP or SSMVEP [19]. ,e Oz electrode was used
as one of the analysis electrodes for bipolar fusion. In this
study, the Oz electrode was fused with the other five elec-
trode signals so that the best combination of electrodes can
be selected. When bipolar fusion is used, the Oz electrode as
a reducing electrode or a reduced electrode will not affect the
experimental results. For example, Oz-POz and POz-Oz
have the same fusion effect. In this study, the Oz elec-
trode was used as the reduced electrode. Twenty trials per
subject were used for electrode selection. ,e Welch power
spectrum analysis [20] was performed on the obtained
signals of bipolar fusion for each subject. ,e Gaussian
window was used, and the length of the window was 5 s. ,e
overlapping was 256, and the number of discrete Fourier
transform (DFT) points was 6000 for the Welch periodo-
gram. 20 focused targets correspond to 20 stimuli fre-
quencies, and the frequencies corresponding to the highest
power spectrum amplitudes at the 20 frequencies were
determined as the focused target frequency. ,e high rec-
ognition accuracy indicates that the amplitude of the power
spectrum at the stimulation frequency is prominent, and it
indicates the effectiveness of the fusion method for the
enhancement of the SSMVEP active component. Table 1
shows the recognition accuracy of all 10 subjects under the
bipolar fusion. ,e Oz electrode was fused with different
electrodes and obtained different fusion effects. Moreover,
due to the differences among individuals, the electrode
combination with the highest recognition accuracy per
subject was also different. ,e asterisk (∗) marks the bipolar
fusion electrode group with the highest recognition accuracy
of each subject, and the corresponding electrode combi-
nation was used in T-F image fusion.

3.3. Comparison of Enhancement Effects of Minimum Energy
Fusion, Maximum Contrast Fusion, CCA Fusion, and T-F

Image Fusion on SSMVEP Active Components. T-F image
fusion used two channel signals, and CCA fusion, maximum
contrast fusion, and minimum energy fusion used all six
channel signals. In this study, the accuracy was used as the
evaluation standard of the fusion effect. ,e high online
accuracy indicates that the amplitude at stimulus frequency
is prominent, which shows the effectiveness of the fusion
method. For T-F image fusion, the Welch power spectrum
analysis (the parameters are the same as in Section 3.2) was
performed on the obtained signal after the T-F image fusion,
and the frequency with the highest amplitude at twenty
stimulus frequencies was identified as the focused target
frequency. ,e minimum energy fusion, maximum contrast
fusion, and CCA fusion require prior knowledge of the
frequency of the signal to be fused. However, the frequency
of the signal to be fused cannot be determined because the
user’s focused target cannot be determined beforehand. For
the current tested signal, the minimum energy fusion,
maximum contrast fusion, and CCA fusion need to first
perform the fusion analysis at all stimulus frequencies, and
then, the frequency with the highest amplitude was iden-
tified as the focused target frequency. Take CCA fusion as an
example, and assume that the current tested signal is Y. First,
20 template signals are set according to equation (11), and
then, 20 spatial filter coefficients are obtained according to
equation (10). ,e tested signal is fused with 20 spatial filter
coefficients, respectively. ,e obtained 20 sets of vectors are
separately analyzed by the Welch power spectrum (the
parameters are the same as in Section 3.2) to obtain the
amplitude at the corresponding frequency. Finally, the
frequency with the highest amplitude is identified as the
focused target frequency. ,e first three rounds of experi-
mental data were used to select the parameters of the T-F
image fusion (see details in Section 3.1), and the last three
rounds of the experimental data were used to test the online
fusion effects under the four methods. Figures 4(a)–4(d)
show the analysis results plotted using the data of subject 4 in
the fourth round of the experiment. Figure 4(a) shows the
power spectrum results of the 20 targets under T-F image
fusion, Figure 4(b) shows the power spectrum results of 20
targets under CCA fusion, Figure 4(c) shows the power
spectrum results of 20 targets under minimum energy

Table 1: Accuracies of 10 subjects under bipolar fusion.

