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Lack of structure is often an essential functional feature of protein domains. The coordination of macromolecular
assemblies in DNA repair pathways is yet another task disordered protein regions are highly implicated in. Here I
review the available experimental and computational data and within this context discuss the functional role of
structure and disorder in one of the essential scaffolding proteins in the nucleotide excision repair (NER) path-
way, namely Xeroderma pigmentosum complementation group A (XPA). From the analysis of the current knowl-
edge, in addition to protein–protein docking and secondary structure prediction results presented for the first
time herein, a mechanistic framework emerges, where XPA builds the NER pre-incision complex in a modular
fashion, as “beads on a string”, where the protein–protein interaction “beads”, or modules, are interconnected
by disordered link regions. This architecture is ideal to avoid the expected steric hindrance constraints of the
DNA expanded bubble. Finally, the role of the XPA structural disorder in binding affinity modulation and in the
sequential binding of NER core factors in the pre-incision complex is also discussed.
© 2015 Fadda. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The regulation of molecular function by structurally disordered
protein domains is currently one of the hottest topics in structural
and computational biology [1–4]. Over 40% of proteins coded by the
human genome contain structurally disordered regions [3,5], usually in-
volved in regulatory and signaling pathways [4]. Notably, the dysregula-
tion of poorly structured protein domains is also linked to diseases [5],
making these regions an interesting, but very challenging, target for
drug design. One of the main advantages of the lack of structure in pro-
tein domains is in the flexibility it confers when the protein interacts
withmultiple counterparts. DNA repair pathways hinge on complicated
interaction networks that involve many different proteins. Some of
these proteins need to assemble into large complexes to perform their
specific tasks and these associations are often reversible and transient.
Structural disorder is instrumental toward the coordination of these
reversible and transient networks [6], thus crucial toward the effective-
ness of DNA repair. Xeroderma pigmentosum complementation group A
(XPA) is an essential protein in the nucleotide excision repair (NER)
pathway, the main DNA repair pathway responsible for the excision of
bulky DNA lesions in both eukaryotic and prokaryotic cells. NER targets
lesions caused by environmental mutagens, such UV light and
half of the Research Network of Comp
polycyclic aromatic hydrocarbons, or by alkylating agents, such as
platinum-based chemotherapeutics [7]. Enhanced expression levels of
NER core factors have been directly linked to clinical resistance to plat-
inumchemotherapy [8,9],making theNERpathway and the proteins in-
volved in it very interesting targets in cancer research [10–13]. One of
the key roles of XPA is to coordinate the assembly of other NER core fac-
tors around the DNA damage site [14–17] before lesion excision. The
mechanistic details of this process are not clear, especially because of
the lack of structural information available on the scaffolding protein,
XPA, which is largely disordered. In this work I will summarize and dis-
cuss the structural, mutagenesis, and computational data available to
date to produce an overall 3D mechanistic model of the assembly of
the NER pre-incision complex. This discussion will help to provide a
clearer understanding of the essential function of the structural disorder
of XPA as a flexible scaffolding protein and its mechanistic role in the
NER pathway. In the following sections, the author will 1) outline the
main steps of the NER pathway up to the damaged oligonucleotide ex-
cision, 2) discuss the XPA sequence within the context of its secondary
structure and protein–protein and protein–DNA interaction regions,
3) describe the structure or, when a complete structure is not available,
define a 3Dmodel for the 3 essential XPA–protein complexes (modules)
thatmake the pre-incision complex, andfinally 4) discuss the functional
andmechanistic role of a poorly structured XPA scaffold in themodular
assembly, as “beads on a string”, of NER core factors.
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2. The nucleotide excision repair (NER) pathway

