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Abstract

Objects can be characterized according to a vast number of possible criteria (e.g. animacy, shape, 

color, function), but some dimensions are more useful than others for making sense of the objects 

around us. To identify these “core dimensions” of object representations, we developed a data-

driven computational model of similarity judgments for real-world images of 1,854 objects. The 

model captured most explainable variance in similarity judgments and produced 49 highly 

reproducible and meaningful object dimensions that reflect various conceptual and perceptual 

properties of those objects. These dimensions predicted external categorization behavior and 

reflected typicality judgments of those categories. Further, humans can accurately rate objects 

along these dimensions, highlighting their interpretability and opening up a way to generate 

similarity estimates from object dimensions alone. Collectively, these results demonstrate that 

human similarity judgments can be captured by a fairly low-dimensional, interpretable embedding 

that generalizes to external behavior.
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Introduction

We live in a world full of objects that we can identify, place into different categories, 

communicate and reason about, and act on in a meaningful manner. These abilities are 

remarkable, given that our ever-changing environment requires us to constantly map unique 

sensory information from the things around us to our internal representations of objects, 

categories, and concepts. In order to carry out this mapping and make sense of our world, we 

therefore need to determine the similarity between the sensory information emanating from 

the environment and our internal mental representations. Not surprisingly, similarity has 

been suggested to play an important role in elucidating the structure of our mental 

representations and can help explain how we recognize objects1,2, form categories3–5, 

structure our conceptual knowledge6–8, and predict the behavior of our visual world based 

on our experience9. Moreover, representational similarities offer a useful tool to relate 

behavior, computational models, and brain activity patterns10.

Despite the success of similarity and the wide use of similarity judgments for studying 

mental representations of objects, similarities alone offer only an indirect and mostly 

descriptive view of the format of our mental representations. They can inform us about the 

degree with which two or more representations are similar, but are agnostic as to what 

properties – or dimensions – each representation is made up of and what dimensions are 

shared between those representations. For example, most people would agree that a dog and 

a cow are more similar than a dog and a car, probably because dogs and cows share more 

relevant dimensions, such as being animate or natural, or soft. To understand the structure of 

our mental representations of objects, we need to identify those core dimensions that form 

the basis of our similarity judgments. These dimensions need to fulfill two criteria. First, 

they should be predictive of behavior and thus able to characterize the mental 

representational space. Second, to move beyond description and provide understanding, we 

need to identify a set of dimensions from the infinite number possible, that can be 

interpreted meaningfully.

Here, we present a computational model of mental representations of objects based on a 

large-scale assessment of human similarity judgments for natural object images. Prior 

experimental, neuropsychological, and neuroimaging evidence have led to the proposal of 

object dimensions such as animacy, manipulability, or real-world size11–13, but they only 

describe a selective and largely incomplete portion of our mental representational space. In 

contrast to traditional small-scale experimental approaches that often use artificial stimuli or 

words14, we collected a large number of similarity judgments for images of 1,854 different 

objects, capturing both visual and conceptual mental representations for a wide, 

representative range of natural objects. Rather than relying on explicit verbal reports of what 

object features are perceived as being relevant15,16, the model learns those dimensions 

directly from these similarity judgments.

Using this data-driven approach, we identify 49 dimensions underlying similarity judgments 

that lead to excellent prediction of both single trial behavior and similarity scores between 

pairs of objects. We demonstrate that the dimensions are meaningful and characterize the 

large-scale structure of our mental representations of objects. The model allows for the 

Hebart et al. Page 2

Nat Hum Behav. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accurate prediction of categorization behavior, while within categories individual 

dimensions reflect object typicality. Finally, we demonstrate that human participants can use 

these dimensions directly to provide good predictions of similarity judgments, underscoring 

the interpretability of dimensions and offering a first step towards a generative model of 

perceived similarity of natural objects.

Results

To characterize the representational space of natural objects, we had to overcome several 

obstacles. First, we needed to identify a set of objects that is representative of the objects 

encountered in the real world. For that purpose, we chose the 1,854 objects in the THINGS 

database17, which we developed to provide a comprehensive list of living and non-living 

things according to their everyday use in the American English language. For each object, 

we chose a representative image that had been shown to be named consistently during the 

creation of this database. The advantage of using images rather than words is that they may 

provide additional purely perceptual information that is relevant for judging the similarity of 

objects and that might not come to mind immediately when using words.

Second, we needed to identify a task that would allow us to best quantify the similarity 

between pairs of objects. Ideally, this task would highlight all relevant dimensions 

contributing to the similarity of pairs of objects and would be independent of the context in 

which these objects appear3,18,19. While pairwise similarity ratings on a Likert scale are one 

of the most popular approaches, this task implicitly assumes that all dimensions relevant to 

judging the similarity of pairs of objects are always and immediately available to the 

observer, even when the objects are very dissimilar and may seem to have nothing in 

common. Here we chose a different approach, in which we concurrently presented three 

object images i, j and k in a triplet odd-one-out task (Fig. 1a). By choosing the odd-one-out 

object, participants indicate which pair of objects (i,j), (i,k), or (j,k) is the most similar 

among this set. The key benefit of this task is that the third object always serves as a context 

for the other two objects, thus highlighting the relevant dimensions that make two objects 

most similar. By repeatedly varying the third object for a given pair of objects, we are 

thereby implicitly sampling across a wide range of contexts in which the objects might be 

encountered. We can then express similarity as an approximation of the probability p(i,j) of 

participants choosing objects i and j together, irrespective of context. In addition, since the 

similarity of objects is determined with respect to all other objects, this naturally constrains 

the number of possible dimensions to those relevant for discriminating among objects20.

