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Abstract: With the development of digital imaging techniques, image quality assessment methods
are receiving more attention in the literature. Since distortion-free versions of camera images in many
practical, everyday applications are not available, the need for effective no-reference image quality
assessment algorithms is growing. Therefore, this paper introduces a novel no-reference image quality
assessment algorithm for the objective evaluation of authentically distorted images. Specifically, we
apply a broad spectrum of local and global feature vectors to characterize the variety of authentic
distortions. Among the employed local features, the statistics of popular local feature descriptors,
such as SURF, FAST, BRISK, or KAZE, are proposed for NR-IQA; other features are also introduced to
boost the performances of local features. The proposed method was compared to 12 other state-of-the-
art algorithms on popular and accepted benchmark datasets containing RGB images with authentic
distortions (CLIVE, KonIQ-10k, and SPAQ). The introduced algorithm significantly outperforms the
state-of-the-art in terms of correlation with human perceptual quality ratings.

Keywords: no-reference image quality assessment; quality-aware features; image statistics

1. Introduction

With the considerable advancements made in digital imaging and technology and the
easy availability of cheap image-capturing devices, a large number of digital images are
captured by non-technical users every day. As a consequence, people upload huge amounts
of images and videos to the internet and extensively use streaming applications. In addi-
tion, visual information represents 85% of the information that is usable for human beings.
Therefore, the quality assessment of digital images is of great importance and a hot research
topic, along with several practical applications, such as benchmarking computer vision
algorithms [1], monitoring the quality of network visual communication applications [2],
fingerprint image evaluation [3], medical imaging applications [4], evaluating image com-
pression [5], or denoising [6] algorithms. Image degradations may occur due to various
reasons, such as noise, blurring, fading, or blocking artifacts. Further, the mentioned
degradations can be introduced in all phases of the imaging process, such as acquisition,
compression, transmission, decompression, storage, and display.

Traditionally, image quality assessment (IQA) algorithms are divided into three distinct
classes in the literature with respect to the accessibility of the reference (distortion-free)
images [7], i.e., no-reference (NR), full-reference (FR), and reduced-reference (RR). As the
idioms indicate, NR-IQA algorithms have absolutely no access to the reference images,
FR-IQA methods have full access to the reference images, while RR-IQA approaches have
partial information about the reference images. In the literature, NR-IQA is recognized as a
more difficult research task than the other two classes due to the complete lack of reference
images [8].

In this paper, we introduce a novel NR-IQA model that relies on the fusion of local and
global image features. Namely, many NR-IQA methods [9–12] characterize digital images
with global features that are computed using the whole image. This approach is effective in
case of artificial distortions (such as JPEG or JPEG2000 compression noise), since they are
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distributed uniformly in the image. However, authentically or naturally distorted images
are often contaminated by noise locally. To improve the perceptual quality estimation of
authentically distorted images, we combined novel local and global feature vectors using
the statistics of local feature descriptors and some powerful perceptual features. Specifically,
93 features were employed, from which, 80 were introduced for NR-IQA in this study. It
was empirically proved that the statistics of local feature descriptors are quality-aware
features (since they interpret local image regions from the viewpoint of a human visual
system); combining them with global features results in a higher performance than the
current state-of-the-art. Our proposed method is code-named as FLG-IQA, referring to the
fact that it is based on the fusion of local and global features.

The rest of this study is arranged as follows. In Section 2, related and previous
papers are reviewed and outlined. Section 3 provides an overview of the used benchmark
databases and evaluation metrics. Moreover, it describes the proposed approach in detail.
Section 4 presents experimental results. Specifically, an ablation study is introduced to
explain the effects of individual features. Moreover, a comparison to 12 other state-of-the-
art methods is presented. Finally, this study is concluded in Section 5.

2. Literature Review

In this section, a review of the existing NR-IQA algorithms is given. For more com-
prehensive summaries about this topic, interested readers can refer to the studies by
Zhai et al. [7], Mohammadi et al. [13], Yang et al. [14], and the book by Xu et al. [15].

NR-IQA methods can be further divided into training-free and machine learning-based
classes. Our proposed method falls into the machine learning-based class; thus, this state-
of-the-art study mainly focuses on this category. As the terminology indicates, machine
learning-based algorithms incorporate some kind of machine learning algorithm to provide
an estimation of the perceptual quality of a digital image, while training-free methods
do not contain any training steps or rely on machine learning techniques using distorted
images. For example, Venkatanath et al. [16] proposed the perception-based image quality
evaluator (PIQE), which estimates the image qualities of distorted images using mean
subtracted contrast normalized coefficients calculated at all pixel locations. In contrast,
the naturalness image quality evaluator (NIQE) proposed by Mittal et al. [17] determines the
distance between naturalness features extracted from the distorted image and the features
obtained beforehand from distortion-free, pristine images to quantify perceptual image
quality. NIQE was further developed in [18,19]. Namely, Zhang et al. [18] improved NIQE
by using a Bhattacharyya-like distance [20] between the learned multivariate Gaussian
model from the pristine images and those of the distorted images. In contrast, Wu et al. [19]
boosted NIQE by more complex features to increase the prediction performance. Recently,
Leonardi et al. [21] utilized deep features extracted from a pre-trained convolutional neural
network to construct an opinion–unaware method using the correlations through the
Gramian matrix between feature maps.