Although significantly different in their chemistry, all NER-targeted
lesions have a common structural trait, namely a severe bend in the
DNA that destabilizes the double helix [18]. Such DNA damage can be
detected either when it stalls the RNA polymerase, which initiates the
so-called transcription-coupled NER (TC-NER) pathway, or indepen-
dently of transcription, through the action of specific damage sensing
proteins that initiate the global genomic NER (GG-NER) pathway [18].
TC-NER and GG-NER differ significantly only in this damage recognition
step. Eukaryotic NER involves the work of over 30 proteins [19], impli-
cated in a sequential series of actions that can be summarized as
follows: 1) DNA damage recognition, 2) DNA unwinding, 3) 3′ and 5′
dual incision, 4) damaged oligonucleotide removal, 5) gap-filling, and
finally, 6) ligation [18,20]. Specific NER proteins carry out these steps
through the progressive and coordinated formation of multi-protein
assemblies [18,21–23]. Shown in Table 1 are the core NER factors
responsible for damage recognition and excision in eukaryotic cells,
namely Xeroderma pigmentosum complementation group C (XPC) in
complex with RAD23B, replication protein A (RPA), XPA, the transcrip-
tion factor II H (TFIIH) complex, XPG, and the excision repair cross-
complementation group 1 (ERCC1) in complexwithXPF [20]. The prefix
“XP” shared by 7 NER core factors, from XPA to XPG, derives from their
identification though genetic complementation studies of the human
DNA repair disease Xeroderma pigmentosum [24]. XPC–RAD23B and
ERCC1–XPF are stable heterodimeric complexes [25–29]. RPA is an
ssDNA-binding multimodular heterotrimer composed by 3 subunits,
namely RPA32, RPA14, and RPA70 [30], where the numbering
refers to their respective molecular weights. Finally, TFIIH is a large
multi-domain complex, containing 6 subunits, which include the two
helicases XPB and XPD [31,32], and the cyclin-dependent kinase
(CDK)-activating complex (CAK) [32]. The main steps leading to the
damage excision in the GG-NER pathway are summarized in Fig. 1.
The XPC–RAD23B complex is responsible for initiating the GG-NER
pathway by detecting helical distortions caused by bulky DNA adducts
[18,20,31]. Notably, compelling evidence shows also that XPA binds
specifically distorted DNA helices and could be involved in the recogni-
tion of bulky DNA lesions [33,34]. Furthermore, recent structural work
on Rad14, the yeast homolog of human XPA, suggests that the XPA ho-
modimer can be involved in the DNA damage detection [34]. Indeed,
XPA dimerization has been previously reported, but its functional role
in NER was not clear [35,36]. As shown Fig. 1, panel b, the XPC–
RAD23B recruits the TFIIH multidomain helicase to the damage site
[22]. The two helicase subunits of TFIIH, namely XPB and XPD, unwind
the double helix, exposing a 30 base-pair long ssDNA stretch carrying
the lesion, a structure known asDNAbubble [19,23]. TheN-terminal do-
main of XPC also interacts with XPA [37–39], which could be recruited
at this stage togetherwith RPA, possibly as a pre-formedXPA–RPA com-
plex [40], as shown in Fig. 1, panel c [41]. Park et al. [42] have shown that
XPA interacts with TFIIH and that TFIIH may be involved in its recruit-
ment, or in the recruitment of the XPA–RPA complex. Lastly, if an XPA
homodimer (XPA2) is involved in damage recognition, it would be
already located on the forming bubble, however the transition from
XPA2 to the DNA-bound XPA–RPA complex is not clear as yet. The
XPA–RPA interaction promotes the dissociation of the XPC–RAD23B
from the damage site [43], which results in the dissociation of the
Table 1
NER core factors involved in the lesion recognition (GG-NER) and excision with corresponding

NER factors Molecular weight (kDa) Core NER factor inter

XPC–RAD23B 106 + 43 XPA, TFIIH
RPA 70 + 32 + 14 XPA, XPG
XPA 40 ERCC1, RPA, TFIIH, XP
TFIIH 460 XPA, XPC, XPG
XPG 133 RPA, TFIIH
ERCC1–XPF 38 + 112 XPA
XPC–RAD23B dimer [25]. It is at this stage, represented schematically
in Fig. 1, panel d, that the XPA serves its most important role as a scaf-
fold, by coordinating the multi-protein assembly and the docking of
the 5′ specific endonuclease to the ss to dsDNA Y junction [15,17–19,
44]. Whether XPA binds the ssDNA to dsDNA junction on the 5′ side
[38] or the 3′ side [19,44,45] of the damage in the pre-incision complex
has not been clearly established yet. However, based on structural con-
straints, the argument of XPA binding the Y DNA junction at the 3′ side
seems more compelling. A possible arrangement of the NER factors
around the DNA bubble, with the XPA positioned at the 3′ Y junction
and the RPA on the undamaged oligonucleotide [19,46], is represented
schematically in Fig. 1, panel d. The 3′ specific XPG endonuclease (not
shown) is most likely recruited to the damage site by TFIIH [18,47,48],
to which it is associated [49]. The dual incision is initiated by the
ERCC1–XPF at the 5′ side and then followed by the XPG at the 3′ side
of the bubble [50]. The release of the damaged oligonucleotide, and of
the TFIIH bound to it [51], leads to the unbinding of XPA and to the
DNA re-synthesis and ligation [18].
3. XPA protein sequence and interactome