Third, we needed to collect sufficient data with these objects and this task. While the odd-

one-out task provides a principled approach for investigating similarity across contexts, for 

1,854 objects it would require ~1.06 billion combinations of triplet judgments for a single 

estimate of the full similarity matrix. This would make conducting the odd-one-out task at 

this scale not feasible. However, if similarity depends only on a small number of 

independent dimensions, it should be possible to approximate the entire similarity matrix 

with only a fraction of those judgments. In this study, we sampled 1.46 million unique 

responses from 5,301 workers using the online platform Amazon Mechanical Turk (Fig. 1a), 
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pooling all responses across workers (median number of responses per worker: 60). This 

corresponded to 0.14% of possible unique trials.

Our goal was to build a computational model that is capable of predicting behavior in the 

odd-one-out task, that captures the similarity between all pairs of objects, and that provides 

interpretable object dimensions. At the center of this model is a representational embedding, 

which is a quantitative characterization of objects as vectors in a multidimensional 

representational space. This embedding can be described as a matrix X, in which each 

column corresponds to a dimension and each row to an object vector across all dimensions 

(Fig. 1b). In the context of our model, this embedding should allow us to (1) predict 

behavior for individual trials not included in the training data and (2) generate the entire 

similarity matrix between all pairs of objects.

To create this embedding, we made two key assumptions. First, we assumed that dimensions 

are sparse, which is a reasonable assumption, given that not all dimensions are expressed in 

all objects. For example, for a putative dimension of animacy, a cardboard box would likely 

have a value of 0. Second, we assumed that dimensions are continuous and positive. 

Accordingly, the numeric value of an object for a given dimension could then be interpreted 

as the degree to which the dimension is expressed in the object, which should support 

interpretability21,22.

The modeling procedure was as follows (Fig. 1c). We initialized the model with 90 random 

dimensions, assuming that after model fitting, sparsity would reduce the dimensionality of 

the embedding to a smaller number. For a given triplet (i, j, k) for which we had collected a 

behavioral judgment, we then calculated the dot product between the embedding vectors of 

all three pairs of objects (i, j), (i, k), and (j, k). Accordingly, when two objects express high 

values for many dimensions, this measure yields a large number, while when one object 

expresses high values in dimensions for which the other object expresses low values, this 

measure yields a small number. Next, based on those three dot products, we estimated the 

probability of choosing one of the three pairs of objects in this context, which is equivalent 

to the third object being the odd-one-out. To this end, we used the softmax function which 

has been demonstrated to be suitable for relating representational proximity to similarity in 

the context of choice models and for estimating generalization behavior20,23. Finally, the 

difference between the predicted choice probability and the actual choice served as a model 

prediction error, which allowed us to adapt the model dimensions in proportion to this error 

(see Methods for details on this optimization procedure). The model was trained on 90% of 

the available trials, and the remaining 10% were later used for an independent assessment of 

model performance (see below).

A stable and predictive model of behaviorally measured similarity

As expected, due to the sparsity constraint, many of the 90 initial dimensions revealed values 

close to 0 and were discarded, leaving us with 49 dimensions. We then sorted the 

dimensions based on the sum of all dimension values across all objects, in descending order. 

Due to the stochastic nature of the modeling procedure, fitting the model repeatedly may 

lead to a different embedding and a slightly different number of dimensions. To estimate the 

stability of the model, we re-ran it 20 times with different random initializations (see 
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Methods). Across those models, most dimensions exhibited high reproducibility (Pearson r > 

0.9 in 34/49 dimensions, Pearson r > 0.6 in 46/49 dimensions), demonstrating that the 

procedure generated a highly stable and reproducible embedding (see Extended Data Figure 

1 for a plot of the reproducibility of all dimensions). There was a strong correlation between 

the ranks of the dimensions and the dimension reproducibility (Spearman’s ρ: 0.75, p < 

0.001, randomization test, 95% CI: 0.61–0.85), indicating that reproducibility of individual 

dimensions was driven mostly by their overall importance in the model.

Having demonstrated the reproducibility of the model dimensions, we next tested the 

predictive performance of the model. First, we estimated how well we could predict 

individual choices in the odd-one-out task using trials from the independent test set. To gain 

an understanding of the best possible prediction any model could achieve for these 1,854 

objects given the variation present in the data (“noise ceiling”), we additionally sampled 

1,000 randomly-chosen triplets 25 times and estimated the consistency of choices for each 

triplet across participants. Averaged across those triplets, the upper limit in fitting individual 

trial behavior from the data was 67.22% (± 1.04%). Overall, the model correctly predicted 

64.60% (± 0.23%) of individual trials in the independent test data (Fig. 2a). This means that 

the model achieved 92.25% (± 1.50%) of the best possible accuracy at predicting behavior, 

demonstrating excellent predictive performance at the individual trial level given the noise in 

the data.

To evaluate how well the model could predict behaviorally measured similarity, we next 

generated a fully-sampled similarity matrix of 48 diverse objects and compared it to the 

similarity matrix predicted by our model. Since we had sampled only a fraction of the 1,854 

⨉ 1,854 similarity matrix, the test data were insufficient for addressing how well the model 

could predict behaviorally measured similarity. To this end, we used online crowdsourcing to 

collect between two and three behavioral responses for each possible triplet of those 48 

objects (43,200 choices) and calculated choice probabilities for each pair of objects as a 

measure of their similarity. To estimate the noise in the fully-sampled matrix, we calculated 

the reliability by splitting behavioral data in half and generating two split-half similarity 

matrices. Then, we computed a predicted similarity matrix using our computational model 

and compared it to both the full similarity matrix and each split. The predicted and measured 

similarity matrices are depicted in Fig. 2b. Both matrices were highly correlated (Pearson r = 

0.90, p < 0.001, randomization test, 95% CI: 0.88–0.91), with the fit of each half again 

approaching noise ceiling (first half: r = 0.87, second half: r = 0.88, reliability: r = 0.91), 

demonstrating that the model was able to accurately reproduce behaviorally measured 

similarity even with very sparsely sampled data. This result highlights that despite the large 

number of objects and the complexity of natural stimuli, most of the large-scale 

representational structure of objects measured through human similarity judgments can be 

captured by a fairly low-dimensional embedding.