In the literature, various types of machine learning-based NR-IQA methods can be
found. Namely, many machine learning-based algorithms rely on natural scene statistics
(NSS), which is a powerful tool in characterizing image distortions. The main assumption of
NSS is that digital images of high quality follow a sort of statistical regularity and distorted
images significantly deviate from this pattern [22]. For instance, Saad et al. [23] examined
the statistics of discrete cosine transform (DCT) coefficients. Specifically, a generalized
Gaussian distribution (GGD) model was fitted on the DCT coefficients and its parameters
were utilized as quality-aware features and mapped onto a perceptual quality score with
the help of a support vector regressor (SVR). Another line of papers focused on the wavelet
transform to extract quality-aware features. For example, Moorthy and Bovik [24] carried
out a wavelet transform over three scales and three orientations; similar to [23], GGDs were
fitted to the subband coefficients and their parameters were used as quality-aware features.
This method was further improved in [25], where the correlations across scales, subbands,
and orientations were also used as quality-aware features. In contrast, Tang et al. [26]
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extracted quality-aware features from complex pyramid wavelet coefficients. In [27], the au-
thors used color statistics, such as NSS. Specifically, mean subtracted contrast normalized
(MSCN) coefficients were created from the color channels of different color spaces. Next,
GGD was fitted on these coefficients; similar to the previously mentioned methods, its
parameters were used to map onto quality scores. Similar to [27], Mittal et al. [9] applied
MSCN coefficients to characterize perceptual quality but they extracted them from the
spatial domain. Other proposed models [28–30] utilized the statistics of local binary pat-
terns [31] to characterize image texture degradation in the presence of noise and distortions.
In [32], Freitas et al. presented a performance comparison of a wide range of local binary
pattern types and variants for NR-IQA. Ye and Doerman [33,34] applied the first visual
codebooks for NR-IQA. More specifically, Gabor filters were applied for feature extraction
and visual codebook creation. Subsequently, the perceptual quality of an image was ex-
pressed as the weighted average of the codeword quality scores. In [35], an unsupervised
feature learning framework was introduced where an unlabeled codebook was compiled
from raw image patches using K−means clustering.

With the popularity of deep learning techniques and research, many deep learning-
based methods were also proposed in the literature. For instance, Kang et al. [36] trained
a convolutional neural network (CNN) with a convolutional layer (using both max and
min pooling) and two fully-connected layers. Specifically, the proposed CNN was trained
on image patches and the predicted scores of the patches were averaged to obtain the
estimated quality of the whole input image. In contrast, Bianco et al. [37] introduced the
DeepBIQ architecture, which extracts deep features with the help of a pre-trained CNN
from multiple image patches to compile feature vectors that were mapped onto perceptual
quality with a SVR. Similarly, Gao et al. [38] relied on a pre-trained CNN but multi-level
feature vectors were extracted through global average pooling layers. Sheng et al. [39]
utilized the fact that visual saliency is correlated with image quality [40] and trained a
saliency-guided deep CNN for NR-IQA from scratch. In contrast, Liu et al. [41] introduced
the learning to rank framework [42] for NR-IQA. Specifically, the authors implemented a
Siamese CNN to realize this framework. Li et al. [43] implemented a novel loss function
(very similar to Pearson’s linear correlation coefficient) to provide the CNN with a shorter
convergence time and a better perceptual quality estimation performance. Celona and
Schettini [44] trained a novel network, which processes input images at multiple scales,
trained jointly by considering NR-IQA as regression, classification, and pairwise ranking,
simultaneously.

3. Materials and Methods
3.1. Materials

In this subsection, the applied IQA benchmark databases are described. Further,
the applied evaluation methodology and implementation environment are given.

3.1.1. Applied IQA Databases

To evaluate our proposed methods and compare them against the state-of-the-art,
three publicly available databases containing RGB images with authentic distortions were
utilized—CLIVE [45], KonIQ-10k [46], and SPAQ [47]. The main properties of the applied
IQA databases are given in Table 1. The empirical mean opinion score (MOS) distributions
of the utilized IQA benchmark databases containing authentic distortions are depicted in
Figure 1. In the field of IQA, MOS corresponds to the arithmetic mean of the collected
individual quality ratings. Further, those distortions are considered authentic and were
introduced to the images during the daily (usually non-expert) usage of imaging devices,
such as overexposure, underexposure, camera jitter, motion blur, or noises from camera
vibration [48].
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Table 1. Summary about the applied benchmark IQA databases with authentic distortions. DSLR:
digital single-lens reflex camera. DSC: digital still camera. SPHN: smartphone.

Attribute CLIVE [45] KonIQ-10k [46] SPAQ [47]

#Images 1162 10,073 11,125
Resolution 500× 500 1024× 768 ∼4000× 4000
#Subjects 8100 1,467 600

#Annotations 1400 1,200,000 186,400
Scale of quality scores 0–100 1–5 0–100

Subjective methodology Crowdsourcing Crowdsourcing Laboratory
Types of cameras DSLR/DSC/SPHN DSLR/DSC/SPHN SPHN

Year of publication 2017 2018 2020

(a) (b)

(c)
Figure 1. Empirical MOS distributions in the applied IQA databases: (a) CLIVE [45], (b) KonIQ-
10k [46], and (c) SPAQ [47].

3.1.2. Evaluation

The evaluation of NR-IQA algorithms relies on the measurements of the correlations
between predicted and ground truth perceptual quality scores. In the literature, Pear-
son’s linear correlation coefficient (PLCC), Spearman’s rank-order correlation coefficient
(SROCC), and Kendall’s rank-order correlation coefficient (KROCC) are widely applied
and accepted for this end [49]. As recommended by Sheikh et al. [50], non-linear mapping
was carried out between the predicted and the ground truth scores before the computation
of PLCC using a logistic function with five parameters,

Q = β1

(
1
2
− 1

1 + eβ2(Qp−β3)

)
+ β4Qp + β5, (1)
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where Qp and Q indicate the predicted and mapped scores, respectively. Further, βi,
i = 1, ..., 5 denote the fitting parameters.

As usual, in machine learning, particularly in NR-IQA, 80% of images in a database
were used for training and the remaining 20% for testing. Further, median PLCC, SROCC,
and KROCC values, which were measured over 100 random train–test splits, are reported
in this study. PLCC, SROCC, and KROCC can be defined between vectors x and y as

PLCC(x, y) =
∑N

i=1(xi − x̄)(xi − x̄)√
∑N

i=1(xi − x̄)2
√

∑N
i=1(xi − x̄)2

, (2)

SROCC(x, y) = 1−
6 ·∑N

i=1 d2
i

N(N2 − 1)
, (3)

where
di = rank(xi)− rank(yi), (4)

KROCC(x, y) =
Nc − Nd

N N−1
2

, (5)

where N stands for the length of the vectors, x̄ and ȳ are the means of the vectors, Nc and
Nd indicate the number of concordant and discordant pairs between x and y, respectively.