As summarized in Table 1 and Fig. 1, XPA interacts directly with
all NER core factors at the damage site, aside from XPG, functioning
as a scaffold for the excision of the damaged oligonucleotide [15,18].
The 273 residues (40 kDa) XPA protein contains a partially structured
Zn-containing subdomain [52,53], located between residues 98 to
219, and poorly structured C and N terminal tails [29,54]. The XPA
sequence and secondary structure assignments are shown in Fig. 2.
The XPA Zn-containing core is responsible for binding both, the
ssDNA to dsDNA junction, or Y junction [15,55], and the RPA70 domain
[17,56]. Recent studies have shown that the XPA DNA binding domain
extends beyond the known solution structure (PDBid 1XPA), up to
residue 239; with the XPA98–239 construct found to bind DNA Y junc-
tions with the same affinity as the full-length protein [15,55]. The
interaction with RPA70 was mapped onto the region between XPA
residues 141 and 176 [17,40], with the possible contribution of the
Zn-containing subdomain [52], or of both [57], as shown in Fig. 3,
panel a. The interaction with TFIIH involves a region included within
the last 48 residues of the XPA C-terminal domain [42]. Although the
XPA TFIIH-binding region has not been mapped in more details, an
earlier study [42] has shown that the C261S and C264S XPA mutants
are not able to bind TFIIH, see Fig. 2. The interactions with the
RPA32 subunit and with the ERCC1–XPF 5′endonuclease involve
different regions located in the structureless N-terminal tail of XPA
[40,54,58]. As highlighted in Fig. 2, the stretch between residues
29 and 46 is involved in the interaction with RPA32 [29], while the
stretch between residues 67 and 80 represents the minimal
binding motif for the interaction with the ERCC1–XPF 5′ endonuclease
[54,58,59]. As shown in Fig. 2, the protein–protein interaction regions
of XPA are separated by long and disordered link regions. This architec-
ture allows the NER proteins to associate to XPA to form a multiprotein
complex with an overall “beads on a string”motif, where the beads can
act cooperatively in a modular fashion. The identity, structure, and func-
tion of the different XPA–proteins modules in the pre-incision complex
are discussed below.
molecular weights, function, and main interactions with other NER proteins.

actions NER function

Damage recognition and NER factors recruitment
Pre-incision complex anchor and NER factors recruitment

C-RAD23B Pre-incision complex scaffold and NER factors recruitment
Damage recognition, helicase and NER factors recruitment
3′ endonuclease
5′ endonuclease



Fig. 1. Schematic representation of the damage recognition to excision steps in the GG-NER pathway. (Panel a) The XPC-RAD23B heterodimer, shown in orange and represented by the
structure of the yeast ortholog Rad4 (PDBid 4YIR), is responsible for the detection of bulky DNA adducts and initiation of the GG-NER pathway. (Panel b) XPC–RAD23B recruits the
multidomain complex TFIIH, shown in light blue and adapted from ref. [85]. TFIIH includes two helicases, namely XPB and XPD, which coordinate the duplex opening. (Panel c) XPA
and RPA, shown in red and tan, respectively, are recruited to the lesion site possibly as a pre-formed complex. This interaction causes the release of XPC–RAD32B. The complex between
the 3 RPA domains and the ssDNA covers a 30 nucleotides stretch, corresponding to the full length of the DNA bubble. In this panel the structures representing the RPA32 C-terminal
domain, the RPA trimerization domain, and the RPA70 ssDNA binding domain correspond to the PDBids, 1DPU, 1L10, and 1JMC, respectively. The complex between the XPA (1XPA),
the ssDNA, and RPA70 (1JMC) has been obtained by protein–protein docking and is discussed in the text. The red line connecting XPA to the RPA32 C-terminal domain represents
the intrinsically disordered XPA N-terminal 97 aa disordered linker. (Panel d) The binding of XPA promotes the recruitment of the ERCC1-XPF endonuclease to the 5′ side of the
lesion. The structures used to build a model of the ERCC1-XPF complex by alignment have PDBids 2A1I, 2A1J, 2BGW, and 2JNW, which represent the central domain of human ERCC1,
the C-terminal domains of human XPF and ERCC1, the XPF from Aeropyrum pernix, and the central domain of human ERCC1 in complex with XPA67–80, respectively.
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4. Module 1: The XPA98–219–DNA–RPA70 complex