Subjects
Bipolar fusion

Oz-PO7 Oz-PO8 Oz-PO3 Oz-POz Oz-PO4
S1 0.2 0.7 0.45 0.15 0.95∗
S2 0.25 0 0.3∗ 0.1 0.2
S3 0.95∗ 0.85 0.85 0.4 0.8
S4 0.8∗ 0.1 0.7 0.35 0.35
S5 0.2∗ 0.15 0.15 0.15 0.1
S6 0.95∗ 0.3 0.95∗ 0.85 0.7
S7 0.2 0.15 0.25 0.6∗ 0.55
S8 0.1 0.05 0.25 0.3 0.9∗
S9 0.3 0.15 0 0.35∗ 0.2
S10 0.35 0.35 0.5 0.8∗ 0.4
∗,e bipolar fusion electrode group with the highest recognition accuracy
of each subject.
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Figure 4: Continued.
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Figure 4: ,e power spectrum results of 20 targets under (a) T-F image fusion, (b) CCA fusion, (c) minimum energy fusion, and (d)
maximum contrast fusion (the discrete sequence frequency values from left to right are {7 8 910 7.2 8.2 9.2 10.2 7.4 8.4 9.4 10.4 7.6 8.6 9.6 10.6
7.8 8.8 9.8 10.8} Hz, respectively).
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fusion, and Figure 4(d) shows the power spectrum results of
20 targets under maximum contrast fusion. In the stalk plot,
the discrete sequence frequency values from left to right are
{7 8 9 10 7.2 8.2 9.2 10.2 7.4 8.4 9.4 10.4 7.6 8.6 9.6 10.6 7.8 8.8
9.8 10.8}, respectively, where f represents the stimulation
frequency of the corresponding target and the green dot
marks the amplitude of the corresponding target stimulus
frequency. ,e red flag f represents the target was mis-
identified, and the blue flag f represents the target was
correctly identified. Figures 4(a)–4(d) show that the T-F
image fusion method has the best online performance and
the minimum energy fusion method has the worst online
performance. Maximum contrast fusion and CCA fusion
have similar fusion effects.

In online analysis, the power spectrum amplitudes of the
test signal at all stimulus frequencies were calculated, and
then, the frequency corresponding to the maximum am-
plitude was identified as the focused target frequency. Error
recognition occurs when the amplitude at the focused target
frequency is lower than the amplitudes at the nonfocused
target frequencies.,erefore, the power spectrum amplitude
at the focused target frequency can be regarded as the active
component of the signal, and the power spectrum ampli-
tudes at the remaining nonfocused target frequencies can be
regarded as noise. ,e SNR in this study was defined as the
ratio of the power spectrum amplitude at the focused target
frequency to the mean of the power spectrum amplitudes at
the remaining nonfocused target frequencies. ,e SNRs of
ten subjects at all stimulus frequencies were superimposed
and averaged, and the experimental results are shown in
Figure 5. It can be seen from Figure 5 that the T-F image
fusion method obtained the highest SNR, which indicates
that the T-F image fusion method proposed in this study can
effectively enhance the SSMVEP SNR.

,e online accuracies of each subject in the three rounds
of experiments were superimposed and averaged. ,e ex-
perimental results are shown in Figure 6. It can be seen that
most subjects obtained highest online accuracy under the
T-F image fusion and some subjects obtained highest online
accuracy under CCA fusion and maximum contrast fusion.
Only subject 9 obtained the highest online accuracy under
the minimum energy fusion. ,e online accuracies of all the
subjects were superimposed and averaged. ,e experimental
results are shown in Figure 7. ,e experimental results show
that the online performance of the T-F image fusion method
is better. ,e online accuracy of the T-F image fusion
method is 6.17%, 6.06%, and 30.50% higher than that of the
CCA fusion, maximum contrast fusion, and the minimum
energy fusion, respectively. ,e paired t-test shows signifi-
cant differences between the accuracies of T-F image fusion
and minimum energy fusion (p � 0.0174). Online accuracy
analysis results show that the proposedmethod is better than
the traditional time-domain fusion method.