Our experiments were carried out in MATLAB R2021a, mainly employing the func-
tions of the image processing and machine learning and statistics toolboxes. The main
characteristics of the computer configuration applied in our experiments are outlined
in Table 2.

Table 2. The applied computer configuration of the experiments.

Computer model STRIX Z270H Gaming
Operating system Windows 10

CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)
Memory 15 GB

GPU Nvidia GeForce GTX 1080

3.2. Methods

A high-level summary of the proposed method is depicted in Figure 2, while Table 3
sums up the introduced and applied quality-aware features. As it can be seen from Figure 2,
feature vectors were extracted from the set of training images to obtain a quality model
with the help of a machine learning algorithm. Formally, our quality model is defined by
q = G(F), where q is the estimated quality score, F, and G is a regression model that can be
the Gaussian process regression (GPR) and support vector regressor (SVR). In the training
phase, the model is optimized to minimize the distance between the estimated and ground
truth quality scores. In the testing phase, the obtained quality model G was applied to
estimate the perceptual quality of previously unseen test images. As already mentioned
in the previous subsection, the evaluation of the quality model relies on measuring the
correlation strength between the predicted and ground truth quality scores. Further, median
PLCC, SROCC, and KROCC values measured over 100 random train–test splits are reported
in this study.
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Figure 2. Workflow of the proposed NR-IQA algorithm.

The main (novel) contribution of the proposed method is the introduced quality-aware
features outlined in Table 3. To tackle the wide variety of authentic distortions, a broad
spectrum of statistical local and global features were applied. Artificial distortions (such
as JPEG or JPEG2000 compression) are usually uniformly distributed in an image, which
can be characterized well by global and homogeneous features [51]. However, authentic
distortions often appear locally in a digital image, which can be better captured by local,
non-homogeneous image features. Namely, authentic distortions are mainly introduced
to the images during daily (non-expert) usage of imaging devices, such as overexposure,
underexposure, camera jitter, motion blur, or noises from camera vibration [48]. In this
study, the statistics of local feature descriptors supplemented by global features were
introduced to construct a novel image quality model. Specifically, local feature descriptors
were designed to characterize images from the human visual system’s point of view [52].
For instance, FAST [53] and Harris [54] are suitable for finding small mono-scale keypoints.
On the other hand, other local feature descriptors, such as SURF [55], find multi-scale
keypoints. Although they are designed to exhibit some kind of invariance against noise
and illumination, perfect robustness does not exist. That is why their statistics may help
characterize local image quality. Moreover, images with authentic distortions may suffer
from overexposure or underexposure, which influence image content globally. The main
goal of this study was to empirically prove that the fusion of local and global features can
effectively estimate the perceptual quality of digital images with authentic distortions. To
be specific, 93 features were applied in this study, of which, 80 were introduced for NR-IQA.
The introduced features can be divided into four groups, i.e., the statistics of local feature
descriptors measured on the grayscale image (f1-f35 in Table 3) and on the Prewitt-filtered
image (f36-f70), Hu invariant moments computed from the binarized Sobel edge map of the
input image (f66-f70), perceptual features (f78-f87), and the relative Grünwald–Letnikov
derivative and gradient statistics (f88-f93). In the following subsection, each group of the
features is introduced in detail.
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Table 3. Summary of the applied features. Quality-aware features proposed by this paper are in bold.

Feature
Number Input Feature Number of

Features

f1-f5 SURF [55], Grayscale image mean, median, std,
skewness, kurtosis 5

f6-f10 FAST [53], Grayscale image mean, median, std,
skewness, kurtosis 5

f11-f15 BRISK [56], Grayscale image mean, median, std,
skewness, kurtosis 5

f16-f20 KAZE [57], Grayscale image mean, median, std,
skewness, kurtosis 5

f21-f25 ORB [58], Grayscale image mean, median, std,
skewness, kurtosis 5

f26-f30 Harris [54], Grayscale image mean, median, std,
skewness, kurtosis 5

f31-f35 Minimum Eigenvalue [59],
Grayscale image

mean, median, std,
skewness, kurtosis 5

f36-f40 SURF [55], Filtered image mean, median, std,
skewness, kurtosis 5

f41-f45 FAST [53], Filtered image mean, median, std,
skewness, kurtosis 5

f46-f50 BRISK [56], Filtered image mean, median, std,
skewness, kurtosis 5

f51-f55 KAZE [57], Filtered image mean, median, std,
skewness, kurtosis 5

f56-f60 ORB [58], Filtered image mean, median, std,
skewness, kurtosis 5

f61-f65 Harris [54], Filtered image mean, median, std,
skewness, kurtosis 5

f66-f70 Minimum Eigenvalue [59],
Filtered image

mean, median, std,
skewness, kurtosis 5

f71-f77 Binary image Hu invariant moments [60] 7

f78-f87 RGB image Perceptual features 10

f88 GL-GM map (α = 0.3) histogram variance 1

f89 GL-GM map (α = 0.6) histogram variance 1

f90 GL-GM map (α = 0.9) histogram variance 1

f91 GM map [61] histogram variance 1

f92 RO map [61] histogram variance 1

f93 RM map [61] histogram variance 1

3.3. Statistics of Local Feature Descriptors

In contrast to artificially distorted images, where distortions are uniformly distributed,
natural or authentic distortions are often present locally in images. This is why the statistics
of local feature descriptors are proposed for quality-aware features in this study. In this
study, we calculated the statistics of the following local feature detectors: SURF [55],
FAST [53], BRISK [56], KAZE [57], ORB [58], Harris [54], and minimum eigenvalue [59].
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Specifically, the strongest 250 interest points were detected separately with each of the
above-mentioned local feature detectors and the adherent feature vectors were determined.
In this study, the following statistics of the obtained feature vectors were considered as
local features: mean, median, standard deviation, skewness, and kurtosis. The skewness of
a vector x containing n elements is calculated as

s =
1
n ∑n

i=1(xi − x̄)3(√
1
n ∑n

i=1(xi − x̄)2
)2 , (6)

while its kurtosis can be given as

k =
1
n ∑n

i=1(xi − x̄)4(
1
n ∑n

i=1(xi − x̄)2
)3 , (7)

where x̄ stands for the arithmetic mean of x. Specifically, the statistics of the features around
the feature points were calculated and their arithmetic means were considered as quality-
aware features. Moreover to increase the distinctiveness of local feature detectors [62], the
statistics of the local feature detectors were also extracted from the filtered version of the
input image obtained by Prewitt operators [63].