The only region of XPA structurally characterized is part of its DNA
and RPA70 binding core, comprising residues 98 to 219 [17,52,53]. The
XPA98–219 shown in Fig. 3, presents a 3 helix packing domain, located
between residues 141 to 210, sided by a short β-sheet stretch and by
poorly structured loop regions, which also include the Zn coordination
site [52,53]. STRIDE [60] secondary structure assignments based on
the XPA98–219 solution NMR structure with PDBid 1XPA are shown in
Fig. 2. Although no structural data is available at this time of the XPA
in complex with ssDNA or with a Y DNA junction, recent studies have
shown that two Lys, namely K168 and K179 are essential for DNA inter-
action [55], see Fig. 3, panel a. In the same study [55], a set of residues not
included in the XPA98–219 NMR structure, and for which no structural
data are available yet, have been also identified as important for DNA
binding, namely K221, K222, K224, and K236. As shown in Fig. 2, accord-
ing to sequence-based secondary structure prediction methods, namely
s2D [61], and PsiPred [62], these Lys are located in a region, between
amino acid (aa) 200 and 228, likely to fold into an α helix. The presence
of a fourth helix in this region has also been proposed earlier, based on
the interpretation of NMR data [15]. Accordingly, as also shown in
Fig. 2, the sequence-based disorder prediction method DisEMBL [63]
does not flag the 200 to 228 aa stretch as disordered.

Interactions with both, ssDNA and RPA70, take place around the
same region within the XPA98–219 domain [17,56], where the RPA70
binding region may extend to the Zn coordination site [52,53]. K179
has been identified as a key residue for the binding of both, the ssDNA
and RPA70 [17,55], see Fig. 3, panel a, while adjacent residues, namely
K167 and K168, have been identified as key residues for binding
RPA70 and DNA, respectively [17,44,55]. NMR and mutagenesis data
[17,44] also highlight the involvement in the ssDNAbinding of a number
of other residues located on the α helix 1 of XPA and indicated in Fig. 3,
panel a. Mutagenesis data suggest that the deletion of residues 147 to
150 (ΔEYLL) and of residues 162 to 165 (ΔLKFI) highly reduces binding
to RPA70 [40]; both these segments are highlighted in red in Fig. 3,
panel b. Furthermore, deletion of residues 168 to 171 (ΔKNPH) reduces
binding onlymoderately, while deletion of 157 to 160 (ΔKREP) does not
affect binding [40]. Considering the location of these segments within
the XPA fold it is conceivable that some of the deletions affect binding
to RPA70 due to the changes theymay induced in the protein secondary
structure and not necessarily because these patches constitute a pro-
tein–protein docking site [40]. Nevertheless, NMR data suggest that
the RPA70 protein binding surface involved in DNA binding is also im-
plicated in XPA binding [64]. All these information together support
the structure of a ternary XPA98–219–DNA–RPA70 complex where one
strand of ssDNA channels through the two proteins, interacting with
both the XPA98–219 and RPA70. This hypothesis is also in agreement
with kinetic data showing that the XPA–RPA complex is 2.5 fold faster
than RPA alone for binding a duplex cisplatin-damaged DNA [56].
Protein–protein docking performed with the online tool ClusPro
[65,66] using the structures of XPA and of the ssDNA–RPA70 complex
available in the PDB with PDBids 1XPA and 1JMC, respectively, returns
as the highest scoring pose a quite interesting model for a possible
three-body XPA98–219–DNA–RPA70 complex. This complex, shown in
Fig. 4, sees the ssDNA channeling within a cavity formed between
XPA98–219 and RPA70. This model predicts that two poorly structured