Are the model’s dimensions interpretable?

The results so far establish that the model dimensions are reproducible, can be used to 

accurately generate similarities between pairs of objects, and predict individual behavior 

close to the noise ceiling. However, they leave open the degree to which individual model 
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dimensions can be interpreted meaningfully. If the dimensions are interpretable, then the 

objects with the highest weight in a given dimension should share certain properties that are 

easy to identify. In Fig. 3, we illustrate the interpretability for a subset of dimensions by 

displaying the object images with the largest weights in those dimensions.

Visual inspection of the dimensions suggests they are interpretable and reflect conceptual 

and perceptual properties of those objects. Among others, the model identified dimensions 

that appear to reflect the semantic membership of those objects, such as dimensions related 

to food, animals, furniture, vehicles, or tools. In addition, a number of dimensions appear to 

reflect other conceptual properties, such as being metallic or hard, valuable, disgusting, heat-

related or water-related. Finally, some dimensions appear to reflect perceptual properties, 

such as the roundness of objects, their elongation, flatness, color, shininess, or patterned 

texture. For later use throughout this manuscript, we assigned intuitive labels to each 

dimension (e.g. “animal-related/organic”, “colorful”).

To explicitly test this interpretability in naïve observers, we asked 20 laboratory participants 

(15 female, 5 male) to provide labels for those dimensions, based on viewing objects sorted 

by their numeric value along each dimension. Since interpretability need not be limited to a 

single label, we visualized the naming results using word clouds, for which more frequently 

provided labels are displayed with a larger font. While participants’ descriptions varied and 

tended to focus more on extreme examples of a dimension, they exhibited a remarkably 

close correspondence to the labels we had assigned to the dimensions (see Extended Data 

Figure 2 for naming of all 49 dimensions).

Having established the interpretability of object dimensions, we can explore what 

dimensions a given object is composed of. For that purpose, in Fig. 4 we visualize a range of 

different objects using circular bar plots (“rose plots”), where the angle and color of a petal 

reflect the object dimension and the length of the petal reflects the degree to which the 

dimension is expressed in that object. For example, the image of noodles is characterized 

mostly by being food-related, repetitive and stringy. In contrast, the image of a rocket is 

characterized mostly by being transportation-related, flying-related, fire-related, artificial 

and shiny. This visualization demonstrates that some dimensions indeed reflect perceptual 

properties, since they are specific for the chosen object images: They may not show up for a 

different image of the same object and might have been missed completely if words had 

been chosen instead of images. In addition, the visualization demonstrates that objects are 

indeed characterized by a rather small number of dimensions (see below for a 

quantification).

Natural object categories as emergent property of similarity embedding

To characterize the relative similarity of objects to each other and explore the distribution of 

dimensions across objects, we combined two common visualization tools. First, we 

projected the 49-dimensional similarity embedding to 2 dimensions using t-distributed 

stochastic neighborhood embedding (t-SNE, dual perplexity: 5 and 30), initialized using 

metric multidimensional scaling. This approach has been shown to preserve the global 

similarity structure while providing a higher degree of interpretability at the local similarity 
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level than multidimensional scaling alone24. Second, in this two-dimensional plot we 

visualized each object using rose plots (as in Fig. 4).

The resulting visualization (Fig. 5) reveals several interesting features of the similarity 

embedding. The global similarity structure seems to highlight the well-known distinctions 

between “animate - inanimate” and “natural - man-made”, but also reveals three differences. 

First, representations of humans and human body parts are largely separate from animals and 

closer to the man-made objects, in line with neuropsychological findings11,25 and 

demonstrating an important limitation of simply applying taxonomic relationships for 

studying mental representations26. Second, processed food was found to be more closely 

related to living and natural objects, acting as an exception to the universality of naturalness 

as a critical dimension of object representations, again in line with patient data27. Third, the 

weights of dimensions do not reflect binary membership to the categories of e.g. “natural - 

man-made” objects. For example, focusing on the dimension “artificial / hard” (dark blue, 

rightward-oriented bars), this dimension was most strongly expressed on the right of the 

graph but became weaker when moving to the left, towards animals, food, and natural 

objects.

In addition to this global structure, many objects formed clusters related to high-level 

categories (e.g. animals, tools, vehicles, musical instruments). This indicates that 

categorization behavior for many categories may be accounted for by the similarity of 

objects, a property which has been discussed previously28,29 but which had not been tested 

on a large set of natural objects. To test how well natural categories could be predicted by 

the similarity embedding, we used 18 unique high-level categories identified in the THINGS 

database17 and used a cross-validated nearest centroid classifier to predict category 

membership for each of the 1,112 objects of those categories. The classifier performed at 

86.42% (chance performance: 5.56%), on par with a recent semantic embedding of object 

meaning30 (85.97%) that had been trained on billions of words, demonstrating that the 

dimensions we identified allow the prediction of categorization behavior for a large number 

of natural categories.

Finally, the visualization reveals that certain combinations of dimensions are critical for 

forming different types of categories. Indeed, many subcategories can be explained by 

defining features: objects with large weights in “animal-related” and “water-related” 

dimensions are likely sea creatures, while objects with large weights in “plant-related” and 

“food-related” dimensions are likely vegetables. For example, an abacus can be explained as 

a combination of several dimensions, such as “artificial / hard”, “wood-related”, “valuable / 

special”, and “coarse pattern”.

How many dimensions for an object?