3.4. Hu Invariant Moments

The moment (m) is a projection of a function (in image processing an image I(x, y)) to
the polynomial basis. Formally, it can be written as

mi,j =
N

∑
x=1

M

∑
y=1

xiyj I(x, y), (8)

where N and M are the width and the height of image I(x, y), respectively. The order (r) of
the moment is defined as r = i + j. It can be easily pointed out that m0,0 is the mass of the
image. Further, m1,0/m0,0 and m0,1/m0,0 are the coordinates of the center of gravity of the
image. The central moment (µ) is defined as

µi,j =
N

∑
x=1

M

∑
y=1

(
x− m1,0

m0,0

)i(
y− m0,1

m0,0

)j
I(x, y). (9)

It is evident that µ0,0 = m0,0. Next, the normalized central moment (η) is given as

ηi,j =
µi,j

(µ0,0)λ
, (10)

where
λ =

i + j
2

+ 1. (11)

Hu [60] proposed seven invariant moments, which were defined using the normalized
central moment, such as

φ1 = η2,0 + η0,2, (12)

φ2 = (η2,0 + η0,2)
2 + 4(η1,1)

2, (13)

φ3 = (η3,0 − 3η1,2)
2 + (3η2,1 − η0,3)

2, (14)

φ4 = (η3,0 + η1,2)
2 + (η2,1 + η0,3)

2, (15)
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φ5 = (η3,0 − 3η1,2)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η2,1 + η0,3)

2]+

(3η2,1 − η0,3)(η2,1 + η0,3)[3(η3,0 + η1,2)
2 − (η2,1 + η0,3)

2] (16)

φ6 = (η2,0 − η0,2)[(η3,0 + η1,2)
2 − (η2,1 + η0,3)

2] + 4η1,1(η3,0 + η1,2)(η2,1 + η0,3) (17)

φ7 = (3η2,1 − η0,3)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η2,1 + η0,3)

2]−
(η3,0 − 3η1,2)(η2,1 + η0,3)[3(η3,0 + η1,2)

2 − (η2,1 + η0,3)
2]. (18)

The human visual system is very sensitive to edge and contour information, since this
information gives reliable implications about the structure of an image [64,65]. To charac-
terize the contour information of an image, the Hu invariant moments [60] of the image’s
binary Sobel edge map were used as quality-aware features. The horizontal and vertical
derivative approximations of input image I were determined as

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

 ∗ I, (19)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ I, (20)

where ∗ is the convolution operator. Next, the gradient magnitude was computed as

G =
√

G2
x + G2

y. (21)

The binary Sobel edge map was obtained from the gradient magnitude by applying a
cutoff threshold corresponding to the quadruple of G’s mean.

3.5. Perceptual Features

Some perceptual features, which are proved to be consistent with human quality
judgments [66], were also built into our model. In the following, an RGB color image is
denoted by I and Ic(c ∈ (R, G, B)) is a color channel of input image I. Moreover, x stands
for the pixel coordinate and we assume that I has N pixels.

1. Blur: It is probably the most dominant source of perceptual image quality deterioration
in digital imaging [67]. To quantify the emergence of the blur effect, the blur metric of
Crété-Roffet et al. [68], which is based on the measurements of intensity variations
between neighboring pixels, was implemented due to its low computational costs.

2. Colorfulness: In [69], Choi et al. pointed out that colorfulness is a critical component
in human image quality judgment. We determined colorfulness using the following
formula proposed by Hasler and Suesstrunk [70]:

CF =
√

σ2
rg + σ2

yb +
3

10

√
µ2

rg + µ2
yb, (22)

where σ and µ stand for the standard deviation and the mean of the matrices denoted
in the subscripts, respectively. Specifically, these matrices are given as:

rg = R− G, (23)

yb =
1
2
(R + G)− B, (24)

where R, G, and B are the red, green, and blue color channels, respectively.
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3. Chroma: It is one of the relevant image features among a series of color metrics in
the CIELAB color space. Moreover, chroma is significantly correlated with haze, blur,
or motion blur in the image [70]. It is defined as

Chroma(x) =
√
(a(x))2 + (b(x))2, (25)

where a and b are the corresponding color channels of the CIELAB color space. The
arithmetic mean of Chroma(x) was used as a perceptual feature in our model.

4. Color gradient: The estimated color gradient magnitude (CGM) map is defined as

CGM(x) = ∑
c∈(R,G,B)

√
(Ic

x(x))2 + (Ic
y(x))2, (26)

where Ix(x) and Iy(x) stand for the approximate directional derivatives in the hor-
izontal x and vertical y directions of I(x), respectively. In our study, the mean and
standard deviations of CGM(x) are utilized as quality-aware features.

5. Dark channel feature (DCF): In the literature, Tang et al. [71] proposed DCF [72]
for image quality assessment, since it can effectively identify haze effects in images.
A dark channel is defined as

Idark(x) = min
y∈Ω(x)

(
min

c∈(R,G,B)
Ic(y)

)
, (27)

where Ω(x) denotes the image patches around the pixel location x. In our implemen-
tation, an image patch corresponds to a 15× 15 square. Next, the DCF is defined as

DCF =
1
||S|| ∑i∈S

Idark(i)
∑c∈(R,G,B) Ic(i)

, (28)

where ||S|| is the size of image I.
6. Michelson contrast: Contrast is one of the most fundamental characteristics of an

image, since it influences the ability to distinguish objects from each other in an
image [73]. Thus, contrast information is built into our NR-IQA model. The Michelson
contrast measures the difference between the maximum and minimum values of an
image [74], defined as

CMichelson = ∑
c∈(R,G,B)

max(Ic(x))−min(Ic(x))
max(Ic(x)) + min(Ic(x))