Fig. 2. Sequence (NP_000371.1) of the full length XPA (Homo sapiens). Color coding is used to facilitate the mapping of the interaction motifs along the sequence, the RPA32 interaction
motif is shown in blue, the ERCC1–XPF in red, theDNA in green, the RPA70 in orange, and the two Cys involved in the interactionwith TFIIH in purple. Sequence-based secondary structure
and disorder predictions obtained with the s2D [61], DisEMBL [63], and PsiPred [62] methods are also shown, together with the secondary structure assignments, obtained with STRIDE
[60], based on the NMR structure of the XPA DNA binding domain (PDBid 1XPA). The one-letter code used to specify secondary structuremotifs reads as follows, c (coil), t (turn), g (3–10
helix), h (α-helix) and e (β-sheet). Long stretches containing coils and/or turns indicate structural disorder. Predicted structured regions in DisEMBL are indicated with a dash.
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XPA98–219 regions, one located between residues 98 and 138, which in-
cludes the Zn coordination site, and the other located between residues
179 and 183, are also involved in the interactionwith RPA70 and ssDNA,
Fig. 3. (Panel a) Structure of the XPA DNA-binding core (aa 98 to 210) represented with cartoo
of the structure is shown in green. The Zn atom is shown as a gray sphere and the position of so
(Panel b) The 4 residue-long stretches implicated in RPA70 binding are shown in red, where the
ΔKNPH stretch, which only moderately affects binding, is highlighted in orange and the ΔKREP
leaving the helical packing motif outfacing the ssDNA–RPA70 interface.
Interestingly, as shown in Fig. 4, panels a and b, in agreement with the
available experimental data [17,44,55], the ClusPro model suggests
n rendering. The regions implicated in RPA70 binding are shown in yellow, while the rest
me of the key residues for DNA and RPA70 binding, are highlighted with sticks rendering.
ΔLKFI stretch is in a β-sheet strand and theΔEYLL is partly involved in a helical motif. The
, which does not affect binding, in white. Mutagenesis data from ref. [40].



Fig. 4. (Panel a) Highest scoring pose for the XPA98–219–ssDNA-RPA70 complex predicted by the ClusPro online tool [65,66]. The XPA (1XPA PDBid) is shown in green, the RPA70 in
complex with the ssDNA strand (1JMC PDBid) are shown in cyan and orange, respectively. (Panel b) Side view into the three-body XPA98–219–ssDNA-RPA70 complex showing RPA70
Ser 173 and Asp 314 as a possible contacts for XPA Lys 179 and Lys 167, respectively. (Panel c) Proposed organization of the three-body XPA98–219–ssDNA–RPA70 complex at the Y junction
in the NER pre-incision complex.
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direct interactionswith RPA70 for residues K179 and K167 andwith the
ssDNA for residue K168. The position of the XPA98–239 core at the 3′ side
of the Y DNA junction, as shown in Fig. 4, panel c, satisfies the require-
ment that residues in theXPAαhelix 1 are also involved in DNAbinding
[44] together with the potential fourth α helix (α helix 4) between
residues 200 and 228 discussed above [15]. Within this hypothesis,
the extended XPA98–239 core would bind both ssDNA branches at the
junction, with the damaged oligonucleotide interacting with α helix 1
(and with the hypothetical α helix 4) and the undamaged branch
going through the XPA98–239–RPA70 interface, as predicted by the
ClusPro docking model.

5. Module 2: The XPA29–46–RPA32 complex

In the NER pre-incision complex XPA interacts also with the other
large unit of RPA, namely RPA32 [17,29,67]. As shown in Fig. 2, the
RPA32 binding motif was mapped between residues 29 and 46 in the
poorly structured N terminal tail of XPA [29]. Thismotif binds a globular
domain located in the C-terminus of RPA32, between residues 204 and
270, a docking point also shared by UNG2 and RAD52 [29]. The ssDNA
binding region of RPA32 is located in an unstructured region of the pro-
tein, between residues 43 and 171 [29,68]. Although the binding affinity
of this region alone for the ssDNA is moderate [69], the binding affinity
of the whole RPA heterotrimer is high, around 5 × 10−8 M [29,68–71],
suggesting RPA as a possible anchoring point for XPA on the DNA
bubble. Furthermore, the full length XPA–RPA dissociation constant
(kD), obtained by surface plasmon resonance (SPR), is in the order of
2 × 10−8 M, showing a higher affinity of XPA for RPA, relative to
ERCC1 [67] (see next section for details). Although a solution structure
of the XPA29–46 peptide bound to RPA32 is not available, 15N-HSQC
data indicate that the binding mode and the binding site of the
XPA29–46–RPA32 complex is identical to the one characterized for the
UNG73–88–RPA32 complex, shown in Fig. 5, where the UNG73–88 pep-
tide, disordered in solution, adopts a helical structure upon binding
[29]. As shown in Fig. 2, secondary structure predictions obtained with
the sD2 [61] and PsiPred [62] methods indicate a propensity for helical
motifs corresponding to the XPA29–46 sequence, while the disorder pre-
diction method DisEMBL [63] does not flag this region as disordered.