The visualizations in Figs. 4 and 5 suggest that some objects are easy to characterize with a 

relatively small number of dimensions. This indicates that, while all 49 dimensions are 

useful for some objects, individual odd-one-out judgments of objects may be predicted 

accurately with a smaller number of dimensions. Since the model performs close to the noise 

ceiling at predicting behavior, we should be able to produce a lower bound estimate for the 

number of relevant object dimensions for characterizing individual behavior and the global 
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similarity structure. To this end, we carried out a dimension elimination approach. The 

reasoning behind this approach is that if a dimension does not matter for behavior, then 

setting it to 0 should not affect predictive performance of the model. Therefore, for each 

object, we set the dimension with the lowest weight to 0, predicted behavior in the test set, 

recomputed the similarity matrix, and compared how this affected the predictive 

performance of the model. We then repeated this elimination process until only one 

dimension was left. Importantly, this procedure eliminates not entire dimensions from all 

objects, but eliminates different dimensions for each object. If behavior is driven by a larger 

number of dimensions than retained, this would be reflected in reduced model performance. 

The results of these analyses demonstrate that in order to achieve 95–99% of the 

performance of the full model in explaining behavioral judgments in the odd-one-out task, a 

total of 6 to 11 dimensions are required (Fig. 6a), and to explain 95–99% of the variance in 

the similarity matrix, a total of 9 to 15 dimensions are required (Fig. 6b). Thus, while the 

representational space of objects can be captured by a comparably low-dimensional 

embedding, for judging the similarity of objects, on average humans indeed seem to 

integrate across a larger number of those dimensions.

Typicality as emergent property of similarity embedding

While objects are characterized by several different dimensions, it is unclear to what degree 

these dimensions merely reflect binary properties of the objects (e.g. “is an animal”, “is a 

tool”, “is a vehicle”) or rather the degree to which they are present in an object (e.g. 

“animacy”, “manipulability”, “utility for transportation”). While we were able to predict the 

high-level category of objects from the embedding, we did not test whether the continuous 

nature of the dimensions was informative about the degree to which a dimension is 

expressed in an object. The continuous nature of dimensions may be reflected in the 

typicality of objects within their corresponding category. Interestingly, this would 

demonstrate that not only object categories, but also typicality can be described as an 

emergent property of object similarity. To test whether the numeric value of a dimension 

reflected typicality, we used online crowdsourcing to collect typicality ratings for words of 

the 27 high-level categories in the THINGS database. Of those categories, 17 could be 

related to dimensions of our embedding according to their dimension labels, and 

consequently, we tested their correspondence with typicality. The results of these analyses 

are shown in Fig. 7 and Extended Data Figure 3. Despite the typicality ratings being based 

on words and the dimensions on images, 14 out of 17 dimensions revealed a significant 

positive relationship with typicality scores (Spearman’s ρ: 0.26–0.62, all p < 0.05, one-

sided, FDR-corrected for multiple comparisons). These results demonstrate that typicality 

may indeed be an emergent property of the object dimensions. However, the results also 

reveal that some dimensions with a weaker relationship do not seem to reflect a purely 

category-related semantic code but may incorporate other, perhaps perceptual aspects.

Human ratings along model dimensions allow generating similarity scores for arbitrary 
object images

A generative model of object similarity would open the possibility to directly operate on the 

dimensions rather than having to collect similarity judgments. To what degree can the 

representational embedding identified from the odd-one-out judgments act as a generative 
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model of object similarity? A simple way to test this idea is to ask participants to provide 

direct ratings of objects along the dimensions of the embedding31. If it is possible to 

generate similarity from human ratings of dimensions, this would also serve as a stricter test 

of their interpretability.

For a set of 20 object images selected at random from the 1,854 objects, we asked 20 

laboratory participants (15 female, 5 male) to rate those objects along the 49 object 

dimensions of the representational embedding (Fig. 8a). Rather than providing them with 

semantic labels for the dimensions, participants were shown example images along a 

continuous rating scale and were asked where along that scale they would place those 

objects. In the next step, responses for each dimension were averaged across participants and 

used in place of the model dimensions to generate a human-predicted similarity matrix. 

Importantly, since the focus here was to provide proof-of-concept for the usefulness of 

dimensions, participants had not been trained on this task.

The comparison of similarity from direct dimension ratings and the reference similarity 

matrix from the model embedding (Fig. 8b) revealed a generally close correspondence 

between the two matrices (Pearson r = 0.85, p < 0.001, randomization test, 95% CI: 0.80–

0.89). This result demonstrates that humans are able to judge dimensions for objects to allow 

for a good reconstruction of similarity from dimension ratings. Importantly, since this task 

was carried out with participants that were not trained on the use of the rating scale and were 

not instructed regarding the interpretation of the dimensions, this result underscores the 

interpretability and usefulness of the dimensions.

Discussion

Identifying the structure of our internal mental representations is a central goal in the 

cognitive sciences. For the domain of natural objects, this may seem particularly 

challenging, given the high complexity of our visual world that contains thousands of 

objects with a seemingly countless number of possible object properties. Here, using a triplet 

odd-one-out task on a wide range of object images, we demonstrated that it is possible to 

characterize the similarity structure and individual human behavioral judgments with a low-

dimensional representational embedding learned directly from human choice behavior. The 

model revealed 49 meaningful object dimensions, each being interpretable with respect to 

the perceptual and conceptual properties of those objects, reflecting both basic perceptual 

properties of shape, color, texture as well as more high level properties such as taxonomic 

membership, function, or value. The embedding allowed the prediction of other forms of 

behavior, including high-level categorization and typicality judgments. By demonstrating 

that participants can use these dimensions to generate object similarity scores, these results 

open the avenue towards a generative model of object similarity judgments. Importantly, the 

resulting large-scale similarity matrix based on our representational embedding can act as a 

basis for testing formal computational models of categorization and category learning in the 

domain of natural objects31.