. (29)

7. Root mean square (RMS) contrast is defined as

CRMS =

√√√√ 1
N

N−1

∑
x=0

(I(x)− Ī)2 (30)

where Ī denotes the mean luminance of I(x).
8. Global contrast factor (GCF): Contrary to Michelson and RMS contrasts, GCF considers

multiple resolution levels of an image to estimate human contrast perception [75]. It
is defined as

GCF =
9

∑
i=1

wiCi, (31)
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where Ci’s are the average local contrasts and wi’s are the weighting factors. The au-
thors examined nine different resolution levels, which is why the number of weighting
factors are nine; wi’s are defined as

wi = (−0.406385 · i
9
+ 0.334573) · i

9
+ 0.0877526, (32)

which is a result of an optimum approximation from the best fitting [75]. The local
contrasts are defined as follows. First, the image of size w× h is rearranged into a
one-dimensional vector using row-wise sorting. Next, the local contrast lCi in pixel
location i is defined as

lCi =
|Li − Li−1|+ |Li − Li+1|+ |Li − Li−w|+ |Li − Li+w|

4
, (33)

where Li denotes the pixel value at location i after gamma correction (γ = 2.2). Finally,
the average local contrast at resolution i (denoted by Ci in Equation (31)) is determined
as the average of all lCi ’s over the entire image.

9. Entropy: It is a quantitative measure of the image’s carried information [76]. Typically,
an image with better quality is able to transmit more information. This is why entropy
was chosen as a quality-aware feature. The entropy of a grayscale image is defined as

E = −
255

∑
n=0

p(n) · log2(p(n)), (34)

where p(·) consists of the normalized histogram counts of the grayscale image.

Table 4 illustrates the average values of the perceptual features in five equal MOS
intervals of CLIVE [45] from very low image quality to very high image quality. From these
numerical results, it can be observed that the mean values of the applied perceptual features
are roughly proportional with the perceptual quality class. For instance, the mean values
of several perceptual features (the mean and the standard deviations of the color gradient,
Michelson contrast, RMS contrast, GCF, and entropy) monotonically increase with the
quality class. Similarly, Table 5 illustrates the standard deviation values of the perceptual
features in five equal MOS intervals of CLIVE [45] from very low image quality to very
high image quality. It can be seen that the standard deviation values are also roughly
proportional to the perceptual quality classes. For instance, the standard deviation values
of several perceptual features (color gradient-mean, DCF, Michelson contrast, RMS contrast,
and entropy) exhibit a remarkable proportionality with the perceptual quality classes.

Table 4. Mean values of perceptual features in CLIVE [45] with respect to five equal MOS intervals.

0 ≤ MOS < 20 20 ≤ MOS < 40 40 ≤ MOS < 60 60 ≤ MOS < 80 80 ≤ MOS ≤ 100

Blur 0.412 0.362 0.315 0.285 0.329
Colorfulness 0.046 0.038 0.042 0.045 0.072

Chroma 15.510 13.681 14.995 15.409 21.977
Color gradient-mean 92.801 116.884 154.651 189.795 196.287

Color gradient-std 132.693 163.876 207.837 244.420 235.855
DCF 0.217 0.211 0.197 0.220 0.192

Michelson contrast 2.804 2.832 2.911 2.937 2.953
RMS contrast 0.201 0.201 0.219 0.222 0.223

GCF 5.304 5.488 6.602 6.264 6.796
Entropy 6.832 6.985 7.182 7.413 7.583
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Table 5. Standard deviation values of perceptual features in CLIVE [45] with respect to five equal
MOS intervals.

0 ≤ MOS < 20 20 ≤ MOS < 40 40 ≤ MOS < 60 60 ≤ MOS < 80 80 ≤ MOS ≤ 100

Blur 0.109 0.096 0.075 0.067 0.093
Colorfulness 0.050 0.033 0.037 0.039 0.049

Chroma 12.698 8.143 9.680 8.927 11.720
Color gradient-mean 45.480 66.164 89.762 96.283 99.800

Color gradient-std 58.236 71.187 82.104 84.179 78.250
DCF 0.141 0.122 0.117 0.115 0.105

Michelson contrast 0.328 0.252 0.173 0.143 0.140
RMS contrast 0.080 0.068 0.065 0.056 0.051

GCF 1.934 1.665 1.761 1.857 1.746
Entropy 1.019 0.966 0.748 0.532 0.227

3.6. Relative Grünwald–Letnikov Derivative and Gradient Statistics

In image processing, image gradient is one of the most widely used features [77–80]
and a strong predictive factor for image quality [61,81]. To characterize gradient degrada-
tion in the presence of image noise, the idea of gradient magnitude (GM), relative gradient
orientation (RO), and relative gradient magnitude (RM) maps were applied from [61], on
the one hand. On the other hand, the idea of GM maps was generalized and developed
further using the Grünwald–Letnikov (GL) derivative [82]. Once, GM, RO, and RM maps
were computed—following the recommendations of [61]—their histogram variances were
used as quality-aware features. Given a normalized histogram h(x), the histogram variance
is defined as

Var(h(x)) =
n

∑
i=1

(h(x)− h̄), (35)

where n is the length of h(x) and h̄ is the mean of h(x).
The Grünwald–Letnikov derivative, introduced by Anton Karl Grünwald and Aleksey

Vasilievich Letnikov, enables differentiating a function a non-integer amount of times [83].
Generally, a one-dimensional function f (x) can be differentiated for any n ∈ N+ using the
following formula

dn f (x)
dxn = lim

h→0

∑n
j=0(−1)j(n

j) f (x− jh)

h2 , (36)

where (
n
j

)
=

n(n− 1)...(n− j + 1)
j!