4. Discussion

,e SSMVEP collected from the scalp contains a lot of noise
and requires an effective signal processing method to en-
hance the active components of SSMVEP. Spatial filtering

methods utilize EEG information of multiple channels and
exert positive significance to enhance the active components
of the SSMVEP. At present, the commonly used spatial
filtering methods include average fusion, native fusion, bi-
polar fusion, Laplacian fusion, CAR fusion, CCA fusion,
minimum energy fusion, and maximum contrast fusion.,e
first five spatial filtering methods can only process the
preselected electrode signals. Minimum energy fusion,
maximum contrast fusion, and CCA fusion improve the
above problem, and they can be used to fuse any number of
electrode signals with better fusion effects. Minimum energy
fusion, maximum contrast fusion, and CCA fusion fuse
SSMVEP in the time domain.,is study first put forward the
idea of fusing EEG in the T-F domain and proposed a T-F
image fusion method. We compared the enhancement ef-
fects of minimum energy fusion, maximum contrast fusion,
CCA fusion, and T-F image fusion on SSMVEP. It is verified
by the test data that the proposed method is better than the
traditional time-domain fusion method.

T-F analysis is a good choice for the transformation of
the EEG data from one dimension to two dimension. EEG
transformed into the T-F domain can be used as an image for
analysis. ,e STFT has an inverse transform, which can
inverse transform the fused T-F image into a time-domain
signal. ,erefore, the STFT was used to transform the EEG
from the time domain to the T-F domain. ,e two-
dimensional wavelet transform can fuse two images into
one to achieve the purpose of multichannel EEG fusion.
After two-dimensional wavelet decomposition, the low-
frequency components of the two subimages were sub-
tracted to obtain the low-frequency components of the fused
image, and the maximum value of the high-frequency
components of the two subimages was taken as the high-
frequency component of the fused image.,e low-frequency
components after wavelet decomposition represent the ac-
tive components of the SSMVEP.,e subtraction of the low-
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Figure 5: ,e average SNR of ten subjects at all stimulus fre-
quencies under four methods.
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frequency components can remove the common noise in the
electrode signals. ,is is similar to bipolar fusion, which
subtracts two electrode signals in the time domain. We also
compared the enhancement effects of bipolar fusion and the
proposed method on SSMVEP active components. ,e
electrodes used for bipolar fusion are the same as those used
in T-F image fusion. ,e results show that the proposed
method is better than the bipolar fusion (the online accuracy
of bipolar fusion is 71.52%). In this study, the fused image
was filtered by mean filter to further achieve low-pass fil-
tering. We also tried to remove the mean filtering step after
completing the T-F image fusion. ,e results show that
removing themean filtering step reduced the fusion effect. In
this study, the mean filtering step was performed after T-F
image fusion. We tested the fusion effect when the mean
filtering step was performed before T-F image fusion
(performing mean filtering step on the subimage after
STFT). For some subjects, it was better to perform the mean
filtering step after T-F image fusion. ,erefore, we recom-
mend that researchers follow the analysis steps in this study.

,e wavelet low-frequency coefficients (see details in
equation (17)) of the fused image have an important in-
fluence on the fusion effect. If we perform T-F image fusion
on six electrode signals at the same time, we will get six sets
of wavelet low-frequency coefficients. Here, each set of low-
frequency coefficient is a two-dimensional signal. Referring
to equation (1), we can assign a coefficient to each two-
dimensional signal and obtain the fused two-dimensional
signal (i.e., the wavelet low-frequency coefficients of the
fused image) after linear summation.,is study explored the
feasibility of applying the spatial filter coefficients of CCA
fusion and maximum contrast fusion to T-F image fusion
when fusing six electrode signals by using the T-F image
fusion method at the same time. Since the fusion effect of
minimum energy fusion was poor, the spatial filter co-
efficients of the minimum energy fusion were not used here.
,e spatial filter coefficients of the maximum contrast fusion
and CCA fusion at the frequency f were obtained by
equations (9) and (10) and are set to Vmax and Vcca, re-
spectively. Vmax and Vcca are two vectors with dimensions of
6×1, where Vmax(1, 1) and Vcca(1, 1) represent the first
elements of the vectors Vmax and Vcca. Since the T-F image
fusion method was performed on the six electrode signals,
equation (17) is transformed into equation (19), where V
corresponds to the spatial filter coefficient Vmax or Vcca. ,e
rest of the analysis process is the same as that in Section 2.10.
,e same analysis steps were performed for all 20 targets
(7–10.8Hz). ,e Welch spectrum analysis (the parameters
are the same as in Section 3.2) was performed on the ob-
tained signal after T-F image fusion. Figures 8(a) and 8(b)
show the Welch power spectra plotted using the data of
subject 4 in the fourth round of the experiment. Figure 8(a)
shows the power spectrum plotted using spatial filter co-
efficients of CCA fusion and Figure 8(b) shows the Welch
power spectrum plotted using spatial filter coefficients of
maximum contrast fusion, where f represents the stimulus
frequency and the red circle indicates the amplitude at the
stimulus frequency. Figures 8(a) and 8(b) show that the
amplitudes at the stimulation frequencies are prominent.
,e spatial filter coefficients of CCA fusion and maximum
contrast fusion are effective for T-F image fusion. ,us, the
T-F image fusion method proposed in this study focuses on
the fusion of wavelet low-frequency coefficients of multiple
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images (by assigning a coefficient to each two-dimensional
signal and obtaining the fused two-dimensional signal after
linear summation). ,e premise of the above test results is