Being able to characterize mental representations of objects with a low-dimensional 

embedding is surprising, given their high degree of perceptual variability and our broad 
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semantic knowledge of them32. Indeed, popular semantic feature production norms15,16 have 

revealed thousands of binary features that participants name when asked about their explicit 

knowledge of objects. Rather than attempting to capture all details of our semantic 

knowledge of objects with binary properties, our results demonstrate that it is possible to 

achieve high predictive performance using only a small number of interpretable, continuous 

dimensions. It may be possible to generate these binary properties from the continuous 

dimensions in our model, which would demonstrate that the implicit judgments in the odd-

one-out task capture much of the explicit semantic knowledge of objects, but a general test 

of this idea would require the creation of feature production norms for the 1,854 objects 

used in the creation of the embedding. However, even if such norms were created, there are 

two reasons that their predictions may be limited. First, the dimensions revealed in this work 

are focused around the properties most relevant for discriminating among different objects, 

while feature production norms would likely contain much more - often idiosyncratic - 

information than required for those distinctions. Second, when using object words and an 

explicit feature naming task, participants often omit critical features14,34. By using object 

images and an implicit, non-verbal task, it is possible to capture perceptual dimensions of 

objects with a representational embedding that might otherwise be missed.

In contrast to traditional data-driven approaches that identify multidimensional feature 

spaces using dimensionality reduction techniques such as multidimensional scaling35,36, 

factor analysis37,38, or additive clustering39, for the present model we made two assumptions 

that support the interpretability of dimensions, motivated by the observation of how objects 

are typically characterized21,22: (1) dimensions are sparse, i.e. each object carries only some 

dimensions but not others, and (2) dimensions are positive, i.e. each object is characterized 

by a combination of dimensions that are present to a certain degree and that add up without 

canceling each other out. By incorporating these assumptions, our model not only yields 

interpretable dimensions, but also reflects a blend between two common model families 

used to characterize objects: dimensional models that assume continuous dimensions, and 

featural models that assume the presence and absence of, mostly binary, object 

properties9,40. Analyses of category-related typicality judgments demonstrate that the 

continuous nature of the dimensions is informative as to the degree to which these 

dimensions are expressed in objects, demonstrating that continuous dimensions allow us to 

generalize beyond binary categorical assignment of semantic attributes (e.g. “is animate”)41. 

In addition, while traditional pairwise assessment of similarity typically neglects the 

importance of object context3,42, by using a triplet odd-one-out task this type of embedding 

in principle allows generating object similarity for arbitrary contexts imposed by focusing on 

a chosen subset of objects (e.g. animals). The degree to which the embedding carries such 

fine-grained information will need to be tested in future studies.

While mathematically, there are an infinite number of possible ways in which object 

representations can be characterized by a set of dimensions, identifying a broad range of 

meaningful and predictive dimensions with a bottom-up, data-driven model offers a 

systematic approach for the identification of meaningful dimensions, complementing 

traditional top-down, theory-driven approaches. Ultimately, however, further studies are 

required to validate the specificity of different dimensions in this model and link them to 

representations in the human brain. One intriguing prediction of our model is that specific 
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deficits in recognizing objects found in patients with focal lesions may be tied more to 

specific dimensions identified in this study or regions in representational space than to 

specific object categories25,27. For example, given the prominence of the dimension “shiny / 

transparent”, one might expect to find specific deficits associated with surface materials of 

objects. Likewise, based on the representational proximity of clothing and body parts, one 

might expect a deficit in one to be associated with a deficit with the other.

While we demonstrated that most dimensions were highly reproducible across different 

random initializations of the model, using a smaller subset of the data for building the 

embedding revealed a smaller number of dimensions (Extended Data Figure 4), indicating 

that the dimensionality of the embedding is a function on the amount of data used. Further, 

while the sparsity constraint is an important feature of the model, one limitation is that it 

may lead to very similar dimensions being merged (e.g. “plant-related and green”). 

Ultimately, additional data will be required to test the degree to which these dimensions 

remain stable or whether further dimensions will appear. However, since the model 

performed close to noise ceiling at predicting similarity judgments and yielded interpretable 

dimensions, this demonstrates that the representational embedding already provides a useful 

description of behavioral judgments and object similarity.

Finally, the prediction of similarity from direct ratings of dimensions was based on 20 

objects that were part of creating the original embedding, which may slightly overestimate 

the ability to generate similarity from dimension ratings. However, given the large number of 

objects used in this study, we believe it to be unlikely that those ~1% of the objects would 

strongly bias the results, and collecting ratings from a different set of objects would have 

required generating, characterizing and testing a different model, which was prohibitive in 

the context of this study. Future studies with the goal of training participants to generate 

dimension ratings could rely on a separate set of objects for relating predicted with 

measured similarity.

The approach proposed in this study opens the avenue for many related questions: To what 

degree are the dimensions shared between different individuals43,44, and how are they 

affected by gender, age, culture, education, other sociodemographic factors, and individual 

familiarity with the objects? To what extent do the representations depend on the exact task, 

and can other similarity tasks evoke similarly fine-grained representations45,46? What are the 

representational dimensions in other domains, such as words, faces, places, or actions? 

Finally, what makes those representations similar to those found in deep convolutional 

neural network models of vision47, semantic embeddings learned on word co-occurrence 

statistics in large text corpora22,30,48, or brain activity in humans49–53? Addressing these 

questions will be important for a comprehensive understanding of mental representations of 

objects across people and different domains.