. (37)

Grünwald and Letnikov invented an approach, which enables taking the derivative of
a function by arbitrary, non-integer α-times. Formally, it has been written

GL
x0,xDα f (x) = lim

h→0

1
hα

[
x−x0

h ]

∑
j=0

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

f (x− jh), (38)

where Γ(·) is the Gamma-function, GL
x0,xDα f (x) is the αth order Grünwald–Letnikov deriva-

tive, and x and x0 stand for the upper and lower bounds, respectively. For a discrete
two-dimensional signal (in the context of image processing: a digital image), I(x, y), the GL
derivative in the x-direction can be defined as

GLDα Ix(x, y) = I(x, y)− αI(x− 1, y) +
α(α− 1)

2
I(x− 2, y). (39)
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Similarly, in the y-direction

GLDα Iy(x, y) = I(x, y)− αI(x, y− 1) +
α(α− 1)

2
I(x, y− 2). (40)

Similar to the traditional definition, the GL derivate can be given as

GLDα I(x, y) =
√
(GLDα Ix(x, y))2 + (GLDα Iy(x, y))2. (41)

Although the physical meaning of the GL fractional derivative is not absolutely under-
standable, it is important to notice that GL derivatives, in contrast to integer derivatives,
do not have local characters [84]. Namely, their derivatives depend on the entire functions.
In previous work [85], the combination of global and local variations of an image using
GL derivatives (global) and image gradients (local) proved to be beneficial for FR-IQA.
Note that the full-reference (FR) setting aims to evaluate an image using reference images
without distortions. In this study, in order to characterize global variations of images for
no reference (NR)-IQA, the computation of the GM [61] map was modified by using the
equations of the GL derivative, as in Equations (39)–(41). More specifically, three GL-GM
maps were computed with α = 0.3, α = 0.6, and α = 0.9, respectively, and their histogram
variances were taken as quality-aware features.

The GM map can be given very similarly to Equation (41):

GM(x, y) =
√
(Ix(x))2 + (Iy(x))2 (42)

where Ix(x) and Iy(x) stand for the approximate directional derivatives in the horizontal x
and vertical y directions of I(x), respectively.

The definition of the RO map is as follows [61]. First, the gradient orientation needs to
be defined:

θ(x, y) = arctan
(

Iy(x, y)
Ix(x, y)

)
. (43)

The RO map can be given as

RO(x, y) = θ(x, y)− θAVE(x, y) (44)

where θAVE(x, y) is the local average orientation; the authors define as

θAVE(x, y) = arctan
( Iy,AVE(x, y)

Ix,AVE(x, y)

)
, (45)

where the average directional derivatives are defined as

Iy,AVE(x, y) =
1

M · N ∑ ∑
(m,n)∈W

Iy(x−m, y− n), (46)

and
Ix,AVE(x, y) =

1
M · N ∑ ∑

(m,n)∈W
Ix(x−m, y− n), (47)

where W stands for the local neighborhood over the values that are computed. Similar to
the RO map, the RM map can be given as

RM(x, y) =
√
(Ix(x, y)− Ix,AVE(x, y))2 +

(
Iy(x, y)− Iy,AVE(x, y)

)2. (48)
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4. Results

In this section, our results are presented. Specifically, Section 4.1 consists of an ablation
study to analyze the performance of the proposed, individual quality-aware features. Next,
Section 4.2 describes the results of a performance comparison to other state-of-the-art
NR-IQA methods.

4.1. Ablation Study

In this subsection, an ablation study on CLIVE [45] is presented to reason the design
choices and demonstrate the individual performances of the proposed quality-aware
features. The results are summarized in Table 6. From these results, it can be observed that
the statistics of feature descriptors are quality-aware features and can deliver a rather strong
performance. However, the set of the applied perceptual features delivers the strongest
performance. It can also be seen that combining the statistics of local feature descriptors
with global features results in improved performance. Moreover, GPR with the rational
quadratic kernel function outperforms SVR with the Gaussian kernel function as a regressor
for all of the proposed quality-aware features. Figure 3 provides detailed results for all
local feature descriptors. On their own, all local feature descriptors can provide weak or
mediocre performances. However, their concatenations provide rather strong performances.
We attribute this result to the ability of local feature descriptors to diversely characterize
local image distortions. Based on the above observations, we used GPR with the rational
quadratic kernel function as a regressor in the proposed method, which is code-named
FLG-IQA, referring to the fact that it is based on the fusion of local and global features.

(a) (b)

(c) (d)
Figure 3. Comparison of the statistics of local feature descriptors as quality-aware features in
CLIVE [45]. Median SROCC values were measured over 100 random train–test splits. (a) RGB image,
SVR, (b) RGB image, GPR, (c) filtered image, SVR, (d) filtered image, GPR.
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Table 6. Ablation study on CLIVE [45] database. Median PLCC, SROCC, and KROCC values were
measured over 100 random train–test splits.

SVR GPR

Method PLCC SROCC KROCC PLCC SROCC KROCC

Feature descriptors,
RGB image 0.518 0.484 0.337 0.578 0.523 0.364

Feature descriptors,
filtered image 0.529 0.488 0.338 0.582 0.527 0.364

Hu invariant
moments 0.302 0.295 0.199 0.328 0.320 0.219

Perceptual features 0.607 0.588 0.420 0.626 0.598 0.425
GL and gradient

statistics 0.528 0.492 0.343 0.541 0.495 0.343

All 0.636 0.604 0.428 0.685 0.644 0.466

To demonstrate that all features are relevant in FLG-IQA, we present an experiment
based on the evaluation protocol described in Section 3.1.2 and using the CLIVE [45]
database, in which a given feature is eliminated from the entire feature vector. As demon-
strated in Figure 4, all features are important. If one of the applied features is removed,
the performance of FLG-IQA falls back. However, the statistics of SURF, KAZE, and
minimum eigenvalue local feature descriptors on the Prewitt-filtered image are the most
decisive to the performance of FLG-IQA from the statistics of local feature descriptors.
Moreover, perceptual features have the most contributing effects to the performance of
the proposed method. If we contrast the results in Figure 4 with results in Figure 3d and
Table 6, the following interesting fact can be observed. Features that have strong effects on
the performance of FLG-IQA, do not have always superior performance individually. For
instance, if the statistics of the minimum eigenvalue local feature descriptor in the Prewitt-
filtered image are removed, a significant performance drop can be observed. On the other
hand, its individual performance lags behind those of the Harris statistics on the filtered
image, although Harris has a rather strong individual performance. This indicates that
the statistics of local feature descriptors are quality-aware feature vectors and complement
each other in NR-IQA. Further, perceptual features have strong individual performances
and their removal from the feature vector throw back the performance, indicating that they
are very strong predictors of the perceptual image quality.