6. Module 3: The XPA67–80–ERCC1–XPF complex

The ERCC1–XPF is a heterodimeric endonuclease responsible for
cleaving the damaged ssDNA oligonucleotide at the 5′ side of the lesion.
The nuclease activity resides entirely on the XPF module [72], while the
ERCC1 is responsible for binding both, the ss/dsDNA Y junction and XPA
[26,27,54,73]. XPA is responsible for recruiting the ERCC1-XPF endonu-
clease to the damage site [59]. Inhibition of the XPA interaction with
ERCC1–XPF blocks NER [54,58,59]. As shown in Fig. 2, the minimum
ERCC1 bindingmotif of XPA is 14 residue long and it is located in a poor-
ly structured region of theXPAN terminal tail, namely between residues
67 and 80 [54]. A peptide with sequence corresponding to this mini-
mum binding motif, named XPA67–80 peptide, binds specifically the
ERCC1 central domain (cERCC1), comprising residues 96 to 214, with
submicromolar affinity. The XPA67–80 peptide binding inhibits the inter-
action with the full length XPA and blocks NER progression, without
affecting nuclease activity [54]. The XPA67–80 sequence is highly
conserved in all species carrying NER genes [54,74,75], suggesting im-
portant structural and functional roles for the 14 residues. Molecular



Fig. 5.Model of the complex between the C terminal domain of RPA32 and the XPA29–44

peptide. This model was built based on the complex between the C terminal domain
of RPA32 and the UNG73–88 peptide with PDBid 1DPU, where the UNG73–88 residues
have been mutated according to the sequence alignment with the XPA29–44 stretch.

Fig. 6. Structure of the ERCC1 central domain (PDBid 2A1I), shown in yellow, bound to the
XPA67–80 peptide (PDBid 2JNW), shown in green. Residues implicated in interaction with
the ssDNA are highlighted with sticks [27].
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dynamics (MD) simulation studies of the wild type and selected
mutants XPA67–80 peptides bound to cERCC1 and free in solution
suggest that, while specific residues, such as Asp 70, Phe 75 and Ile 76,
are involved in direct interactions with the cERCC1 binding site, other
residues affect the peptide conformational propensity while free
(unbound) in solution, thus its recognition by cERCC1 [74,75]. More
specifically, while NMR data show that the unbound XPA67–80 peptide
is poorly structured [54], extensiveMD simulations, scanning themicro-
second time scale, allowed to identify a degree of order within the
longer timescale disorder of the XPA67–80 peptide [74,75]. Indeed the
wild type peptide shows a distinct conformational propensity for
hairpin structures in solution, where these hairpins are structurally
similar to the cERCC1-bound XPA67–80 conformation [54], and are stable
at the low microsecond time scale [74,75].

The XPA binding site of cERCC1, shown in Fig. 6, is a narrow,
V-shaped, hydrophobic pocket [27,73]. Structural comparison of the
cERCC1 to the nuclease domain of the Hef nuclease indicates that the
same V-shaped groove could mediate ssDNA-binding activity [27].
While the XPA67–80 peptide has been shown to be a competitive inhib-
itor of ssDNAbinding by cERCC1 [54], chemical shift perturbation exper-
iments have shown that the both full-length XPA and ssDNA can bind
the cERCC1 simultaneously, with the cERCC1 in contact with 3 or 4 un-
paired bases atmost [73]. The kD of the full length XPA–cERCC1 complex
from SPR, is 2.5 × 10−7 M [67], while the value of 2.5 × 10−6 M was
obtained for the kD of the cERCC1 in complex with a 10 unpaired
nucleotide-long DNA bubble [73].