Methods

Participants

A total of 5,983 workers from the online crowdsourcing platform Amazon Mechanical Turk 

participated in the triplet odd-one-out experiments, which consisted of the creation of the 
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fully-sampled matrix of 48 objects (121 workers, after exclusion 100; 46 female, 54 male), 

the data for training and testing the computational model (5,526 workers, after exclusion 

5,301; 3,159 female, 2,092 male, 19 other, 31 not reported), and the 1,000 randomly chosen 

triplets used for the estimation of a noise ceiling (336 workers, after exclusion 325; 156 

female, 103 male, 66 not reported). In addition, a total of 337 workers (no exclusions; 198 

female, 131 male, 8 not reported) participated in the creation of the typicality norms. All 

workers were located in the United States, and worker age was not assessed. For the odd-

one-out task, workers were excluded if they exhibited overly fast responses in at least 5 sets 

of 20 trials (speed cutoff: 25% or more responses <800 ms and 50% or more responses 

<1100 ms) or if they carried out at least 200 trials and showed overly deterministic responses 

(> 40% of responses in one of the three odd-one-out positions, expected value: 33%). All 

workers provided informed consent. The number of trials – and consequently the sample 

size – was determined based on feasibility and available resources. The online research was 

approved by the Office of Human Research Subject Protection (OHSRP) and conducted 

following all relevant ethical regulations, and workers were compensated financially for their 

time.

In addition, 20 laboratory participants (15 female, 5 male, mean age: 26.25, std: 6.39, range 

19–41) took part in the dimension labeling and the dimension rating experiment. All 

laboratory participants provided written informed consent and were compensated financially 

for their time. No statistical methods were used to pre-determine sample sizes. The 

laboratory experiments were carried out following all relevant ethical regulations and rules 

of the National Institutes of Health (NIH) Institutional Review Board (NCT00001360).

Object images and odd-one-out task procedure

The 1,854 images of objects used in this study were the reference images that had been used 

previously for validating the concepts of the THINGS database17. The images depict objects 

embedded in a natural background and were all cropped to square size, with the exception of 

a small number of images that didn’t fit into a square and that were padded with white 

background on both sides. Importantly, the validation task of the THINGS database 

demonstrated that the objects in the 1,854 images were generally nameable, i.e. it can be 

assumed that most participants were sufficiently familiar with the objects to be able to name 

them. The triplet odd-one-out task was carried out in sets of 20 trials, and workers could 

choose how many sets they would like to carry out. On each trial, workers were shown three 

object images side by side in a browser window and were asked to report the image that was 

the least similar to the other two. Workers were told that they should focus their judgment on 

the object, but to minimize bias they were not given additional constraints as to the strategy 

they should use. In addition, participants were instructed that in case they did not recognize 

the object, they should base their judgment on their best guess of what the object could be. 

Participants responded with a mouse click on the respective image, which initiated the next 

trial after an intertrial interval of 500 ms. Each object triplet and the order of stimuli was 

chosen randomly, but in a way that after data collection each cell in the 1,854 × 1,854 

similarity matrix had been sampled at least once.
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To yield a diverse set of objects for the fully sampled similarity reference dataset, the 48 

objects were chosen by carrying out spectral clustering on publicly-available 300-

dimensional sense vectors of all 1,854 objects30 with 48 clusters and by choosing one object 

per cluster randomly.

Details of computational modeling procedure

The model and preliminary results were presented previously at a conference33. The model 

was implemented as a computational graph in TensorFlow (Version 1)54. Each triplet was 

encoded using three one-hot vectors (length: 1,854), and each vector was linked to 90 latent 

dimensions, but with weights replicated across all three vectors. The 1,854 × 90 weights 

were initialized randomly (range 0–1). Note that initializing the model with 200 dimensions 

led to very similar model performance and final number of dimensions (prediction accuracy 

of test set odd-one-out choices: 64.70%, dimensions: 50). The dot product was chosen as a 

basis for proximity for computational reasons, but using Euclidean distance led to similar 

performance (prediction accuracy of test set odd-one-out choices: 64.69%, dimensions: 57). 

The objective of the model optimization consisted of the cross-entropy, which was the 

logarithm of the softmax function, and a regularization term based on the L-1 norm to 

encourage sparsity,

∑
n

log
exp xixj

exp xixj +  exp xixk + exp xjxk
+  λ∑

m
x 1

where x corresponds to an object vector, i, j, and k to the indices of the current triplet, n the 

number of triplets, and m the number of objects. The regularization parameter λ that 

controls the trade-off between sparsity and model performance was determined using cross-

validation on the training set (λ = 0.008). In addition to sparsity, the optimization was 

constrained by strictly enforcing weights in the embedding X to be positive. Minimization of 

this objective was carried out using stochastic gradient descent as implemented in the Adam 

algorithm55 using default parameters and a minibatch size of 100 triplets. After optimization 

was complete, dimensions for which weights of all objects were smaller than 0.1 were 

removed, leaving us with 49 dimensions. Empirically, the largest maximum weight of all 

excluded dimensions was 0.03, while the smallest maximum weight of all included 

dimensions was 1.38. The dimensions were sorted in descending order by the sum of their 

weights across objects.

Computation of similarity matrix from embedding

We defined object similarity in the triplet odd-one-out task as the probability p(i,j) of 

participants choosing objects i and j to belong together, irrespective of context. Therefore, to 

compute similarity from the learned embedding for all 1,854 objects, we created all 

predicted choices for all possible ~1.06 billion triplets and calculated the mean choice 

probability for each pair of objects. For the fully-sampled similarity matrix of 48 objects 

used for testing the performance of the model at predicting object similarity (Fig. 2), we 

created a different similarity matrix that was constrained only by this subset of 48 objects.
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Reproducibility of embedding dimensions

Due to the stochasticity of the optimization algorithm, each time the model is re-run, we will 

likely end up with a different set of dimensions. To determine the stability of each dimension 

in our 49-dimensional embedding, we re-ran the model 20 times, each time with a different 

random initialization. Next, we correlated each of the 49 original dimensions with all 

dimensions of one of the 20 reference embeddings and chose the best-fitting dimension 

across all correlations as the closest match. Then, we applied a Fisher z-transform to the 

correlations, averaged them across all 20 reference embeddings and inverted the Fisher z-

transform to get a mean reliability for each dimension across all 20 embeddings. While the 

resulting comparison may exhibit a slightly positive bias due to choosing the best fit, a split-

half cross-validation between all objects demonstrates nearly indistinguishable results 

(maximum difference r = 0.01).