To further prove that all entries of the proposed feature vector are important, the rank
importance of all predictors was investigated using the RReliefF algorithm [86]. Namely,
the main idea behind RReliefF [87] is to estimate the discriminative power of features based
on their ability on how well they differentiate between instances that lie near each other in
the feature space. To this end, RReliefF penalizes those predictors that provide different
values to neighbors with the same response values. On the other hand, it rewards those
predictors that give different values to neighbors with different response values. Further,
the number of examined neighbors is an input parameter of RReliefF. For all details about
RReliefF, we refer to the paper by Robnik-Sikonja and Kononenko [88]. The results of the
RReliefF algorithm—using 1, 3, 5, and 7 nearest neighbors—on the features extracted from
the images of CLIVE [45], are depicted in Figure 5. From these results, it can be seen that
all entries of the proposed feature vector are important since the weights of importance are
non-negative in all cases.
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Figure 4. Performance in terms of SROCC of the proposed FLG-IQA in cases when a given feature is
removed from the proposed feature vector. The performance of the entire feature vector is indicated
by ’X’. Median SROCC values were measured on CLIVE [45] after 100 random train–test splits.

(a) (b)

(c) (d)
Figure 5. Results of the RReliefF algorithm on the features extracted from the images of CLIVE [45].
(a) k = 1 nearest neighbours, (b) k = 3 nearest neighbours, (c) k = 5 nearest neighbours, (d) k = 7
nearest neighbours.
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4.2. Comparison to the State-of-the-Art

In this subsection, the proposed FLG-IQA algorithm is compared to several state-of-
the-art methods, such as BLIINDS-II [23], BMPRI [12], BRISQUE [9], CurveletQA [10], DI-
IVINE [25], ENIQA [89], GRAD-LOG-CP [11], GWH-GLBP [90], NBIQA [91], OG-IQA [61],
PIQE [16], and SSEQ [92], whose original MATLAB source codes can be found online.
The above-mentioned algorithms were evaluated in the same environment with the same
evaluation protocol as ours. Since PIQE [16] is a training-free method without any ma-
chine learning technique, it was directly evaluated in the full datasets. The results are
summarized in Tables 7 and 8, where it can be seen that the proposed FLG-IQA is able
to outperform all other considered methods in three large IQA databases with authentic
distortions, i.e., CLIVE [45], KonIQ-10k [46], and SPAQ [47]. Table 9 illustrates the direct
and weighted average performance values obtained from the achieved results on the used
IQA benchmark databases. It can be observed that the proposed FLG-IQA outperforms all
other examined state-of-the-art algorithms by a large margin in this comparison. Specifi-
cally, FLG-IQA surpasses the second best methods by approximately 0.05 in terms of PLCC,
SROCC, and KROCC in direct and weighted averages as well. In general, all methods
achieved higher values in the case of the weighted average, which implies that the exam-
ined methods tend to perform better on larger databases. As an illustration of the results,
Figure 6 depicts ground truth versus predicted scores in CLIVE [45] and KonIQ-10k [46]
test sets, respectively.

Table 7. Comparison to the state-of-the-art in CLIVE [45] and KonIQ-10k [46] databases. Median
PLCC, SROCC, and KROCC values were measured over 100 random train–test splits. The best results
are in bold and the second-best results are underlined.

CLIVE [45] KonIQ-10k [46]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [23] 0.473 0.442 0.291 0.574 0.575 0.414
BMPRI [12] 0.541 0.487 0.333 0.637 0.619 0.421

BRISQUE [9] 0.524 0.497 0.345 0.707 0.677 0.494
CurveletQA [10] 0.636 0.621 0.421 0.730 0.718 0.495

DIIVINE [25] 0.617 0.580 0.405 0.709 0.693 0.471
ENIQA [89] 0.596 0.564 0.376 0.761 0.745 0.544

GRAD-LOG-CP [11] 0.607 0.604 0.383 0.705 0.696 0.501
GWH-GLBP [90] 0.584 0.559 0.395 0.723 0.698 0.507

NBIQA [91] 0.629 0.604 0.427 0.771 0.749 0.515
OG-IQA [61] 0.545 0.505 0.364 0.652 0.635 0.447

PIQE [16] 0.172 0.108 0.081 0.208 0.246 0.172
SSEQ [92] 0.487 0.436 0.309 0.589 0.572 0.423

FLG-IQA 0.685 0.644 0.466 0.806 0.771 0.578

Table 8. Comparison to the state-of-the-art in the SPAQ [47] database. Median PLCC, SROCC,
and KROCC values were measured over 100 random train–test splits. The best results are in bold
and the second-best results are underlined.

Method PLCC SROCC KROCC

BLIINDS-II [23] 0.676 0.675 0.486
BMPRI [12] 0.739 0.734 0.506

BRISQUE [9] 0.726 0.720 0.518
CurveletQA [10] 0.793 0.774 0.503

DIIVINE [25] 0.774 0.756 0.514
ENIQA [89] 0.813 0.804 0.603

GRAD-LOG-CP [11] 0.786 0.782 0.572
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Table 8. Cont.

Method PLCC SROCC KROCC

GWH-GLBP [90] 0.801 0.796 0.542
NBIQA [91] 0.802 0.793 0.539
OG-IQA [61] 0.726 0.724 0.594

PIQE [16] 0.211 0.156 0.091
SSEQ [92] 0.745 0.742 0.549

FLG-IQA 0.850 0.845 0.640

Table 9. Comparison to the state-of-the-art. Direct and weighted average PLCC, SROCC, and KROCC
are reported based on the results measured in CLIVE [45], KonIQ-10k [46], and SPAQ [47]. The best
results are in bold and the second-best results are underlined.