7. Proposed role for XPA in the NER pre-incision complex assembly

The intricacy and high specificity of the XPA–protein and XPA–
ssDNA interactions is in apparent contrast with the lack of structure
characterizing large part of the XPA sequence and with the short length
of some of the XPA interaction domains. This high degree of conforma-
tional disorder is consistent with the lack of structural information we
have on the full-length XPA, when bound and especially when unbound
in solution. Within the whole XPA sequence, shown in Fig. 2, we can
identify different degrees of conformational propensity, from the highly
disordered to structured. In some instances structured and partially
structured regions correspond to protein–protein and protein–DNA in-
teraction hubs, such as the XPA98–239 domain, specific for binding ssDNA
and RPA70. In the cases of the poorly structured XPA29–46 and XPA67–80

domains, specific to RPA32 and cERCC1, respectively, secondary struc-
ture motifs may go undetected when the protein is free in solution
due to the length of experimental timescales. For example, in the case
of XPA67–80, a specific hairpin motif structurally similar to the bound
conformation has been found to be significantly populated at the low
microsecond time scale [74,75], when it can be selectively recognized
and bound by cERCC1. As a support for conformational selection
[75–78] as a recognition mechanism, simulation data [75] show that
the XPA67–80 conformational propensity in solution can be significantly
affected by themutation of the terminal residues of the cERCC1-specific
region, namely Lys 67 or Glu 78 to 80, among others, where themutants
show amuch higher level of structural disorder relative to thewild type
[75]. This significant increase in structural disorder can explain the
inability to bind cERCC1 of a XPA mutant where the stretch between
Glu 78 and Glu 84, termed E motif, was deleted [58,75].

While the XPA–protein and XPA–ssDNA binding regions fall in a
range between highly (XPA98–219) to less structured (XPA29–46 and
XPA67–80), where the observation timescale defines the position within
this range, the linker regions connecting the different XPA binding
motifs are intrinsically disordered. The presence of these structureless
regions confers to XPA the ability to function as a flexible scaffold with
a “bead on a string” architecture, avoidingmajor steric clashes in the or-
ganization of the NER core proteins around the DNA bubble framework
[6]. Furthermore, structural flexibility represents an advantage not only
in terms of steric constraints, but also because it modulates the binding
affinity, thus it allows for sequential binding [6,79]. The higher the struc-
tural disorder of amolecule unbound in solution, the higher the entropic
penalty to pay when that conformational freedom is lost upon binding.
Thus, the high conformational flexibility characterizing the XPA67–80 re-
gion confers a lower binding affinity to the ERCC1–XPA67–80 complex
relative to the XPA29–46–RPA32 complex and especially to the struc-
tured XPA98–219–ssDNA-RPA70 complex [54,67]. Indeed, according to
secondary structure predictions shown in Fig. 2, the XPA29–46 region
has an intrinsic propensity to form helices, which makes XPA29–46 less
disordered than the XPA67–80 region.