Category prediction

The categorization performance of the representational embedding was tested on 18 of the 

27 categories in the THINGS database. Objects that were members of multiple categories 

were removed. Of the 9 categories that were removed, 7 were subcategories of other 

categories (e.g. “vegetable” in “food”) or had fewer than 10 objects after removal of non-

unique objects. The remaining 18 categories were as follows: animal, body part, clothing, 

container, electronic device, food, furniture, home decor, medical equipment, musical 

instrument, office supply, part of car, plant, sports equipment, tool, toy, vehicle, and weapon. 

These categories comprised 1,112 objects. Classification was carried out using leave-one-

object-out cross-validation. For training, Centroids for all 18 categories were computed by 

averaging the 49-dimensional vectors of all objects in each category, excluding the left-out 

object. The membership of this remaining object was then predicted by the smallest 

Euclidean distance to each centroid. This procedure was repeated for all 1,112 objects, and 

prediction accuracy was averaged. For the corresponding analysis with a semantic 

embedding, we used publicly-available 300-dimensional sense vectors30.

Typicality ratings

Typicality ratings were collected for all 27 object categories in the THINGS database, with 

the goal of including them as metadata for the database. However, for the purpose of this 

study, we focused on the 17 categories for which the labels indicated a relationship of 

dimensions with specific object categories. Typicality ratings were collected by asking 

workers to rate the typicality of an object as belonging to a given category, using a Likert 

scale from 0 to 10. Each rating was collected 40 times. To improve comparability of the use 

of the Likert scale, each workers’ responses were z-scored before they were merged with 

other responses.

Dimension naming task and construction of word clouds

In the dimension naming task, laboratory participants were asked to provide labels for 

different dimensions after inspecting them. This was achieved by showing them example 

object images along a continuous scale for a given dimension, comparable to the display in 

Fig. 8a. Participants could further inspect dimensions by clicking on example objects, which 
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would reveal more object images in this range. The exact object images shown varied 

between dimensions. Participants were instructed not to focus exclusively on the top of the 

scale but to take the entire distribution of objects into account. After having studied a 

dimension, they were allowed to provide up to three verbal labels for the dimension. Word 

clouds displaying participants’ responses according to the frequency of provided object 

labels were constructed using the function wordcloud in MATLAB (Mathworks, Natick, 

MA), using default parameters.

Object dimension rating task

The object dimension rating task was carried out after the dimension naming task. 

Participants were shown a reference image on the top and were asked to rate where they 

would place the object along a Likert scale, according to the meaning of the dimensions 

explored previously (Fig. 8a). Participants were recommended to take two of the 7 shown 

levels (demarcated by the object images), and for the given object judge if it was better 

characterized by one or the other level. The rating task was carried out for all 49 dimensions 

sequentially, on images of the following 20 objects chosen randomly from the set of 1,854 

objects: bazooka, bib, crowbar, crumb, flamingo, handbrake, hearse, keyhole, palm tree, 

scallion, sleeping bag, spider web, splinter, staple gun, suitcase, syringe, tennis ball, woman, 

workbench, and wreck. Since many dimensions were at or close to 0, the scale included a 

short range with all zero values (“not at all”). Further, to improve the discriminatory power 

of the scale, dimension values were converted to percentiles, with all percentiles lower than 

20% set to 0.2. After ratings had been collected, percentiles were converted back to their 

respective continuous values along the dimensions and averaged across participants. Further, 

for better comparability to the original dimensions, dimension values were scaled in a way 

that their minimum rating corresponded to 0. Then, the object dimensions were treated as 

new embedding dimensions for the 20 objects, and object similarity was calculated for them 

according to the procedure described above. Finally, the similarity matrix generated from the 

object ratings was compared to the similarity matrix from the full model.

Statistical analyses and confidence intervals

Unless indicated otherwise in the text, statistical analyses were conducted using classical 

parametric statistical tests and, when required, corrected for multiple comparisons using 

false discovery rate (FDR). Data distribution was assumed to be normal but this was not 

formally tested. All tests were two-tailed unless denoted otherwise. Non-parametric 

randomization tests on correlations between predicted and measured similarity matrices 

were conducted by creating 100,000 similarity matrices based on randomly shuffling object 

labels, re-running the correlation with the measured similarity matrix, and calculating p-

values as the percentage of permutations reaching or exceeding the true similarity. Error bars 

reflect 95% confidence intervals and were created based on the standard error of the mean or 

- when no distribution was available - based on the standard deviation of 1,000 bootstrap 

samples.

Hebart et al. Page 15

Nat Hum Behav. Author manuscript; available in PMC 2021 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1. Reproducibility of dimensions
Reproducibility of dimensions in the chosen 49-dimensional embedding across 20 random 

initializations (see Extended Data Figure 2 for a list of all dimension labels). Shaded areas 

reflect 95% confidence intervals.
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Extended Data Fig. 2. Labels and word clouds for all 49 model dimensions
Labels for all 49 dimensions, with respective word clouds reflecting the naming frequency 

across 20 participants. The dimensions appear to reflect both perceptual and conceptual 

properties of objects. A visual comparison between labels and word clouds indicates a 

generally good agreement between participant naming and the labels we provided for the 

dimensions.
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Extended Data Fig. 3. Category-typicality correlations
Detailed results of inferential statistical analyses correlating category-related dimensions 

with typicality of their category. One-sided p-values were generated using randomization 

tests and were controlled for false discovery rate (FDR) across multiple tests. 90% 

confidence intervals were used to complement one-sided tests.
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Extended Data Fig. 4. Model performance and dimensionality as a function of training data size
Model performance and dimensionality varied as a function of the amount of data used for 

training the model. Models were trained in steps of 100,000 trials. Six models with random 

initialization and random subsets of data were trained per step and all models applied to the 

same test data as in the main text, making it a total of 78 trained models. For each step, 

computation of up to two models did not complete on the compute server for technical 

reasons, making the total between 4 and 6 models per step. Results for each individual 

model and the average for each step are shown in the Figure. a. Model performance was 

already high for 100,000 trials as training data but increased with more data, saturating 

around the final model performance. b. Dimensionality increased steadily with the amount 

of training data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. 
Task and modeling procedure for large-scale identification of mental object representations. 