Direct Average Weighted Average

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [23] 0.574 0.564 0.397 0.620 0.618 0.443
BMPRI [12] 0.639 0.613 0.420 0.683 0.669 0.459

BRISQUE [9] 0.652 0.631 0.452 0.707 0.689 0.498
CurveletQA [10] 0.720 0.704 0.473 0.756 0.741 0.495

DIIVINE [25] 0.700 0.676 0.463 0.737 0.718 0.489
ENIQA [89] 0.723 0.704 0.508 0.778 0.765 0.565

GRAD-LOG-CP [11] 0.699 0.694 0.485 0.740 0.734 0.530
GWH-GLBP [90] 0.703 0.684 0.481 0.755 0.740 0.519

NBIQA [91] 0.734 0.715 0.494 0.779 0.763 0.522
OG-IQA [61] 0.641 0.621 0.468 0.683 0.673 0.516

PIQE [16] 0.197 0.170 0.115 0.208 0.194 0.127
SSEQ [92] 0.607 0.583 0.427 0.661 0.650 0.480

FLG-IQA 0.780 0.753 0.561 0.822 0.801 0.603

(a) (b)
Figure 6. Ground truth scores versus predicted scores in (a) CLIVE [45] and (b) KonIQ-10k [46]
test sets.

To prove that the achieved performance difference against the state-of-the-art in
CLIVE [45], KonIQ-10k [46], and SPAQ [47] was significant, significance tests were also
carried out. Specifically, one-sided t-tests were applied between the 100 SROCC values
provided by the proposed FLG-IQA method and one other examined state-of-the-art
algorithm. Further, the null hypothesis was that the mean SROCC values of the two sets
were equal to each other at a confidence level of 95%. The results of the significance tests
are summarized in Table 10 where symbol 1(−1) denotes that the proposed FLG-IQA is
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significantly better (worse) than the algorithm represented in the row of the table on the
IQA benchmark database represented in the column. From the presented results, it can
be seen that FLG-IQA is significantly better than the state-of-the-art in the utilized IQA
benchmark databases containing authentic distortions.

Table 10. Results of the significance tests. Symbol 1(−1) denotes that the proposed FLG-IQA
algorithm is significantly (95% confidence interval) better (worse) than the NR-IQA algorithm in the
row on the IQA benchmark database in the column.

Method CLIVE [45] KonIQ-10k [46] SPAQ [47]

BLIINDS-II [23] 1 1 1
BMPRI [12] 1 1 1

BRISQUE [9] 1 1 1
CurveletQA [10] 1 1 1

DIIVINE [25] 1 1 1
ENIQA [89] 1 1 1

GRAD-LOG-CP [11] 1 1 1
GWH-GLBP [90] 1 1 1

NBIQA [91] 1 1 1
OG-IQA [61] 1 1 1

PIQE [16] 1 1 1
SSEQ [92] 1 1 1

The effectiveness of the proposed FLG-IQA was further proved in a cross-database test
where the examined state-of-the-art algorithm and the proposed method were trained on
the large KonIQ-10k [46] and tested in CLIVE [45]. The results of this test are summarized
in Table 11. From the presented numerical results, it can be seen that the proposed method
provides a significantly higher performance than the other methods. Specifically, FLG-IQA
performs better than the second-best method bu approximately 0.11 in terms of PLCC
and 0.07 in terms of SROCC, respectively. Figure 7 depicts the results of FLG-IQA in the
cross database in normalized ground truth scores versus a normalized predicted score
scatter plot.

Table 11. Results of the cross-database test. The examined and the proposed methods were trained
on KonIQ-10k [46] and tested on CLIVE [45]. The best results are in bold and the second-best results
are underlined.

Method PLCC SROCC KROCC

BLIINDS-II [23] 0.107 0.090 0.063
BMPRI [12] 0.453 0.389 0.298

BRISQUE [9] 0.509 0.460 0.310
CurveletQA [10] 0.496 0.505 0.347

DIIVINE [25] 0.479 0.434 0.299
ENIQA [89] 0.428 0.386 0.272

GRAD-LOG-CP [11] 0.427 0.384 0.261
GWH-GLBP [90] 0.480 0.479 0.328

NBIQA [91] 0.503 0.509 0.284
OG-IQA [61] 0.442 0.427 0.289

SSEQ [92] 0.270 0.256 0.170

FLG-IQA 0.613 0.571 0.399
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Figure 7. Normalized ground truth scores versus normalized predicted score scatter plot of FLG-IQA
in the cross-database test.

5. Conclusions

In this paper, a novel NR-IQA method for authentically distorted images was intro-
duced. Specifically, a diverse set of local and global quality-aware features was proposed
and applied with a GPR with the rational quadratic kernel function to obtain a perceptual
quality estimator. The main idea behind the usage of local feature descriptor statistics was
that these feature descriptors interpret local image regions from the human visual system’s
viewpoint. The features were studied by taking into consideration their effects on the
performance of perceptual quality estimation. The numerical comparison to 12 other state-
of-the-art methods on three popular benchmark databases (CLIVE [45], KonIQ-10k [46],
and SPAQ [47]) proved the superior performance of the proposed method. Our future
work will involve boosting the quality-aware properties of the local feature descriptors by
applying bio-inspired filters.
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CGM color gradient magnitude
CNN convolutional neural network
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DCF dark channel feature
DCT discrete cosine transform
DF decision fusion
DSC digital still camera
DSLR digital single-lens reflex camera
FAST features from accelerated segment test
FR full-reference
GGD generalized Gaussian distribution
GL Grünwald–Letnikov
GM gradient magnitude
GPU graphics processing unit
GPR Gaussian process regression
IQA image quality assessment
KROCC Kendall’s rank-order correlation coefficient
MOS mean opinion score
MSCN mean subtracted contrast normalized
NIQE naturalness image quality evaluator
NR no-reference
NSS natural scene statistics
ORB oriented FAST and rotated BRIEF
PIQE perception-based image quality evaluator
PLCC Pearson’s linear correlation coefficient
RBF radial basis function
RM relative gradient magnitude
RMS root mean square
RO relative gradient orientation
RR reduced-reference
SPHN smartphone
SROCC Spearman’s rank-order correlation coefficient
SVR support vector regressor
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