that we know the frequency of the signal to be fused. If the
online test method is used (see details in Section 3.3), the
same online fusion results as CCA fusion and maximum
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Figure 8: ,e Welch power spectrum plotted using the (a) CCA fusion spatial filter coefficients and (b) maximum contrast fusion spatial
filter coefficients.
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contrast fusion were obtained. T-F image fusion used
only two electrode signals, and the better online fusion
effect than that of the CCA fusion and the maximum
contrast fusion was obtained, which shows the effec-
tiveness of the proposed method. Next, we will explore
the fusion method of multiple T-F images (more than two
images), that is, to find suitable spatial filter coefficients
for the wavelet low-frequency components of multiple
T-F images:

LLN,F � LLN,1 ∗V(1, 1) + LLN,2 ∗V(2, 1) + LLN,3 ∗V(3, 1)

+ LLN,4 ∗V(4, 1) + LLN,5 ∗V(5, 1)

+ LLN,6 ∗V(6, 1).

(19)

,e parameters affect the fusion effect of the proposed
method. We listed the parameters that need to be selected
and the possible values of the parameters in Section 3.1. In
this study, the grid search method was used to traverse the
combination of all parameters, and the best combination of
parameters was found. In the experiment, we found that
the number of frequency bins and the Gaussian window
length can be fixed to 54 and 57. We recommend that the
researchers determine the parameters according to the
parameter selection principles and ranges given in Section
3.1. In this study, the SSMVEP active component was
enhanced by fusing multichannel signals into a single-
channel signal, and then, the focused target frequency
was identified by performing spectrum analysis on the
fused signals. ,is is beneficial for SSMVEP studies based
on spectrum analysis. For example, Reference [21] pro-
posed a frequency and phase mixed coding method in the
SSVEP-based brain-computer interface (BCI), which in-
creases the number of BCI coding targets by making one
frequency correspond to multiple different phases. In the
study, the FFT analysis of the test signal is required to find
the possible focused target frequency and then calculate the
phase value at that frequency. ,e proposed method in this
study has a positive significance for accurately finding the
focused target frequency in the spectrum. Moreover, some
EEG feature extraction algorithms for the BCI also require
spectrum analysis of the test signals [22, 23]. ,erefore, the
method proposed in this study has a potential application
value.

5. Conclusion

To explore whether T-F domain analysis can achieve better
fusion effects than time-domain analysis, this study pro-
posed an SSMVEP enhancement method based on T-F
image fusion. ,e parameters of the T-F image fusion
algorithm were determined by the grid search method, and
the electrode signals used for T-F image fusion were se-
lected by bipolar fusion. ,e analysis results show that the
key of the T-F image fusion algorithm is the fusion of the
wavelet low-frequency components. ,is study compared
the enhancement effects of minimum energy fusion,
maximum contrast fusion, CCA fusion, and T-F image
fusion on SSMVEP. ,e experimental results show that the

online performance of the T-F image fusion method is
better than that of the traditional spatial filtering methods,
which indicates that the proposed method is feasible to fuse
SSMVEP in the T-F domain.
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