Based on the data available and on the sequential binding discussed
above, the following role for XPA in the pre-incision complex modular
architecture is proposed and represented schematically in Fig. 1, panels
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c and d. Although there is evidence supporting the participation of XPA
in damage recognition [33], possibly as a homodimer [34–36], themain-
stream current understanding suggests that the recruitment and posi-
tioning of XPA to the damage site could take place via its interaction
with either XPC–RAD23B [41], or TFIIH [42], post lesion recognition by
XPC–RAD23B. The XPA main anchoring point around the DNA bubble
is most likely the heterotrimeric RPA complex, that has a high binding
affinity for both, damaged ssDNA [67,70,80] and XPA [67]. The (mostly)
structured XPA98–239 core binds RPA70 and the ssDNA in a ternary com-
plex that constitutes the first module (Module 1) in the pre-incision
bubble. Although there are no direct structural information on the
XPA98–239–ssDNA-RPA70 complex, the available data, discussed in
detail in a previous sections, support a structure where the ssDNA chan-
nels through an interface formed between theRPA70 and theXPA98–239,
located at the 3′ side of the lesion. A model for the Module 1 complex
that fits with the available experimental evidence was generated
through protein–protein docking with the online tool ClusPro [65,66]
and it is shown in Fig. 4. The other large domain of RPA, namely
RPA32, constitutes the second anchoring point for XPA around the
DNA bubble (Module 2). RPA32 binds the ssDNA alongside the RPA70
on the damaged oligonucleotide. The N-terminal XPA29–46 stretch
binds specifically a globular domain in the RPA32 C-terminus [29]. As
shown in Fig. 2, the two RPA-binding domains of XPA are linked though
a largely disordered region, counting over 50 residues. Roughly central
within this region is the cERCC1-binding sequence. As a possible mech-
anism for the assembly of thepre-incision complex, the recruitment and
positioning of the ERCC1–XPF endonuclease by XPA depends on the
formation of Modules 1 and 2 as anchoring points. Indeed, the poorly
structured 50 residue linker, connecting the XPA–ssDNA–RPA70 and
XPA–RPA32 units, constitutes a loop wide enough to reach the Y junc-
tion at the 5′ side, located approximately 30 nucleotides away, thus to
bind and position the ERCC1–XPF endonuclease. Once the ERCC1–XPF
endonuclease is put in place, it starts the dual incision step followed
by the XPG nick at the 3′ side [81], which results in the elimination of
the damaged oligonucleotide.

8. Summary and concluding remarks

The conformational flexibility conferred to proteins by structural
disorder can provide many functional advantages over highly struc-
tured domains [1–4,6]. These advantages are fully exploited by higher
eukaryotes,with over 40% of proteins coded by the human genome con-
taining structurally disordered regions [3,5]. Here I have reviewed and
discussed, in view of the available experimental and computational
data, the structure and function relationship and the role of structural
disorder in XPA, a scaffolding protein essential for the progression
of the NER pathway [18]. The analysis presented here shows that XPA
exerts its role as a scaffold through the formation of 3 main interactions
modules. Module 1 is a heterotrimeric complex involving the XPA98–239

region, the ss/dsDNA Y junction at the 3′ side of the lesion and RPA70,
likely to function as the main anchoring point for XPA on the DNA bub-
ble [67]. A model of this ternary complex was also presented, which
may provide new insight for the design of mutagenesis studies. The N
terminal XPA29–46 region, namely binds the C-terminal globular domain
of RPA32 [29], to form Module 2, most likely through a conformational
selection mechanism. Conformational selection also plays a role in the
formation of Module 3, which involves a 14 residue section of the
least structured region of XPA, namely XPA67–80, and the central domain
of ERCC1 (cERCC1) [74,75]. XPA67–80 is located in the middle of a 50
residue-long intrinsically disordered loop, connecting Modules 1 and
2. This loop is wide and flexible enough to reach the Y DNA junction
at the 5′ side of the lesion and to position the ERCC1-XPF endonuclease
for the dual excision. The XPA67–80–cERCC1 interaction has the lowest
binding affinity between the 3 [67], thus it is likely to occur last. This
analysis shows that the different degrees of structural disorder in the
XPA protein allow it to adopt a “beads on a string” architecture, ideal
to fit within the DNA bubble framework, avoiding steric clashes. Fur-
thermore, because of the thermodynamic interplay between enthalpic
and entropic contributions, the balance between order and disorder
has a significant effect on the relative binding affinities of the modules,
allowing for their sequential (and possibly reversible) assembly. In
conclusion, with conformational selection playing a huge role in the
molecular recognition and binding of poorly structured protein do-
mains [6,75–78], this perspective on the XPA protein contributes to
highlight that the concept of structural order and disorder becomes
highly dependent on the timescale difference between the experimen-
tal measurement and the molecular recognition and that it cannot be
considered as an absolute observable. Because of the key role played
by XPA in NER, an interesting point for further investigation into its
structure–function relationship is the effect of single nucleotide poly-
morphisms (SNPs) and of non-frameshifting insertion and deletions
(INDELs), commonly found in disordered linking regions [82]. Indeed,
SNPs in DNA repair proteins seem to be related to DNA repair abilities,
cancer risk [83] and chemotherapeutic resistance [84]. The frequency,
nature and lengths of INDELs in the XPA linking regions may affect its
effectiveness as a flexible scaffold, thus the overall function in NER path-
way, conferring a distinctive genetic trait for disease predisposition or
therapeutic resistance.
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