For this figure, all images were replaced by images with similar appearance from the public 

domain. a We applied a triplet odd-one-out similarity task to images of the 1,854 objects in 

the THINGS database17 and collected a large number of ratings (1.46 million) using online 

crowdsourcing. The triplet odd-one-out task measures object similarity as the probability of 

choosing two objects together. This task evokes different minimal contexts as a basis for 

grouping objects together, which in turn emphasizes the relevant dimensions. b The goal of 

the modeling procedure was to learn an interpretable representational embedding that 

captures choice behavior in the odd-one-out task and predicts object similarity across all 

pairs of objects. Since only a subset of all possible triplets had been sampled (0.14 % of 1.06 

billion possible combinations), this model additionally served to complete the sparsely 

sampled similarity matrix. c The model reflects the assumed cognitive process underlying 

the odd-one-out task. The embedding was initialized with random weights and would carry 

out predictions for which object pair was the most similar, based on the dot product. The 

prediction of the most similar pair is equivalent to predicting the remaining object as the 

odd-one-out. Model predictions were initially at chance (see example for a prediction that 

deviates from the choice) but learned gradually to predict behavioral choices. To allow for 

error backpropagation to the weights, the model was implemented as a shallow neural 

network.
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Fig. 2 |. 
Predictiveness of the computational model for single trial behavioral judgments and 

similarity. a Model performance was evaluated by predicting choice behavior at the 

individual trial level. The noise ceiling denotes the maximal performance any model could 

achieve given the noise in the data and is determined by the consistency in participants’ 

responses to the same triplet. The performance of the model in predicting independent test 

data approached noise ceiling, demonstrating excellent predictive performance. Error bars 

and shaded areas denote 95% confidence intervals. b To estimate how well the model 

predicted behavioral similarity, a model-generated similarity matrix was compared to a 

fully-sampled behavioral similarity matrix for 48 diverse objects. Results reveal a close fit 

(Pearson r = 0.90, p < 0.001, randomization test, 95% CI: 0.88–0.91), demonstrating that 

most explainable variance was captured by the model.
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Fig. 3 |. 
Example object dimensions illustrating their interpretability. The images reflect the objects 

with the highest weights along those dimensions. Word clouds illustrate the labels provided 

by 20 participants to visual exposure of those dimensions, weighted by their naming 

frequency. While responses tended to focus more on extreme examples, they generally 

exhibited a close correspondence to the dimension labels we generated, which are shown 

above each set of images (see Extended Data Figure 2 for labels and word clouds of all 

dimensions). For this figure, all images were replaced by images with similar appearance 

from the public domain.
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Fig. 4 |. 
Illustration of example objects with their respective dimensions, using circular bar plots 

(“rose plots”). The length of each petal reflects the degree to which an object dimension is 

expressed for the image of a given object. For display purposes, dimensions with small 

weights are not labeled. For this figure, all images were replaced by images with similar 

appearance from the public domain.
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Fig. 5 |. 
Two-dimensional visualization of the similarity embedding, combining dimensionality 

reduction (MDS-initialized t-SNE, dual perplexity: 5 and 30, 1,000 iterations) with rose 

plots for each object (see Fig. 4). At the global structure level, the results confirm the well-

known distinction between “animate - inanimate” or “man-made - natural” objects, with 

some exceptions (see main text). In addition, the different clusters seem to reflect broader 

object categories which emerge naturally from object similarity judgments. However, 

dimensions are not restricted to those clusters but are expressed to different degrees 
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throughout this representational space. For this figure, all images were replaced by images 

with similar appearance from the public domain.
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Fig. 6 |. 
How many dimensions are required to capture behavioral judgments and object similarity? 

By iteratively setting the dimensions with the smallest numeric value to 0, we estimated the 

effect of eliminating those dimensions from judgments. A drop in model performance 

indicates behavioral relevance of those dimensions. For explaining 95 to 99% of the 

predictive performance in behavior, between 6 and 11 dimensions are required, while for 

explaining 95 to 99% of the variance in similarity, between 9 and 15 dimensions are 

required.
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Fig. 7 |. 
The relationship between seemingly categorical dimensions and typicality ratings of those 

categories. Many of these dimensions exhibited a positive relationship between the numeric 

value of objects along that dimension and the typicality of category membership. This 

demonstrates that even seemingly categorical dimensions reflect the graded nature of the 

underlying dimensions and that typicality may be an emergent property of those dimensions. 

All results were min-max scaled for better comparability. Significant relationships between 

both variables are displayed in bold typeface (p < 0.05 one-sided, FDR-corrected for 

multiple comparisons). See Extended Data Figure 3 for individual inferential statistical 

results.
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Fig. 8 |. 
Task and results of direct ratings of dimensions. a 20 participants were asked to indicate 

with a mouse click where they believed objects would fall along all 49 model dimensions. 

Rather than providing participants with dimension labels, the rating scale was spanned by 

example images along the currently rated dimension (in this example, dimension 1, 

“artificial/hard”). b Results for the 20 tested objects revealed a good reconstruction of object 

similarity by dimension ratings when comparing it to the similarity predicted from the 

embedding that served as a reference (Pearson r = 0.85, p < 0.001, randomization test, 95% 

CI: 0.80–0.89). These results further support the idea that dimensions are interpretable and 

that they can be used to directly generate object similarities. For this figure, all images were 

replaced by images with similar appearance from the public domain.
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